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1 Linear Vector Spaces and Matrices

1.1 Three-dimensional Vectors

You have met vectors an ordinary (real) 3-dimensional Euclidean space. Now generalise
definitions and results to complex spaces with n-dimensions. This will be of importance
for the 2B22 Quantum Mechanics course.

Define a three-dimensional Euclidean space by introducing three mutually orthogonal
basis vectors ı̂, ̂ and k̂. However, cannot generalise this notation to arbitrary number
of dimensions, so use ê1 = ı̂, ê2 = ̂, and ê3 = k̂ instead. These basis vectors have unit
length,

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1 , (1)

and are perpendicular to each other;

ê1 · ê2 = ê2 · ê3 = ê3 · ê1 = 0 . (2)

Summarised in one equation as
êi · êj = δij , (3)

where the Kronecker delta δij is shorthand for

δij =

{

1 if i = j
0 if i 6= j

(4)

Any vector v in this three-dimensional space may be written down in terms of its
components along the êi. Switching notation here so that vectors are underline, rather
than having arrows on top, in line with notation for matrices. Thus

v = v1 ê1 + v2 ê2 + v3 ê3 ,

where the coefficients vi may be obtained by taking the scalar product of v with the basis
vector êi;

vi = êi · v . (5)

This follows because the êi are perpendicular and have length one. If we know two vectors
v and u in terms of their components, then their scalar product is

u · v = (u1 ê1 +u2 ê2 +u3 ê3) · (v1 ê1 + v2 ê2 + v3 ê3) = u1 v1 +u2 v2 +u3 v3 =
3
∑

i=1

ui vi . (6)

A particularly important case is that of the scalar product of a vector with itself,
which gives rise to Pythagoras’s theorem

v2 = v · v = v 2
1 + v 2

2 + v 2
3 . (7)

The length of a vector v is

v =| v |=
√
v2 =

√

v 2
1 + v 2

2 + v 2
3 . (8)

A unit vector has length one.
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A vector is the zero vector if and only if all its components vanish. Thus

v = 0 ⇐⇒ (v1 , v2 , v3) = (0, 0, 0) . (9)

The vector v is a linear combination of the basis vectors êi. Note that the basis vectors
themselves are linearly independent, because there is no linear combination of the êi which
vanishes – unless all the coefficients are zero. Putting it in other words,

ê3 6= α ê1 + β ê2 , (10)

where α and β are scalars. Clearly, something in the x-direction plus something else in
the y-direction cannot give something lying in the z-direction.

On the other hand, for three vectors taken at random, one might well be able to
express one of them in terms of the other two. For example, consider the three vectors
given in component form by

u =







1
2
3





 : v =







4
5
6





 : w =







7
8
9





 . (11)

Then
w = 2v − u . (12)

We then say that u, v and w are linearly dependent. This is an important concept.
The three-dimensional space S3 is defined as one where there are three, BUT NO

MORE, orthonormal linearly independent vectors êi. Any vector lying in this three-
dimensional space can be written as a linear combination of the basis vectors. All this is
really saying is that we can always write v in the component form;

v = v1 ê1 + v2 ê2 + v3 ê3 .

Note the êi are not unique. Could, for example rotate, the system through 45◦ and
use these new axes as basis vectors.

Now generalise this to an arbitrary number of dimensions and letting the components
become complex.

1.2 Linear Vector Space

A linear vector space S is a set of abstract quantities a , b , c , · · ·, called vectors, which
have the following properties:

1. If a ∈ S and b ∈ S, then

a+ b = c ∈ S.

c = a+ b = b+ a (Commutative law)

(a+ b) + c = a+ (b+ c) (Associative law) . (13)
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2. Multiplication by a scalar (possibly complex)

a ∈ S =⇒ λ a ∈ S (λ a complex number) ,

λ (a+ b) = λ a+ λ b ,

λ (µ a) = (λµ) a (µ another complex number) . (14)

3. There exists a null (zero) vector 0 ∈ S such that

a + 0 = a (15)

for all vectors a.

4. For every vector a there exists a unique vector −a such that

a+ (−a) = 0 . (16)

5. Linear Independence
A set of vectors X1 , X2 , · · · Xn are linearly dependent when it is possible to find
a set of scalar coefficients ci (not all zero) such that

c1X1 + c2X2 · · · cnXn = 0 .

If no such constants ci exist, then the Xi are linearly independent.

By definition, an n-dimensional complex vector space Sn contains just n linearly
independent vectors. Hence any vector X can be written as a linear combination

X = c1X1 + c2X2 · · · cnXn . (17)

6. Basis vectors and components
Any set of n linearly independent vectors can be used as a basis for an n-dimensional
vector space, which means that the basis is not unique. Once the basis has been
chosen, any vector can be written uniquely as a linear combination

v =
n
∑

i=1

viX i .

Have not assumed that the basis vectors are orthogonal. For certain physical prob-
lems, convenient to work with basis vectors which are not perpendicular — eg when
dealing with crystals with hexagonal symmetry. Here we will only work with basis
vectors êi which are orthogonal and of unit length.

7. Definition of scalar product
Let the coefficients ci in Eq. (17) be complex. Such complex spaces are important
for Quantum Mechanics.

Write vector v in terms of its components vi along basis vectors êi, and similarly for
another vector u. Then the scalar product of these two vectors will be defined by

(u , v) = u · v = u∗1 v1 + u∗2 v2 + · · ·+ u∗n vn . (18)
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Only difference to the usual form on the right hand side is the complex conjugation
on all the components ui since the vectors have to be allowed to be complex. This
is the only essential difference with real vectors. To stress this difference though,
sometimes use a different notation on the left hand side and denote the scalar
product by (u , w) rather than u · w.

Note that
(v , u) = v∗1 u1 + v∗2 u2 + · · · + v∗n un = (u , v)∗ . (19)

Thus, in general, the scalar product is a complex scalar.

8. Consequences of the definition

(a) If y = α u+ β v then (w , y) = α (w , u) + β(w , v).

(b) Putting u = v, we see that

u2 = (u , u) = u∗1 u1+u∗2 u2+· · ·+u∗n un =| u1 |2 + | u2 |2 + · · ·+ | un |2 . (20)

Generalisation of Pythagoras’s theorem for complex numbers. Since the | ui |2
are real and cannot be negative, then u2 ≥ 0. Can talk about u =

√
u2 as the

real length of a complex vector. In particular, if u = 1, u is a unit vector.

(c) Two vectors are orthogonal if (u , v) = 0.

(d) Components of a vector are given by the scalar product vi = (êi , v).

Representations
Given a set of basis vectors êi, any vector v in an n-dimensional space can be written

uniquely in the form v =
n
∑

i=1

vi êi. The set of numbers vi, i = 1, · · · , n (the components)

are said to represent the vector v in that basis. The concept of a vector is more general
and abstract than that of the components. The components are somehow man-made.
If we rotate the coordinate system then the vector stays in the same direction but the
components change. This whole business of matrices (and much of third year Quantum
Mechanics) is connected with what happens when we change basis vectors.

1.3 Linear Transformations

Perform some operation on vector v which changes it into another vector in the space
Sn. For example, rotate the vector. Denote the operation by Â and, instead of tediously
saying that Â acts on v, write it symbolically as Â v. By assumption, therefore, u = Â v
is another vector in the same space Sn. To agree with the notation of the 2B22 Quantum
Mechanics course, put hats on all the operators. A linear transformation Â is defined by
the following properties:

1. Â(u+ u) = Âu+ Âv

2. Â(αu) = αÂu,
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with α a complex scalar.
Have seen that manipulation of vectors is simplified by working with components. To

investigate this further, see how the operation Â changes the basis vectors ê1, ê2, · · · , ên.
For the sake of definiteness, let us look at ê1, which has a 1 in the first position and zeros
everywhere else:

ê1 =

















1
0
0
:
0

















(n terms in the column). (21)

as ê1 with the operator Â. This gives rise to a vector which we shall denote by a1

because it started from ê1. Thus
a1 = Â ê1 . (22)

To write this in terms of components, must introduce a second index

a1 =

















a11

a21

a31

:
an1

















. (23)

To specify action of Â completely, must define how it acts on all the basis vectors êi;

ai = Â êi =

















a1i

a2i

a3i

:
ani

















. (24)

This requires n2 numbers aji, (j = 1, 2, · · · , n; i = 1, 2, · · · , n).
Instead of writing ai explicitly as a column vector, can use the basis vectors once again

to show that

ai = a1i ê1 + a2i ê2 + a3i ê3 + · · ·+ ani ên =
n
∑

j=1

aji êj . (25)

as êi has 1 in the i’th position and 0’s everywhere else.
Knowing the basis vectors transformation, it is (in principle) easy to evaluate the

action of Â on some vector v =
∑

i vi êi. Then

u = Â v =
∑

i

(Â êi) vi =
∑

i,j

aji vi êj . (26)

But, writing u in terms of components as well,

u =
∑

j

uj êj , (27)
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and comparing coefficients of êj, we find

uj =
n
∑

i=1

aji vi . (28)

This is just the law for matrix multiplication. Many of you will have seen it for 2 × 2
matrices. For n × n, the sums are just a bit bigger! Note that basis vectors transform
with

∑

j aji êj, whereas the components involve the other index
∑

i aji vi.

The set of numbers aij represents the abstract operator Â in the particular basis

chosen; these n2 numbers determine completely the effect of Â on any arbitrary vector:
the vector undergoes a linear transformation. It is convenient to arrange all these numbers
into a square array

A =











a11 a12 · · · a1n

a21 a22 · · · a2n

: : · · · :
an1 an2 · · · ann











, (29)

called matrix. This one is in fact a square matrix with n rows and n columns.
Signify a vector by putting an arrow on the top, underline it, or put a tilde under or

over it or write it in bold in order to distinguish it from a scalar. Similarly must write
something on the A in order to show that it is a matrix. The textbooks tend to use bold
face — here we are going just to underline the symbol.

Example 1
Let Â be the operator which rotates a vector in two dimensions through an angle φ

anticlockwise.

-

6

����������*

�
�
�
�
�
�
�
�
�
��

ê1

ê2

v

Â v

α
φ

Want to find the matrix representation of operator Â. Do this by looking at what
happens to the basis vectors under the rotation.
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-

6

����������*

A
A

A
A

A
A

A
A

A
AK

ê1

ê2

a1 = Â ê1

a2 = Â ê2

φ

φ

Using simple trigonometry,

a1 = Â ê1 = cosφ ê1 + sin φ ê2
= a11 ê1 + a21 ê2 .

Hence a11 = cosφ and a21 = sin φ.
Similarly,

a2 = Â ê2 = − sinφ ê1 + cosφ ê2

= a12 ê1 + a22 ê2 ,

so that a12 = − sin φ and a22 = cosφ.
The two-dimensional rotation matrix therefore takes the form

A =

(

a11 a12

a21 a22

)

=

(

cosφ − sin φ
sinφ cos φ

)

. (30)

We now have to check whether this gives an answer which is consistent with the first
picture. Here

(

v1

v2

)

=

(

v cosα
v sinα

)

so that
(

u1

u2

)

=

(

cosφ − sinφ
sinφ cosφ

) (

v cosα
v sinα

)

=

(

v cosα cos φ− v sinα sin φ
v sinα cos φ+ v cosα sin φ

)

=

(

v cos(α + φ)
v sin(α+ φ)

)

.

Exactly what you get from applying trigonometry to the diagram.

1.4 Multiple Transformations; Matrix Multiplication

Suppose that we know the action of some operator Â on any vector and also the action
of another operator B̂. What is the action of the combined operation of B̂ followed by
Â? Consider
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w = B̂ v

u = Âw .

u = Â B̂ v = Ĉv . (31)

To find the matrix representation of Ĉ, write the above equations in component form:

wi =
∑

j

bij vj

uk =
∑

i

akiwi

=
∑

i,j

aki bijvj

=
∑

j

ckj vj . (32)

Since this is supposed to hold for any vector v, it requires that

ckj =
n
∑

i=1

aki bij . (33)

This is the law for the multiplication of two matrices A and B. The product matrix has
the elements ckj. For 2 × 2 matrices you had the rule at A-level or even at GCSE!

Matrices can be used to represent the action of linear operations, such as reflection
and rotation, on vectors. Now that we know how to combine such operations through
matrix multiplication, we can build up quite complicated operations. This leads us quite
naturally to the study of the properties of matrices in general.

1.5 Properties of Matrices

In general a matrix is a set of elements, which can be either numbers or variables, set out
in the form of an array. For example

(

2 6 4
−1 i 7

)

or

(

0 −i
3 + 6i x2

)

(rectangular) (square)

A matrix having n rows and m columns is called an n×m matrix. The above examples
are 2 × 3 and 2 × 2. A square matrix clearly has n = m. The general matrix is written











a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
· · · · · · · · · · · ·











.

There is often confusion between the matrices and determinants. The notational
difference is that a matrix is an array surrounded by brackets whereas a determinant has
vertical lines. They are, however, very different beasts. The determinant | A | is a single
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number (or algebraic expression). A matrix A is a whole array of n ×m numbers which
represents a transformation.

A vector is a simple matrix which is n×1 (column vector) or 1×n (row vector), as in

















v1

v2

v3

· · ·
vn

















or (v1, v2, v3, · · · , vn) .

Rules

1. Two matrices A and B are equal if they have the same number n of rows and m of
columns and if all of the corresponding elements are equal.

2. There exists an n×m zero-matrix where all the elements are zero.

3. There exists a unit matrix. This is an n × n square matrix with ones down the
diagonal and zeros everywhere else.

I = E =











1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
· · · · · · · · · · · ·











.

Some books do use E for this. In component form

Iij = δij ,

where the Kronecker-delta has been employed.

4. Addition or Subtraction.
The sum of two matrices A and B can only be defined if they have the same number
of n rows and the same number m of columns. If this is the case, then the matrix
C is also n×m and has elements

cij = aij + bij .

It follows immediately that A + B = B + A (commutative law of addition) and
(A+B) + C = A + (B + C) (associative law).

5. Multiplication by a scalar.

B = λA =⇒ bij = λaij .

6. Matrix multiplication:

C = AB =⇒ cij =
n
∑

k=1

aik bkj .
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Note that matrix multiplication can only be defined if the number of columns in A
is equal to the number of rows in B. Then if A is m× n and B is n× p, then C is
m× p.

Note that matrix multiplication is NOT commutative; AB 6= BA. One of the
multiplications might not even be defined! If A is m× n and B is n×m, then AB
is m×m and BA is n× n.

Matrices do not commute because they are constructed to represent linear operations
and, in general, such operations do not commute. It can matter in which order you
do certain operations.

On the other hand,

A (BC) = (AB)C

A (B + C) = AB + AC .

Will assume you are familiar with the actual multiplication process in practice. If
not, you have been warned!

Example 1
Let A represent a rotation of 90◦ around the z-axis and B a reflection in the x-axis.

-

6

�������*

A
A

A
A

A
A

AK

(x0, y0)

(x1, y1)
A

-

6

�������*

HHHHHHHj

(x0, y0)

(x1, y1)

B

For the combination BA, we first act with A and then B. In the case of AB it is the
other way around and this leads to a different result, as shown in the picture.

-

6

�������*

A
A

A
A

A
A

AK

�
�

�
�

�
�

��

(x0, y0)

(x1, y1)
BA

(x2, y2)

-

6

�������*

HHHHHHHj

�
�
�
�
�
�
��

(x0, y0)

(x1, y1)

(x2, y2)
AB
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Clearly the end point (x2, y2) is different in the two cases so that the operations
corresponding to A and B obviously don’t commute. We now want to show exactly
the same results using matrix manipulation, in order to illustrate the power of matrix
multiplication.

The 2 × 2 matrix representing the two-dimensional rotation through angle φ.

A =

(

a11 a12

a21 a22

)

=

(

cos φ − sin φ
sin φ cosφ

)

=

(

0 −1
1 0

)

for φ = 90◦ .

Similarly, for the reflection in the x-axis,

B =

(

1 0
0 −1

)

.

Hence

AB =

(

0 −1
1 0

)(

1 0
0 −1

)

=

(

0 1
1 0

)

BA =

(

1 0
0 −1

)(

0 −1
1 0

)

=

(

0 −1
−1 0

)

,

so that in the AB case x2 = y0 and y2 = x0. The x and y coordinates are simply inter-
changed. In the other case both x2 and y2 get an extra minus sign. This is exactly what
we see in the picture.

Determinants
A 4 × 4 determinant can be reduced to four 3 × 3 determinants as

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

∣

∣

∣

a22 a23 a24

a32 a33 a34

a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

− a12

∣

∣

∣

∣

∣

∣

∣

a21 a23 a24

a31 a33 a34

a41 a43 a44

∣

∣

∣

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

∣

∣

∣

a21 a22 a24

a31 a32 a34

a41 a42 a44

∣

∣

∣

∣

∣

∣

∣

− a14

∣

∣

∣

∣

∣

∣

∣

a21 a22 a23

a31 a32 a33

a41 a42 a43

∣

∣

∣

∣

∣

∣

∣

(34)
Alternatively, can reduce the size of determinant by taking linear combinations of rows

and/or columns. This can be generalised to higher dimensions.
Determinant of a Matrix Product
By writing out both sides explicitly, it is straightforward to show that for 2×2 or 3×3

square matrices the determinant of a product of two matrices is equal to the product of
the determinants.

| AB |=| A | × | B | . (35)

However, this result is true in general for n× n square matrices of any size.
One consequence of this is that, although AB 6= BA, their determinants are equal.

In the first example that I gave of matrix multiplication, we see that | AB |=
| BA |= −1. This result for the determinant of products will prove very useful later.
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1.6 Special Matrices

Multiplication by the unit matrix
Let A be an n× n matrix and I the n× n unit matrix. Then

(AI)ij =
∑

k

aik δkj = aij ,

since the Kronecker-delta δij vanishes unless i = j. Thus

AI = A . (36)

Similarly
(I A)ij =

∑

k

δik akj = aij ,

and
I A = A . (37)

The multiplication on the left or right by I does not change a matrix A. In particular,
the unit matrix I (or any multiple of it) commutes with any other matrix of the appro-
priate size.

Diagonal matrices
A diagonal matrix is a square matrix with elements only along the diagonal:

A =











a1 0 0 · · ·
0 a2 0 · · ·
0 0 a3 · · ·
· · · · · · · · · · · ·











.

Thus
(A)ij = ai δij .

Now consider two diagonal matrices A and B of the same size.

(AB)ij =
∑

k

Aik Bkj =
∑

k

ai δik δkj bk = (ai bi) δij .

Hence AB is also a diagonal matrix with elements equal to the products of the corre-
sponding individual elements. Note that for diagonal matrices, AB = BA, so that A and
B commute.

Transposing matrices
The transposed matrix AT is just the original matrix A with its rows and columns

interchanged. Hence
(AT )ij = (A)ji . (38)

The transpose of an n×m matrix is m× n.

Consequences
a) Clearly (AT )T = A.
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b) If AT = A, A is symmetric.
If AT = −A, A is anti-symmetric.

c) Transposing matrix products. Look at C = AB, which has elements

cij =
∑

k

aik bkj .

Now

(CT )ji = cij =
∑

k

aik bkj =
∑

k

(AT )ki (B
T )jk =

∑

k

(BT )jk (AT )ki = (BT AT )ji .

Hence
(AB)T = BT AT . (39)

Transposing a product of matrices, reverses the order of multiplication. True no matter
how many terms there are;

(AB C)T = CT BT AT .

This rule, which is also true for operators, will be used by the Quantum Mechanics
lecturers in the second and third years.

d) If AT A = I, A is an orthogonal matrix. Check that the two-dimensional rotation
matrix

A =

(

cosφ − sinφ
sinφ cosφ

)

.

is orthogonal. For this, need cos2 φ + sin2 φ = 1. Matrix A rotates the system through
angle φ, while the transpose matrix AT rotates it back through angle −φ. Because of this,
orthogonal matrices are of great practical use in different branches of Physics.

Taking the determinant of the defining equation, and using the determinant of a
product rule gives

| AT | | A |=| I |= 1 .

But the determinant of a transpose of a matrix is the same as the determinant of the
original matrix — it doesn’t matter if you switch rows and columns in a determinant.
Hence

| A | | A |=| A |2= 1 ,

so | A |= ±1.

e) Suppose A and B are orthogonal matrices. Their product C = AB is also orthogonal.

CT C = (AB)T (AB) = BT AT AB = BT I B = BT B = I .

Physical meaning: since the matrix for rotation about the x-axis is orthogonal and so is
rotation about the y-axis, then the matrix for rotation about the y-axis followed by one
about the x-axis is also orthogonal.

Complex conjugation
To take the complex conjugate of a matrix, just complex-conjugate all its elements:

(A∗)ij = a∗ij . (40)
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For example

A =

(

−i 0
3 − i 6 + i

)

=⇒ A∗ =

(

+i 0
3 + i 6 − i

)

.

If A = A∗, the matrix is real.

Hermitian conjugation
Combines complex conjugation and transposition; it is probably more important than

either – especially in Quantum Mechanics. Sometimes called the Hermitian adjoint
and denoted by a dagger (†).

A† = (AT )∗ = (A∗)T . (41)

Thus (A†)† = A.
For example

A =

(

−i 0
3 − i 6 + i

)

=⇒ A† =

(

+i 3 + i
0 6 − i

)

.

If A† = A, A is Hermitian.
If A† = −A, A is anti-Hermitian.

All real symmetric matrices are Hermitian, but also other possibilities. Eg

(

0 i
−i 0

)

is Hermitian.
Rule for Hermitian conjugates of products is the same as for transpositions:

(AB)† = B†A† . (42)

Unitary Matrices
Matrix U is unitary if

U † U = I . (43)

Unitary matrices are very important in Quantum Mechanics!
Again consider the determinant product rule.

| U † | | U |=| I |= 1 .

Changing rows and columns in a determinant does nothing, but Hermitian conjugate also
involves complex conjugation. Hence

| U |∗ | U |= 1 ,

and so | U |= eiφ, with φ being real.

14



1.7 Matrix Inversion

Explicit 2 × 2 evaluation
Define the inverse of a square matrix A and evaluate it. The inverse, B = A−1, is

defined to be that matrix which, when multiplied by A, gives the unit matrix;

BA = I .

Consider

A =

(

1 2
4 3

)

and B =

(

a b
c d

)

.

Need to determine unknown numbers a, b, c, d from the condition

BA =

(

a + 4b 2a+ 3b
c+ 4d 2c+ 3d

)

=

(

1 0
0 1

)

,

gives

a + 3
2
b = 0 c+ 4d = 0 ,

a + 4b = 1 c+ 3
2
d = 1

2
.

These simultaneous equations have solutions a = −3
5
, b = 2

5
, c = 4

5
, and d = −1

5
. In

matrix form

A−1 = 1
5

(

−3 2
4 −1

)

.

Rule for 2 × 2 matrices
Need some automated way of evaluating inverse matrices. Motivate the result with

this example, then generalise and only justify iafterwards.

A =

(

1 2
4 3

)

and (A−1)T = −1
5

(

3 −4
−2 1

)

.

Notice that inside the bracket, all the coefficients are exchanged across the diagonal be-
tween A and A−1. There are a couple of minus signs, but these are coming in exactly the
positions that one gets minus signs when expanding out a 2 × 2 determinant. The only
remaining puzzle is the origin of the factor −1

5
. Well this is precisely

1

| A | =
1

(1 × 3 − 4 × 2)
= −1

5
·

The determinant | A | has come in useful after all.
This simple observation is true for the inverse of any 2 × 2 matrix. Consider

A =

(

α γ
β δ

)

.

According to the hand-waving observation above, one would expect

(A−1)T =
1

(αδ − βγ)

(

δ −β
−γ α

)

and A−1 =
1

(αδ − βγ)

(

δ −γ
−β α

)

.
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Verify that the A−1 defined in this way does indeed satisfy A−1A = I.

IMPORTANT: Do not forget the minus signs and do not forget to transpose the matrix
afterward.

Cofactors and minors
A 3 × 3 determinant can be expanded by the first row (Laplace’s rule) as

∆ =

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

∣

− a12

∣

∣

∣

∣

∣

a21 a23

a31 a33

∣

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

∣

.

2 × 2 sub-determinants are obtained by striking out the rows and columns containing
respectively a11, a12 and a13. These sub-determinants are the 2×2 minors of determinant
∆.

Define the 2 × 2 minor obtained by striking out the i’th row and j’th column to be
Mij . From the examples

∆ =
∑

j

aij Mij (−1)i+j =
∑

i

aij Mij (−1)i+j . (44)

The first form corresponds to expanding by row-i, the second to column-j. After summing
over j, the answer does not depend upon the value of i, i.e. on which row has been used
for the expansion.

One trouble about this formula is the (−1)i+j factor which always arises in expanding
determinants. One can define the cofactor matrix C = [Cij] with this explicit factor
included:

Cij = (−1)i+j Mij , (45)

so that
∆ =

∑

i or j

aij Cij . (46)

This merely puts the minus sign problem somewhere else!
If A is a 3× 3 matrix, then so is C. We define the adjoint matrix to be the transpose

of C, which means that the indices i and j are switched around:

[Aadj]ij = Cji . (47)

Theorem
For any square matrix,

A−1 = Aadj/ | A | . (48)

This agrees with our experience in the case of a 2 × 2 matrix. For a 3 × 3 matrix one
can write down the most general form, carry out the operations outlined above, to show
explicitly that A−1A = I. Eq. (48) is valid for any size matrix, but here won’t need to
work out anything bigger than 3 × 3. Now show how to carry out these operations in
practice.
Example Find the inverse of

A =







−1 2 3
2 0 −4

−1 −1 1





 .
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Matrix of minors is

M =







−4 −2 −2
5 2 3

−8 −2 −4





 .

Cofactor matrix changes a few signs to give

C =







−4 2 −2
−5 2 −3
−8 2 −4





 .

Adjoint matrix involves changing rows and columns:

Aadj =







−4 −5 −8
2 2 2

−2 −3 −4





 .

Now
| A |= −1 × (−4) − 2 × (−2) + 3 × (−2) = 2 .

Hence

A−1 =
1

2







−4 −5 −8
2 2 2

−2 −3 −4





 .

Can check that this is right by doing the explicit A−1A multiplication.
Note that if | A |= 0, we say the matrix is singular; A−1 does not exist . [It has some

infinite elements.]
Lots of other ways to do matrix inversion: Gaussian or Gauss-Jordan elimination, as

described by Boas. These methods become more important as the size of the matrix goes
up.

Properties of the inverse matrix

a) AA−1 = A−1A = I; a matrix commutes with its inverse.

b) (A−1)T = (AT )−1; the operations of inversion and transposition commute.

c) If C = AB, what is C−1 ? Consider

B−1A−1 I = B−1A−1C C−1 = B−1A−1AB C−1 = B−1BC−1 = C−1 = (AB)−1 .

Hence
(AB)−1 = B−1A−1 . (49)

reverse the order before inverting each matrix.

d) If A is orthogonal, i.e. AT A = I, then A−1 = AT .

e) If A is unitary, i.e. A†A = I, then A−1 = A†.

f) Using the determinant of a product rule, it follows immediately that
| A−1 |= 1/ | A |.
g) Matrix division
Division of matrices is not really defined, but one can multiply by the inverse matrix.
Unfortunately, in general,

AB−1 6= B−1A .
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1.8 Solution of Linear Simultaneous Equations

Know how to solve simultaneous equations of form

a11 x1 + a12 x2 + a13 x3 = b1 ,

a21 x1 + a22 x2 + a23 x3 = b2 ,

a31 x1 + a32 x2 + a33 x3 = b3

for unknown xi as the ratio of two determinants. Result proved in 2 × 2 case, here give
indication of a more general proof.

Write eq. in matrix form







a11 a12 a13

a21 a22 a23

a31 a32 a33













x1

x2

x3





 =







b1
b2
b3





 ,

that is
Ax = b or

∑

j

aij xj = bi .

Can write formal solution immediately by multiplying both sides by A−1:

x = A−1 b .

All that remains is to evaluate the result!
Using the previous expression for the inverse matrix,

xj =
∑

i

(Aadj)ji bi/ | A | .

If the determinant does not vanish, this leads to Cramer’s rule discussed in the first
lecture.

∑

i

(Aadj)ji bi is the determinant obtained by replacing the j’th column of A by

the column vector b.
There are many special cases of this formula; consider only two:

a) If | A |= 0. Then matrix A is singular and inverse matrix cannot be defined. Provided
that the equations are mutually consistent, this means that (at least) one of the equations
is not linearly independent of the others. Do not have n equations for n unknowns but
rather only n − 1 equations. Can only try to solve the equations for n − 1 of the xi in
terms of the bi and one of the xi. It might take some trial and error to find which of the
equations to throw away.

b) If all bi = 0, have to look for a solution of the homogeneous equation

Ax = 0 .

There is, of course, the uninteresting solution where all the xi = 0. Can there be a more
interesting solution? The answer is yes, provided that | A |= 0.
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1.9 Eigenvalues and Eigenvectors

Let A be an n× n square matrix and X an n× 1 column vector such that

AX = λX = λ I X , (50)

where λ is some scalar number. λ is an eigenvalue of matrix A andX is the corresponding
eigenvector. Half of Quantum Mechanics seems to be devoted to searching for eigenvalues!

To attack the problem, rearrange Eq. (50) as

(A− λ I)X = 0 . (51)

Set of n homogeneous linear equations which has interesting solutions if

| A− λ I |= 0 . (52)

Explicitly:
∣

∣

∣

∣

∣

∣

∣

∣

∣

(a11 − λ) a12 a13 · · ·
a21 (a22 − λ) a23 · · ·
a31 a32 (a33 − λ) · · ·
· · · · · · · · · · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 . (53)

Eq. for the required eigenvalues λ is a polynomial of degree n in λ and hence there are n
solutions. These are:

1. not necessarily real (even if all the aij are real);

2. may be equal to others.

This is the characteristic equation of the eigenvalue problem.
Label roots as

λ1, λ2, · · · , λn .

If two of the eigenvalues are equal, then the eigenvalue has a two-fold degeneracy, or that
it is doubly-degenerate. Similarly, if there are r equal roots then this corresponds to an
r-fold degeneracy.

Suppose we know eigenvalues λi. Have to solve

(A− λi I)Xi = 0

to find corresponding eigenvector Xi. There are n eigenvectors X i which can be written
in terms of components as

X i =

















x1i

x2i

:
:

xni

















.

Example Find the eigenvalues and eigenvectors of the matrix

A =

(

3 2
1 4

)

.
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The characteristic equation is

| A− λ I |=
∣

∣

∣

∣

∣

(3 − λ) 2
1 (4 − λ)

∣

∣

∣

∣

∣

= (3 − λ)(4 − λ) − 2 = 0 ,

giving solutions λ1 = 5 and λ2 = 2.
In the case of λ1 = 5, we have

(

(3 − λ) 2
1 (4 − λ)

) (

x11

x21

)

=

(

−2 2
1 −1

) (

x11

x21

)

= 0 .

This gives the two equations

−2x11 + 2x21 = 0,

x11 − x21 = 0.

Equations not linearly independent so solution involves some arbitrary constant c1;

x11 = x21 = c1 .

Similarly, for λ2 = 2, we get
x12 = c2, x22 = −1

2
c2 .

In summary

λ1 = 5 =⇒ X1 = c1

(

1
1

)

,

λ2 = 2 =⇒ X2 = c2

(

1
−1

2

)

.

ci is an arbitrary constants but convenient to choose it so that X i is a unit vector.
This vector is then normalised. Scalar product of two (possibly complex) vectors was
defined

(a , b) = a∗1 b1 + a∗2 b2 + · · ·+ a∗n bn = a† b .

For lengths of eigenvectors to be unity, need

X†
1X1 = X†

2X2 = 1 .

First eqs. gives

(c∗1 c∗1)

(

c1
c1

)

= 2 | c1 |2= 1 .

The phase of c1 is completely arbitrary — equation only fixes the magnitude of the
(complex) number c1. Taking it to be real and positive, c1 = 1/

√
2.

Second eqs. gives

(c∗2 − 1
2
c∗2)

(

c2
−1

2
c2

)

= 5
4
| c2 |2= 1 ,

and so c2 = 2/
√

5.
Final answer is

λ1 = 5 =⇒ X1 =
1√
2

(

1
1

)

,

λ2 = 2 =⇒ X2 =
2√
5

(

1
−1

2

)

.
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Eigenvalues of Unitary Matrices

(Skipped)
Any unitary matrix U satisfies

U † U = U U † = I .

To find eigenvalues, solve
U X = λ I X . (54)

Take the Hermitian conjugate of Eq. (54),

(U X)† = (λ I X)†

X† U † = λ∗X† I . (55)

Note that the Hermitian conjugate interchanges the order in a product.
Multiply the left hand sides of Eqs. (54, 55) together and also the right hand sides:

X† U † U X = λ∗λX†X . (56)

But U † U = I, and X†X = X2. Hence

X2 =| λ |2 X2 . (57)

Since X2 6= 0, can divide by this to get | λ |= 1, i.e. all the eigenvalues are (possibly
complex) numbers of unit modulus;

λ = eiφ with φ real. (58)

1.10 Eigenvalues of Hermitian Matrices

A Hermitian matrix is one for which H = H†. Consider two eigenvector equations eigen-
values λi 6= λj;

HX i = λiX i , (59)

HXj = λj Xj . (60)

Take the Hermitian conjugate of Eq. (59);

(HX i)
† = (λiX i)

† ,

X†
i H

† = X†
i H = λ∗i X

†
i . (61)

Now multiply Eq. (61) on the right by Xj

X†
i HXj = λ∗i X

†
i Xj . (62)

Go back to Eq.(60) and multiply it on the left by X†
i ;

X†
i HXj = λj X

†
i Xj . (63)
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The left hand sides of Eqs. (62) and (63) are identical and so, for all i and j, the right
hand sides have to be as well;

(λ∗i − λj)X
†
i Xj = 0 . (64)

Take first i = j :

(λ∗i − λi)X
†
i Xi = (λ∗i − λi)X

2
i = 0 . (65)

But since all X 2
i are non-zero

λ∗i − λi = 0 , (66)

which means that all the eigenvalues are real.

Now take i 6= j :

If the eigenvalues are non-degenerate, i.e. λi 6= λj, then

X†
i Xj = 0 , (67)

which means that the corresponding eigenvectors are orthogonal.
If two eigenvalues are the same, i.e. a particular root is doubly degenerate, then the

proof fails because one can then have λi − λj = 0 for i 6= j. Nevertheless, can still choose
linear combinations of corresponding eigenvectors to make all eigenvectors orthogonal.

Orthogonal basis set
Normalise the eigenvectors of a Hermitian matrix as in the 2 × 2 example. Then the

X̂i are unit orthogonal vectors; can take as basis vectors for this n-dimensional space i.e.
ny vector can be written as

V =
∑

i

Vi X̂i .

This simple result will be used extensively in the second and third year Quantum
Mechanics course. The Hamiltonian (Energy) operator is Hermitian and so its eigenfunc-
tions are orthogonal. Any wavefunction can be expanded in terms of these eigenfunctions.

1.11 Useful Rules for Eigenvalues

1. If we group all the different Ŵi column vectors together in a single n×n matrix W ,
then the eigenvector equation can then be written in the form

AW = W Λ , (68)

where Λ is the diagonal matrix of eigenvalues

Λ =











λ1 0 · · · 0
0 λ2 · · · 0
: : · · · :
0 0 · · · λn











. (69)
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Take the determinant of Eq. (68), the determinant of a product rule shows that

| A | |W |=| Λ | |W | .

Hence
| Λ |=| A | .

Use this to check that we got the right answer for 2 × 2 matrix

(

3 2
1 4

)

. Has

determinant ∆ = 10 which is equal to product of eigenvalues 5 and 2.

2. The trace of a matrix is defined as the sum of diagonal elements;

tr{A} =
∑

i

aii . (70)

For example, the 2 × 2 matrix above has tr{A} = 7, which equals the sum of the
eigenvalues 2 and 5. Is this just luck or is it much deeper?

Rewrite Eq. (68) by taking W over to the other side as an inverse matrix.

A = W ΛW−1 .

Take the trace. Writing it out explicitly

tr{A} =
∑

i

aii =
∑

i,j,k

(W )ij (Λ)jk (W−1)ki

=
∑

i,j,k

(Λ)jk (W−1)ki (W )ij = tr{ΛW−1W} = tr{Λ} =
∑

i

λi .

The trace of a matrix is equal to the sum of its eigenvalues.

3. If matrix A is Hermitian, then W is unitary because

W †
i W j = δij .

1.12 Real Quadratic Forms

A general real quadratic form is written as

F = XT AX =
∑

i,j

aij xi xj . (71)

Simplify by assuming matrix A is symmetric, i.e. aij = aji. Coefficients can be read off
by inspection. Eg if

F = x2 + 6xy − 2y2 − 2yz + z2 ,

then a11 = 1 is the coefficient of the x2 term. Similarly, a12 = a21 = 3 is half the coefficient
of the xy term. The coefficient is shared between two equal elements of the matrix. The
equation can thus be re-written as

F = (x, y, z)







1 3 0
3 −2 −1
0 −1 1













x
y
z





 .
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Rotate the coordinate system
X = RY (72)

such that the quadratic form has no cross terms of the kind y1y2.

F = Y T RT ARY = Y T DY , (73)

where D is a diagonal matrix.

For rotating the axes the matrix R is orthogonal, RT R = I. From Eq. (73), Need to
find R such that

RT AR = D . (74)

In principle have already solved this problem. D is the diagonal matrix of eigenvalues Λ,
and R is the matrix of eigenvectors.

Example
Diagonalise the quadratic form

F = 5x2 − 4xy + 2y2 .

In terms of a matrix

F = (x , y)

(

5 −2
−2 2

) (

x
y

)

,

which has eigenvalues

∣

∣

∣

∣

∣

(5 − λ) −2
−2 (2 − λ)

∣

∣

∣

∣

∣

= λ2 − 7λ+ 6 = 0 .

Two solutions, λ1 = 6 and λ2 = 1. [You could check these by showing that the trace of
the matrix equals 7 and its determinant equals 6.]

For λ1 = 6, the eigenvector equation is

(

−1 −2
−2 −4

) (

r11
r21

)

= 0 ,

which gives r11 = −2r21. Normalisation gives

r1 =
1√
5

(

−2
1

)

.

For λ2 = 1, the eigenvector equation is

(

4 −2
−2 1

) (

r12
r22

)

= 0 ,

which gives r22 = 2r12. The normalised eigenvector is

r2 =
1√
5

(

1
2

)

,
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and the rotation matrix

R =

(

−2/
√

5 1/
√

5

1/
√

5 2/
√

5

)

.

Thus
F = 6x′ 2 + y′ 2 ,

where
(

x′

y′

)

= RT

(

x
y

)

,

i.e.

x′ =
1√
5

(−2x+ y) ,

y′ =
1√
5

(x+ 2y) .

You should check this by putting expressions for x′ and y′ into the new expression for F .

1.13 Normal Modes of Oscillation

Consider two point particles, each mass m, attached by light inextensible strings of length
ℓ to a horizontal beam, the points of suspensions being a distance d apart. Connect the
two masses by a light spring of natural length d and spring constant k. The force pulling
the two masses together is k(x2 − x1), where x2 and x1 are the instantaneous displace-
ments of the masses from equilibrium. The tension Ti in the string produces a restoring
horizontal force of mgxi/ℓ (for small displacements).

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A~ ~#####################

d

ℓ ℓ

T1 T2

k(x2 − x1)
A

A
A

AK

A
A

A
AK

? ?
mg mg

x1 x2

The equations of motion of the system are

m
d2x1

dt2
= −mg

ℓ
x1 + k(x2 − x1) ,

m
d2x2

dt2
= −mg

ℓ
x2 + k(x1 − x2) .

In matrix form
d2X

dt2
= AX ,
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where

A =

(

α β
β α

)

=

(

−g/ℓ− k/m k/m
k/m −g/ℓ− k/m

)

.

These equations are coupled, in that ẍ1 depends also upon the value of x2. Now find
linear combinations of xi such that equations become uncoupled. Let

X = RY ,

where R is an orthogonal matrix which does not depend upon time. Hence

R
d2Y

dt2
= ARY .

Multiply on the left by RT and use RT R = I to obtain

d2Y

dt2
= RT ARY .

For eqs to be uncoupled, need right-hand side to be a diagonal matrix which, as for
the quadratic form problem, is the eigenvalue matrix, Λ:

RT AR = Λ ,

where R is the matrix of normalised eigenvectors. The new variables yi satisfy the un-
coupled equations

ÿ = λi y .

First determine the eigenvalues from
∣

∣

∣

∣

∣

−g/ℓ− k/m− λ k/m
k/m −g/ℓ− k/m− λ

∣

∣

∣

∣

∣

= 0 .

Has the two solutions λ1 = −g/ℓ and λ2 = −g/ℓ− 2k/m. Eqs of motion are

ÿ1 = −ω2
1 y1 = −g

ℓ
y1 ,

ÿ2 = −ω2
2 y2 = −

(

g

ℓ
+ 2

k

m

)

y2 ,

which have general solution

y1 = α1 sinω1t+ β1 cosω1t ,

y2 = α2 sinω2t+ β2 cosω2t

The relation between xi and yi is given by rotation matrix R, i.e. the eigenvectors of
A. For λ1 = −g/ℓ,

(

−k/m k/m
k/m −k/m

) (

r11
r21

)

=

(

0
0

)

.

gives r11 = r21 and normalised eigenvector

(

1/
√

2

1/
√

2

)

.
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For λ2 = −g/ℓ− 2k/m,

(

k/m k/m
k/m k/m

) (

r12
r22

)

=

(

0
0

)

,

gives r12 = −r22, normalised eigenvector

(

1/
√

2

−1/
√

2

)

. The rotation matrix is then

R =

(

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)

.

Old and new coordinates related by

x1 =
1√
2

(y1 + y2) : y1 =
1√
2

(x1 + x2) ,

x2 =
1√
2

(y1 − y2) : y2 =
1√
2

(x1 − x2) .

Call an uncoupled modes of oscillation a normal mode. Depending upon the boundary
conditions, it is possible to excite one normal mode independently of the other. What do
the normal modes look like in terms of the xi.

Normal mode 1: y2 = 0, and x1 = x2 = y1/
√

2.

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A~ ~#####################

x1 x1

The two pendulums swing together in phase and of course, since the two pendulums
are identical, the spring is neither stretched nor compressed. Effectively the spring doesn’t

influence this mode at all. Frequency ω1 =
√

g/ℓ is that for a free pendulum of the same
length.

Normal mode 2: y1 = 0, and x1 = −x2 = y2/
√

2.
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A
A
A
A
A
A
A
A~ ~##############################

x1 −x1

The two pendulums oscillate out of phase: the spring is alternately stretched and
compressed. Compared to the first normal mode, the restoring forces are here increased
because the spring is contributing something. Hence the frequency is higher:

ω2 =

√

g

ℓ
+

2k

m
.

A real problem has boundary conditions. Eg at time t = 0 take pendulum 1 to be at
rest at equilibrium and pendulum 2 to be at rest at displacement x2 = a. What is the
subsequent motion? In terms of the yi variables, at t = 0,

y1 =
a√
2

: y2 = − a√
2
,

ẏ1 = 0 : ẏ2 = 0 .

Hence, at later times, the solutions are

y1 =
a√
2

cosω1t ,

y2 = − a√
2

cosω2t .

In terms of the physical variables,

x1 =
a

2
(cosω1t− cosω2t) ,

x2 =
a

2
(cosω1t+ cosω2t) .
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2 Partial Differential Equations

2.1 Introduction

Have solved ordinary differential equations, i.e. ones where there is one independent and

one dependent variable. Only ordinary differentiation is therefore involved. As the world

is three-dimensional, most differential equations are functions of three spatial variables,

eg (x , y , z), and maybe time t also. Typical example is Laplace equation

∇2 V (r) = 0 ,

where V (r) is the electrostatic potential in region where there is no charge. The operator

∇2, called the Laplacian, was introduced last year. In Cartesian coordinates

∇2 V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
. (75)

Another important example is the time-independent Schrödinger equation for 1 particle

− h̄2

2m
∇2 Ψ(r) + V (r) Ψ(r) = EΨ(r) , (76)

for the quantum-mechanical motion of a particle of mass m in a potential V (r). Ψ(r) is

the particle’s wave function and h̄ = h/2π, where h is Planck’s constant. There are many

more examples that you will come across later in your degree programme.

2.2 Classification of Differential Equations

Before considering various differential equations (DE) in detail it is worth defining some

of the terms used to classify these equations into different types. The following terms are

used: Order. The order of a DE is the order of its highest derivative, so

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ . . . a0(x)y = 0 (77)

is a DE of order n. This definition holds even if there are several variables, so

∂3y

∂x3
+
∂2y

∂t2
= 0 , (78)

is a third-order.
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Linearity. A linear DE can be written entirely as a linear function. i.e. no powers above

the first power, of the unknown function and its derivative. So

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ . . . a0(x)y = b(x) (79)

is linear if the ai’s and b are functions of x only. It is non-linear if any of the ai’s depend

on y. Example: a pendulum

length l

mg

mass m

θ

d2θ

dt2
+
g

l
sin θ = 0 (80)

is non-linear in θ. However if θ is small then sin θ ≈ θ and the DE

d2θ

dt2
+
g

l
θ = 0 (81)

is linear. Linear DE’s are important because they are easier to solve.

Ordinary/Partial. If an unknown function, eg y, is a function of only one variable, eg

x, then one gets ordinary DEs such as

dy

dx
= c . (82)

If y is function of more than one variable, eg x and t then one gets a partial DE eg

∂y(x, t)

∂x
+
∂y(x, t)

∂t
= c (83)

provided the variables, x and t, are independent. If the variables are dependent, eg

x = f(s, t), then it is necessary to specify which are held constant

∂y(x, t)

∂x

∣

∣

∣

∣

∣

t

= c(s, t) (84)
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Such constructions are familiar from thermodynamics where P (pressure), V (volume)

and T (temperature) are all inter-related eg by the ideal gas equation PV = nRT and

many functions, such as entropy S, have to written as partial DEs. This means that

∂S

∂T

∣

∣

∣

∣

∣

P

6= ∂S

∂T

∣

∣

∣

∣

∣

V

(85)

Homogeneous. Means slightly different things for linear and non-linear DEs. Will only

consider the linear DE case.

A matrix equation such as Ax = b is homogeneous if b = 0. Similarly, a (second-order)

DE

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = G(x) (86)

is homogeneous if G(x) = 0 and is inhomogenous if G(x) 6= 0. Solving the homogeneous

DE is usually the first step in solving an inhomogenous DE. We will restrict ourselves to

homogenous DEs.

Solutions. By a solution of an ordinary DE

F (x, y(x),
dy

dx
,
d2y

dx2
, . . .) = 0

we mean some function y = u(x) in the range a < x < b for which the problem is defined.

This solution can always be verfied by direct substitution. Does

F (x, u(x),
du

dx
,
d2u

dx2
, . . .) = 0 ?

Uniqueness. A DE in general will have more than one solution because:

1. There are unknown constants which can only be determined by the boundary conditions.

Boundary conditions give information about the unknown function (or its deriva-

tives) at some point. Eg y = 0 at x = 1 is a boundary condition. n boundary

conditions are required to determine constants for an nth-order equation. So a

second-order DE requires 2 boundary conditions.

2. For an nth-order DE there are usually n independent functions, u(x), satisfying

the DE. So a second-order DE has 2 solutions. Which solution is correct is often

determined by the physics of the problem.

Existence. There is no guarantee that a DE will have a solution of the form u(x).

Superposition Principle
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If V1 and V2 are two solutions of any linear, homogeneous DE such as ∇2 V (r) = 0,

then V = c1V1 + c2V2, where c1 and c2 are arbitrary constants, is another solution. Used

extensively for ordinary DEs, eg simple harmonic motion problem; is equally valid for

partial DEs. This ability to add solutions is called the Superposition Principle. Of fun-

damental importance in Quantum Mechanics. Will exploit the superposition principle

extensively when solving partial DEs.

2.3 Separation of variables

Most DEs that characterise physical problems depend on many variables and cannot

be directly solved.Sometimes can solve these multi-dimensional problems by separation of

variables which turns a partial DE in n variables into n ordinary DEs each in one variable.

Take an n = 2 example

a(x, y)
∂2u

∂x2
+ b(x, y)

∂2u

∂y2
= 0 . (87)

If this is separable we can write u(x, y) = X(x)Y (y) which gives

a(x, y)Y (y)
d2X

dx2
+ b(x, y)X(x)

d2Y

dy2
= 0 , (88)

or, dividing through by XY and re-arranging:

a(x, y)

X(x)

d2X

dx2
= −b(x, y)

Y (y)

d2Y

dy2
. (89)

This equation is separable provided that the left-hand side can be written totally in terms

of x and the right-hand side totally in terms of y. This may require some re-arrangement

between a(x, y) and b(x, y) to give A(x) and B(y), respectively functions of x and y only.

If eq. is separable, then have relationship of form f(x) = g(y). Since relationship holds

for all values of x and y, must mean that f(x) = c = g(y), where c is some constant, often

for convenience written as a square eg l2. Can solve separately two equations

A(x)

X(x)

d2X

dx2
= c,

B(y)

Y (y)

d2Y

dy2
= −c . (90)

Note that separability depends on the coordinates chosen, it may be necessary to change

coordinates.

Laplace’s equation in Cartesian coordinates
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Let us illustrate this with a physical example. Consider two infinitely large conducting

plates. The one at z = 0 is earthed while that at z = L is kept at a constant voltage V0.

6

?

L

V0

What is the potential between the two plates? You all know that the answer must be

V = V0z/L but we are going to derive this by solving the partial differential equation.

This will demonstrate the techniques to be used in more complex cases.

Between the two plates, there is no charge and so the potential in this region satisfies

Laplace’s equation

∇2 V (r) = 0 .

The boundary conditions to be applied are that, independent of the values of x and y, on

the plates

V = 0 at z = 0 ,

V = V0 at z = L . (91)

Since the boundary conditions are expressed easily in terms of Cartesian coordinates,

it makes obvious sense to attack the problem in this coordinate system. [Could also use

cylindrical polar coordinates.] In this system, Laplace’s equation becomes

∇2 V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 .

Let us try for a solution of the form

V (x, y, z) = (function of x) × (function of y) × (function of z),

V (x, y, z) = X(x) Y (y) Z(z) . (92)
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At the moment we are just trying to get a single solution of the equation. If there is

no solution of this kind then we will have to try something else — but of course there will

be! Substituting the product form of Eq. (92) into Laplace’s equation, we get

Y Z
d2X

dx2
+X Z

d2Y

dy2
+X Y

d2Z

dz2
= 0 . (93)

Note that we now have complete differentials (straight d’s) because X is a function of

only one variable (x), and similarly for Y and Z. Now divide through the equation by

the product V = X Y Z to get

1

X

(

d2X

dx2

)

+
1

Y

(

d2Y

dy2

)

+
1

Z

(

d2Z

dz2

)

= 0 . (94)

Now the first term in Eq. (94) is a function only of x, the second only of y, and the

third only of z. BUT x, y, and z are independent variables. This means that we could

keep y and z fixed and vary just x. In so doing, the second and third terms remain fixed

because they only depend upon y and z respectively. Hence the first term must also

remain fixed even if x changes. That is, the first term is a constant, as are the second

and third. Thus

1

X

(

d2X

dx2

)

= −ℓ2 ,

1

Y

(

d2Y

dy2

)

= −m2 ,

1

Z

(

d2Z

dz2

)

= +n2 . (95)

with

n2 = ℓ2 +m2 . (96)

Note that n2, ℓ2 and m2 are as yet arbitrary constants and could be negative. ℓ, m, n

are not necessarily integers.

Have to solve
d2X

dx2
= −ℓ2X . (97)

For real ℓ 6= 0, this is the simple harmonic oscillator equation

X = aℓ cos ℓx+ bℓ sin ℓx , (98)

where aℓ and bℓ are arbitrary constants which must be fixed by the boundary conditions.

For special case ℓ = 0, solution simplifies to

X = a0 + b0 x . (99)
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If ℓ2 is negative, put ℓ = il; the cos lx and sinlx become cosh ℓx and i sinh ℓx. Have seen

such changes before when studying the damped oscillator in 1B27.

Solutions for Y are similar to those for X, but with m replacing l. For Z have
(

d2Z

dz2

)

= +n2 Z . (100)

Has solutions

Z = en cosh nz + fn sinh nz (n 6= 0) ,

= e0 + f0 z (n = 0) . (101)

As a consequence, solutions of the separable form do exist. For example, one solution

would be with ℓ = 3, m = 4, and n = 5.

V (x, y, z) = Constant × (sin 3x) × (cos 4y) × (sinh 5z)

is a solution of Laplace’s equation, but many more with different values of (ℓ, m, n) exist.

Most general solution is

V (x, y, z) = Constant ×
{

sin ℓx
cos ℓx

}

×
{

sinmy
cosmy

}

×
{

sinh nz
coshnz

}

with constraint n2 = ℓ2 +m2.

By the superposition principle, any linear combination of such solutions is also a

solution. The most general superposition is

V (x, y, z) =
∑

ℓ,m

{aℓm cos ℓx+ bℓm sin ℓx} × {cℓm cosmy + dℓm sinmy}

×{eℓm coshnz + fℓm sinh nz} . (102)

Here the solutions from l,m, n = 0 have to be added. For any choice of ℓ and m, with

n =
√
ℓ2 +m2, the above product is a solution. Hence the sum is also a solution. Note ℓ

and m do not have to be integers and so the above need not be a discrete sum. Also note

that if ℓ→ 0, cosine is replaced by 1 and sine by x.

Imposing boundary conditions

Solution Eq. (102) is quite general, need to relate it potential problem of two parallel

plates: have to impose the boundary conditions.
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At z = 0,

V (z = 0) =
∑

ℓm

eℓm {aℓm cos ℓx+ bℓm sin ℓx} × {cℓm cosmy + dℓm sinmy} = 0

for all values of x and y. Hence eℓm = 0 for all ℓ and m. Most general solution simplifies

to

V (x, y, z) =
∑

ℓm

sinhnz × {aℓm cos ℓx+ bℓm sin ℓx} × {cℓm cosmy + dℓm sinmy} , (103)

where coefficient fℓm has been absorbed into redefined aℓm and bℓm.

At z = L,

V (z = L) =
∑

ℓm

sinhnL× {aℓm cos ℓx+ bℓm sin ℓx} × {cℓm cosmy + dℓm sinmy} = V0 ,

for all x and y. Clearly, only solution which gives something independent of x and y is

the special case of ℓ = m = n = 0. Write this explicitly as

V (x, y, z) = z {a+ bx}{c + dy} . (104)

At z = L,

V0 = L {a+ bx}{c + dy}

for all (x, y) so that b = d = 0 and ac = V0/L. The final solution is, from Eq. (104), the

expected

V =
V0z

L
·

Comments

1. Method of solution is Separation of Variables: look for a solution which is a product

of a function of x times a function of y times a function of z. Reduces problem to

that of solving three ordinary differential equations in x, y and z.

2. Have found an infinite number of solutions of the Laplace equation, but have not

shown that we have found them all.

3. In more complicated examples the ordinary differential equations may be very much

harder to solve than the simple oscillator equations here.

4. Unlike the present case, in general you cannot guess the final answer at the start!
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2.4 One-dimensional Wave Equation

Seen the wave equation in the first year 1B24 Waves and Optics course. In one dimension,

for example a guitar string clamped at x = 0 and x = L, the displacement y(x, t) obeys

∂2y

∂x2
− 1

c2
∂2y

∂t2
= 0 , (105)

where t is the time variable and c the (constant) speed of wave propagation.

Looking for a solution in the form of a product

y(x, t) = X(x)T (t) (106)

leads to

T
d2X

dx2
− 1

c2
X
d2T

dt2
= 0 . (107)

After dividing out by y = X T and taking one term over to the right hand side, we

are left with
1

X

(

d2X

dx2

)

=
1

c2T

(

d2T

dt2

)

. (108)

The left hand side is a function only of x and the right hand side purely of t. Since x and

t are independent variables, this means that both sides are equal to a constant, which we

shall call −ω2.

Reduced to solution of two ordinary differential equations
(

d2X

dx2

)

+ ω2X = 0 ,

(

d2T

dt2

)

+ ω2c2 T = 0 . (109)

Solution of the x equation is

X(x) = C cosωx+D sinωx ,

where C and D are arbitrary constants.

Since the boundary conditions are true for all time, we can impose them directly onto

X(x). At x = 0,

X(x = 0) = 0 = C , =⇒ C = 0 ,

whereas at x = L,

X(x = L) = 0 = Dsin(ωL) =⇒ ω = nπ/L ,
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where n = 1, 2, 3, · · ·.
Solving the corresponding “t” equation,

(

d2T

dt2

)

+ (nπc/L)2 T = 0 ,

gives

T = A cos(nπct/L) +B sin(nπct/L) ,

and a total solution of

y(x, t) = D sin(nπx/L) × {A cos(nπct/L) +B sin(nπct/L)} .

This is but one solution and, to get more, we use the superposition principle to find

y(x, t) =
∞
∑

n=1

sin(nπx/L) × {An cos(nπct/L) + Bn sin(nπct/L)} . (110)

Constant D has been absorbed into constants An and Bn.

To go further need to impose extra boundary conditions eg shape of string at time

t = 0. Will look at such problems under Fourier series.

2.5 Laplace’s Equation in Spherical Polar Coordinates

Switch to problems with spherical symmetry, important for Quantum Mechanics and

atomic physics. If one needs to know the potential due to a charged sphere, it would be

perverse to work in Cartesian coordinates. Choose a coordinate system which is appro-

priate to the boundary conditions to be imposed and, in this case, one should write things

down in the spherical polar variables. Last year wrote ∇2 in plane polar coordinates and

it was messy. Unfortunately, in spherical polar coordinates, (r, θ, φ), it is even worse!

Come to a simpler derivation later in the course. Now

x = r sin θ cosφ ,

y = r sin θ sin φ ,

z = r cos θ . (111)

The partial derivatives of the Cartesian variables with respect to the polar coordinates

are
∂x

∂r
= sin θ cosφ ,

∂y

∂r
= sin θ sin φ ,

∂z

∂r
= cos θ ,
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∂x

∂θ
= r cos θ cosφ ,

∂y

∂θ
= r cos θ sinφ ,

∂z

∂θ
= −r sin θ .

∂x

∂φ
= −r sin θ sinφ ,

∂y

∂φ
= r sin θ cos φ ,

∂z

∂φ
= 0 . (112)

Using the chain rule for partial differentiation, we get

∂

∂r
= sin θ cosφ

∂

∂x
+ sin θ sin φ

∂

∂y
+ cos θ

∂

∂z
,

∂

∂θ
= r cos θ cos φ

∂

∂x
+ r cos θ sinφ

∂

∂y
− r sin θ

∂

∂z
,

∂

∂φ
= −r sin θ sinφ

∂

∂x
+ r sin θ cosφ

∂

∂y
. (113)

These equations can be inverted to find the differentials with respect to Cartesians in

terms of those with respect to polar coordinates:

∂

∂x
= sin θ cos φ

∂

∂r
+

cos θ cos φ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ
,

∂

∂y
= sin θ sin φ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ
,

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (114)

The Laplacian operator is the sum of the squares of these three operators,

∇2 =

(

∂

∂x

)2

+

(

∂

∂y

)2

+

(

∂

∂z

)2

=

(

sin θ cosφ
∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)2

+

(

sin θ sinφ
∂

∂r
+

cos θ sin φ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)2

+

(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)2

. (115)
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Remember that the partial derivative with respect to θ acts for example on the sin θ as

well. Finally end up with

∇2V =
∂2V

∂r2
+

2

r

∂V

∂r
+

1

r2

∂2V

∂θ2
+

1

r2
cot θ

∂V

∂θ
+

1

r2 sin2 θ

∂2V

∂φ2
. (116)

This is expression for the Laplacian operator in spherical polar coordinates. Can be

written in the slightly more compact form

∇2V =
1

r2

∂

∂r

(

r2 ∂V

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

+
1

r2 sin2 θ

(

∂2V

∂φ2

)

· (117)

As a check on the form of the operator, consider

V = 2x2 − y2 − z2 = r2 (2 sin2 θ cos2 φ− sin2 θ sin2 φ− cos2 θ) .

In Cartesian coordinates, it follows immediately that ∇2V = 0. In spherical polar coor-

dinates,

1

r2

∂

∂r

(

r2 ∂V

∂r

)

= 6(2 sin2 θ cos2 φ− sin2 θ sin2 φ− cos2 θ) .

∂V

∂θ
= r2(4 sin θ cos θ cos2 φ− 2 sin θ cos θ sin2 φ+ 2 cos θ sin θ) .

sin θ
∂V

∂θ
= r2(4 sin2 θ cos θ cos2 φ− 2 sin2 θ cos θ sin2 φ+ 2 cos θ sin2 θ) .

1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

= 8 cos2 θ cos2 φ− 4 sin2 θ cos2 φ− 4 cos2 θ sin2 φ

+2 sin2 θ sin2 φ− 2 sin2 θ + 4 cos2 θ .

1

r2 sin2 θ

∂2V

∂φ2
= 12 sin2 φ− 6 .

Remarkably enough, the sum of these three terms does in fact vanish!

2.6 Separation of Laplace’s equation in Spherical Polar
Coordinates

Look for a solution of the equation

1

r2

∂

∂r

(

r2 ∂V

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

+
1

r2 sin2 θ

(

∂2V

∂φ2

)

= 0 (118)

in the form

V (r, θ, φ) = R(r) × Θ(θ) × Φ(φ) . (119)
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Involves functions which depend purely upon one variable each, viz r, θ and φ. Inserting

this into Laplace’s equation

Θ Φ
1

r2

d

dr

(

r2 dR

dr

)

+RΦ
1

r2 sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+RΘ
1

r2 sin2 θ

(

d2Φ

dφ2

)

= 0 .

After dividing by RΘ Φ and multiplying by r2 sin2 θ, find

sin2 θ

R

d

dr

(

r2 dR

dr

)

+
1

Θ
sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+
1

Φ

(

d2Φ

dφ2

)

= 0 .

First two terms here depend upon r and θ but third is function purely of azimuthal angle

φ. Since r, θ and φ are independent variables, means that third term must be some

constant, denote by −m2. Hence

∂2Φ

∂φ2
= −m2 Φ , (120)

which has solutions e±imφ or, alternatively, cosmφ and sinmφ.

As far as DE concerned, m could have any value, even complex. However Physics

imposes a fairly general boundary condition. When φ increases by 2π, the vector position

returns to the same point; expect same physical solution. Thus Φ(φ + 2π) = Φ(φ). Can

only be accomplished if m is a real integer. Then Φ(φ) is clearly a periodic function.

The remainder of the equation can be manipulated into

1

R

d

dr

(

r2 dR

dr

)

=
m2

sin2 θ
− 1

Θ

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

.

Left hand side is function only of r, while right hand side depends only on θ. Means that

both sides must be equal to some constant, denote by λ. Results in two ordinary DEs:

d

dr

(

r2 dR

dr

)

= λR , (121)

d

dθ

(

sin θ
dΘ

dθ

)

+

(

λ sin θ − m2

sin θ

)

Θ = 0 . (122)

Now look at the radial equation of Eq. (121), rewritten as

r2

(

d2R

dr2

)

+ 2r

(

dR

dr

)

− λR = 0 . (123)

This is a special kind of homogeneous equation which is unchanged if the r-variable is

scaled as r → α r, where α is some constant. Try for a solution of the form R(r) ∼ rβ,

since this also stays in same form under the r → αr scaling. Hence

β(β − 1) rβ + 2β rβ − λ rβ = 0
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Cancelling out the rβ factor, which cannot vanish, gives β2 + β = λ, has solutions

β =
(

−1 ±
√

1 + 4λ
)

/2 .

Get exactly the same result by trying for the more general series solution. Standard

manipulation leads to

∞
∑

n=0

an {(n+ k)(n + k + 1) − λ} rn+k = 0

The indicial equation leads to exactly the same result with β replaced by k. For higher

values of n have

an {(n + k)(n+ k + 1) − λ} = an n(2k + 1) = 0 .

But 2k + 1 = 2β + 1 = ±
√

1 + 4λ doesn’t vanish. Hence an = 0 for n ≥ 1 and get back

to the single-term solution derived above.

To make things look a bit simpler, define eparation constant to be λ ≡ ℓ(ℓ+1), where

ℓ is not necessarily an integer. Then

β =
(

−1 ±
√

1 + 4ℓ(ℓ+ 1)
)

/2

= ℓ or − ℓ− 1 .

Most general form of the radial solution is

R(r) = Arℓ +
B

rℓ+1
. (124)

In order not to interchange the two solutions, adopt the convention ℓ ≥ −1
2
.

Left only with the θ equation which, with new separation constant ℓ(ℓ+ 1), becomes

d

dθ

(

sin θ
dΘ

dθ

)

+

(

ℓ(ℓ+ 1) sin θ − m2

sin θ

)

Θ = 0 , (125)

which does not look very attractive. A little more tractable with the variable µ = cos θ

rather than θ. Then dµ/dθ = − sin θ and

d

dθ
= − sin θ

d

dµ
= −

√

1 − µ2
d

dµ
.

Hence
d

dµ

[

(1 − µ2)
dΘ

dµ

]

+

[

ℓ(ℓ+ 1) − m2

1 − µ2

]

Θ = 0 . (126)
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This is the famous Legendre differential equation important for quantum mechanics.

Legendre discovered his equation when trying to interpret planetary gravitational fields,

“Recherches sur la figure des planètes” (1784). This is about 150 years before the discov-

ery of the Schrödinger equation and so you shouldn’t blame quantum mechanics for the

introduction of Legendre polynomials.
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3 Series Solution of Differential Equations:

Frobenius’s Method

Have shown how and when differential equations (DEs) can be separated but need a

general strategy for solving the resulting DEs.

Series solutions

Want to solve general, linear, homogenous, ordinary, second-order DE:

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0 . (127)

One general method is expand y as a series:

y(x) =
∞
∑

n=0

an(x− x0)
n (128)

about some point, x0. For this method we need to:

1. What point, x0, to use for the expansion;

2. Determine what values of an satisfy the DE;

3. Decide for what, if any, values of x the series converges;

3.1 Simple Series Solution of Second Order Equations

Use classical and quantal simple harmonic oscillator (HO) as an example.

Classical HO

Particle mass m; restoring force constant K; equation

m
d2y

dt2
= −Ky (129)

or
d2y

dt2
+ ω2y = 0; ω =

(

K

m

)

1
2

(130)

Most general solution is

y = A cosωt+B sinωt , (131)

where A and B are arbitrary constants fixed by boundary conditions. A second order

linear equation has two arbitrary constants.
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The two individual solutions of this equation, viz cosωt and sinωt, are respectively

even and odd functions of the independent variable t. Why? Write Eq. (130) for a function

y = f(t) and then let t→ −t. Have the two equations

d2f(t)

dt2
+ ω2 f(t) = 0 ,

d2f(−t)
dt2

+ ω2 f(−t) = 0 . (132)

Thus f(−t) satisfies the same equation as f(t) because all operators in Eq. (130) are even;
d2

dt2
doesn’t change when t→ −t. Any linear combinations of f(t) and f(−t) also satisfy

the equations. In particular, the even and odd combinations

fe(t) = 1
2
[f(t) + f(−t)] , (133)

fo(t) = 1
2
[f(t) − f(−t)] (134)

also satisfy the equation. This is the real reason why cosωt and sinωt are solutions to

the oscillator equation. This argument doesn’t show that the basic solutions have to be

either even or odd, but one can always choose them so to be. Will use this argument

when we discuss other DEs.

Now try for a series solution of the HO equation;

y =
∞
∑

n=0

an x
n ,

dy

dx
=

∞
∑

n=0

(n) an x
n−1 ,

d2y

dx2
=

∞
∑

n=0

(n)(n− 1) an x
n−2 . (135)

Inserting these into Eq. (130), we find that

∞
∑

n=0

(n)(n− 1) an x
n−2 + ω2

∞
∑

n=0

an x
n = 0 . (136)

Changing the dummy index in the first sum by n→ n + 2,

∞
∑

n=−2

(n+ 2)(n+ 1) an+2 x
n + ω2

∞
∑

n=0

an x
n = 0 , (137)

all the powers now look the same; compare coefficients to obtain the recurrence relation

(n + 2)(n+ 1) an+2 + ω2 an = 0 , (138)
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an+2 = − ω2

(n + 2)(n+ 1)
an . (139)

Given the value of a0, this allows us to evaluate a2, and then a4 etc. The odd an are

completely independent and, as far as getting a solution is concerned, we can put them

all to zero. This independence of the odd and even an is a consequence of the fact that

odd and even solutions of the differential equation are possible. It therefore follows from

the fact that the differential operator is even in x, as shown by Eq. (132). In order to

generate these purely odd/even solutions, it is easiest to put a1 = 0. Does not create

extra solutions, merely mixes some of the odd solution with even ones.

The recurrence relation

an+2 = − ω2

(n + 2)(n+ 1)
an . (140)

has the solution for n even

an = (−ω2)n/2 a0/n! (n even) ,

= 0 (n odd) . (141)

The total solution is then

y = a0

∑

n even

(−1)n/2(ωx)n 1

n!
= a0 cosωx . (142)

To generate the odd solutions, set a0 = 0 and start from a1. To do this set bm = an+1

and m = n− 1.

The recurrence relation is

bm+2 = − ω2

(m+ 3)(m+ 2)
bm , (143)

so that

bm = (−ω2)m/2 b0/(m+ 1)! (m even) ,

= 0 (m odd) , (144)

and

y = b0 x
∑

m even

(−1)m/2(ωx)m 1

(m+ 1)!
=
b0
ω

sinωx . (145)

Quantum HO

Potential corresponding to force −Kx is

V (x) =
1

2
Kx2 (146)
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Schrödinger equation:

− h̄2

2m

d2ψ

dx2
+

1

2
Kx2ψ(x) = Eψ(x) (147)

Change to dimenionless variables

y =
(

mK

h̄2

)

1
4

x = αx; ǫ =
2E

h̄

(

m

K

) 1
2

=
2E

h̄ω
=

2E

hν
(148)

giving
d2ψ

dy2
− y2ψ(y) = −ǫψ(y) (149)

Complimentary solution

First solve simpler equation
d2ψ

dy2
− y2ψ(y) = 0 (150)

(can think of this as equation as |y| → ∞). Gives

ψ(y) = A exp
(

−1

2
y2
)

+B exp
(

1

2
y2
)

(151)

Boundary conditions for a localised problem give B = 0 so that ψ → 0 as |y| → ∞.

Assume full solution of form

ψ(y) = H(y) exp
(

−1

2
y2
)

dψ

dy
=
dH

dy
exp

(

−1

2
y2
)

− yψ

d2ψ

dy2
=
d2H

dy2
exp

(

−1

2
y2
)

− y
dH

dy
exp

(

−1

2
y2
)

− ψ − y
dH

dy
exp

(

−1

2
y2
)

+ y2ψ (152)

which gives

d2ψ

dy2
− y2ψ(y) = −ǫψ(y) = exp

(

−1

2
y2
)

[

d2H

dy2
− 2y

dH

dy
−H

]

(153)

so the equation to solve is

d2H

dy2
− 2y

dH

dy
+ (ǫ− 1)H = 0 (154)

This equation has no singular points. So can obtain two simple series solution about

y = 0, these will have radius of convegence, ρ = ∞ (see 4.2). Also note that the equation

is even so expect separate even and odd solutions

H(y) =
∞
∑

n=0

any
n;
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dH

dy
=

∞
∑

n=0

nany
n−1;

d2H

dy2
=

∞
∑

n=0

n(n− 1)any
n−2 (155)

so
∞
∑

n=0

n(n− 1)any
n−2 − 2

∞
∑

n=0

nany
n + (ǫ− 1)

∞
∑

n=0

any
n = 0 (156)

tidying this up and changing the dummy variable on the first sum by n→ n+ 2 gives

∞
∑

n=−2

(n+ 1)(n+ 2)any
n +

∞
∑

n=0

(ǫ− 1 − 2n)any
n = 0 (157)

For this equation to be true for all values of y, the coefficient of each power of y must be

separately equated to zero. This gives

2a2 + (ǫ− 1)a0 = 0 coef. of y0;

aj+2(j + 2)(j + 1) − [ǫ− 1 − 2j]aj = 0 coef. of yj. (158)

giving a recurrence relation

aj+2 =
2j − ǫ+ 1

(j + 1)(j + 2)
aj j = 0, 1, 2, . . . (159)

The series must terminate otherwise H(y) and hence ψ(x) go as exp(y2/2), ie as the

solution already rejected. If highest power of y in a solution is yn, then an+1 and an+2

must be zero. This means

an+2 = 0 =
2n− ǫ+ 1

(n + 1)(n+ 2)
an (160)

which gives

2n− ǫ+ 1 = 0 (161)

or ǫ = 2n+ 1 as the physically allowed levels of the HO, which are

E = (n+
1

2
)hν = (n+

1

2
)h̄ω n = 0, 1, 2, . . . (162)

The polynomials H(y) are called Hermite Polynomials, generally written Hn(y). By

convention they are written so that an = 2n. They have recurrence relation

aj+2 =
2(j − n)

(j + 1)(j + 2)
aj. (163)
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First few Hermite polynomials

H0(y) = 1,

H1(y) = 2y,

H2(y) = 4y2 − 2, (164)

Normalisation constant:

Nn =
(

α

π
1
2 2nn!

) 1
2

(165)

3.2 Special points

To know about the solubility of DE (133) it is necessary to analyse its structure. To do

this it is convenient to re-write the equation by dividing through by P (x) to give

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 , (166)

where

p(x) =
Q(x)

P (x)
, q(x) =

R(x)

P (x)
.

A DE of this form can have three types of points:

1. Ordinary points. xo is an ordinary point if

lim
x→x0

[p(x)] and lim
x→x0

[q(x)] (167)

are both finite. Most points are ordinary, eg all x in both classical and quantal HO

problems. Legendre’s equation (126) can be arrange into the form

d2y

dx2
− 2x

1 − x2

dy

dx
+
ℓ(ℓ+ 1)

1 − x2
y = 0 . (168)

It is ordinarly at x0 = 0.

-0.2 -0.1 0 0.1 0.2
x

-100

-50

0

50

100

y

Figure 1: Plot of y = 1
x

showing the singularity at x = 0.

49



Singular points best understood by considering y = x−1 at x = 0, see figure 1. y is

singular at x = 0.

Singularities in p and q determine if and how the DE can be solved. If p(x0) and/or

q(x0) are not ordinary, they are singular. For example x0 = ±1 above or tanx is

singular at (2n+ 1)π
2

for integer n.

Simple series solutions of the type (128) can be used to find both solutions about

an ordinary point.

2. Regular singular points are singularities such that

p0 = lim
x→x0

[(x− x0)p(x)] and q0 = lim
x→x0

[(x− x0)
2q(x)] (169)

are finite. For example x0 = 1 is a regular singular point in Legendre’s equation

(168).

Frobenius’ method works about regular singular points. Furthermore, it can be

shown (Fuch’s theorem) that there exists at least one series solution about any reg-

ular singular point.

3. Essential singular points are such that p0 and/or q0 are singular.

Series solution methods cannot be used for essentual singular points.

From now on will always assume that x0 = 0. If this is not the case it is easier to

make a change of variable using t = x−x0 than to work with an expansion about x0 6= 0.

For series solutions the radius of convergence, which is the largest value of x for

which the series can be used, is is given by the singularity nearest to x0 in the complex

plane. Examples will be given below.

3.3 Indicial equations

Frobenius’ method is based on using a generalisation of the series solution (128) used to

solve for series about regular points. Assuming one is expanding about x0 = 0, this takes

the form:

y(x) =
∞
∑

n=0

anx
n+k (170)
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with constraint that a0 6= 0. This equation has an extra xk compared to expansion (128).

k can take any value: it does not need to be integer, positive or even real. It is determined

from something called the indicial equation.

To derive the indicial equation insert the expansion

y =
∞
∑

n=0

an x
n+k ,

dy

dx
=

∞
∑

n=0

(n+ k) an x
n+k−1 ,

d2y

dx2
=

∞
∑

n=0

(n+ k)(n + k − 1) an x
n+k−2 . (171)

into DE (166) and obtain

∞
∑

n=0

(n+k)(n+k−1) an x
n+k−2 + p(x)

∞
∑

n=0

(n+k) an x
n+k−1 + q(x)

∞
∑

n=0

an x
n+k = 0 . (172)

Multiply this equation through by x2−k

∞
∑

n=0

(n + k)(n+ k − 1) an x
n + p(x)

∞
∑

n=0

(n+ k) an x
n+1 + q(x)

∞
∑

n=0

an x
n+2 = 0 , (173)

then consider its value at the expansion point x = 0. At this point it is only necessary to

consider terms with n = 0 since those with n > 0 are all zero at x = 0. This gives

k(k − 1) a0 + p(x) k a0 x+ q(x) a0 x
2 = 0 . (174)

Dividing through by a0, since a0 6= 0, and remembering the definitions of p0 and q0 given

by (169) one obtains

k(k − 1) + p0k + q0 = 0 (175)

which is a quadratic equation for k and is known as the indicial equation. I find this

general form easiest to use but, as shown below, the indicial equation can be derived for

each case.

If k1 and k2 are the two solutions of the indicial equation, then there are two possibil-

ities:

1. If k1 − k2 6= an integer, then both solutions can be obtained in the form:

y1(x) = xk1[a0 +
∞
∑

n=1

an x
n] ,

y2(x) = xk2[b0 +
∞
∑

n=1

bn x
n] ,

(176)
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2. Otherwise, assuming k1 ≤ k2, one solution has form of y2(x). Other may look like

y1(x), but Fuch’s theorem only guarantees that solution with k2 will exist in this in

form.

One can find the second (“irregular”) solution by letting y(x) = y2(x) v(x) and

getting a simpler equation for v(x). Often v(x) has a nasty ℓn(x) term in it. This is

always the case if the indicial equation has equal roots, i.e. k1 = k2. This happens

for Bessel’s equation which one often comes across in problems with cylindrical

symmetry.

Roots differing by an integer

Consider the equation

x(x− 1)
d2y

dx2
+ 3x

dy

dx
+ y = 0 .

Comparing this with the standard form gives p(x) =
3

(x− 1)
and q(x) =

1

x(x− 1)
. Thus

x = 0 and x = 1 are regular points of the differential equation and so we can expect to

get at least one power series solution in x. At x = 0, get k = 0 and 1.

Inserting

y =
∞
∑

n=0

an x
n+k ,

dy

dx
=

∞
∑

n=0

(n+ k) an x
n+k−1 ,

d2y

dx2
=

∞
∑

n=0

(n+ k)(n+ k − 1) an x
n+k−2

into the differential equation,

∞
∑

n=0

(n + k)(n+ k − 1) an (xn+k − xn+k−1) +
∞
∑

n=0

3(n+ k) an x
n+k +

∞
∑

n=0

an x
n+k = 0 .

Hence

∞
∑

n=0

an x
n+k [(n+ k)(n+ k − 1) + 3(n+ k) + 1] =

∞
∑

n=−1

(n + k + 1)(n+ k) an+1 x
n+k .

Indicial equation comes from looking at the lowest power of x, given by n = −1 on

the right hand side. Gives k(k − 1) = 0, i.e. k = 1 or k = 0 as above.

Equating higher powers of x gives recurrence relation:

(n+ k + 1)2 an = (n + k + 1)(n+ k) an+1 ,
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an+1 =

(

n+ k + 1

n+ k

)

an .

Recurrence relations allow us to evaluate all the higher coefficients from the first one. To

fix the first term one has to remember that a0 6= 0. This term then acts as a scale constant

for the whole solution, which must be determined from the boundary conditions.

Taking the index k = 1 and putting a0 = 1, we get a1 = 2, a2 = 3 etc. The full

solution is

y1(x) = x(1 + 2x+ 3x2 + 4x3 + · · ·) =
x

(1 − x)2
·

Note that this series converges for | x |< 1; the divergence at x ≥ 1 is due to the singular

point there.

On the other hand, when the index k = 0, we are in trouble because the recurrence

relation is

an+1 =
(

n+ 1

n

)

an .

If you try to calculate a1 by putting n = 0 you see that the whole thing blows up. Hence

there is not a second series solution at x = 0. Fuch’s theorem only guaranteed that there

would be one solution of this kind; the other solution is going to be nasty at x = 0.

3.4 Applying Frobenius’s method

Consider the equation

2x2 d
2y

dx2
− x

dy

dx
+ (1 + x)y = 0 . (177)

For this p(x) =
−1

2x
and q(x) =

1 + x

2x2
. This eq. has a regular singular point at x = 0

with p0 =
−1

2
and q0 =

1

2
, giving an indicial eq.

k(k − 1) − 1

2
k +

1

2
= 0 . (178)

2k2 − 3k + 1 = (2k − 1)(k − 1) = 0 . (179)

Hence k = 1
2

and 1.

Expanding as a series

y =
∞
∑

n=0

an x
n+k ,

dy

dx
=

∞
∑

n=0

(n+ k) an x
n+k−1 ,

d2y

dx2
=

∞
∑

n=0

(n+ k)(n + k − 1) an x
n+k−2 . (180)
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and substituting into DE (177) gives

∞
∑

n=0

2(n+k)(n+k−1) an x
n+k−

∞
∑

n=0

(n+k) an x
n+k+

∞
∑

n=0

an x
n+k+

∞
∑

n=0

an x
n+k+1 = 0. (181)

For (181) to be satisfied for all values of x then the coefficient of each power of x must be

zero. For xk this gives

2k(k − 1) − k + 1 = 2k2 − 3k + 1 = 0 , (182)

assuming a0 6= 0. This is the indical eq. derived above. Equating powers of xn+k get

[2(k + n)(k + n− 1) − (k + n) + 1]an + an−1 = 0

an =
−1

2(k + n)2 − 3(k + n) + 1
an−1 =

−1

[2(k + n) − 1][(k + n) − 1]
an−1 , n ≥ 1 .

(183)

Consider k = 1 and k = 1
2

in turn.

k = 1

an =
−1

[2n+ 1]n
an−1 , n ≥ 1 . (184)

So

a1 = − a0

3.1
,

a2 = − a1

5.2
=

a0

3.5(1.2)
,

a3 = − a2

7.3
=

a0

(3.5.7)(1.2.3)
,

etc. In general

an =
(−1)n

[3.5.7 . . . (2n+ 1)]n!
a0 , n ≥ 1 . (185)

Gives first general solution of (177), omiting constant multiplier a0,

y1(x) = x

[

1 +
∞
∑

n=1

(−1)nxn

[3.5.7 . . . (2n + 1)]n!

]

. (186)

Use the ratio test to determine the radius of convergence

lim
n→∞

∣

∣

∣

∣

∣

an+1x
n+1

anxn

∣

∣

∣

∣

∣

= lim
n→∞

|x|
(2n+ 3)(n+ 1)

= 0 , (187)

so series converges for all x. Can be seen as no poles in p(x) and q(x) except at expansion

point x = 0.

k = 1
2
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Same method gives independent solution

y2(x) = x
1
2

[

1 +
∞
∑

n=1

(−1)nxn

[3.5.7 . . . (2n− 1)]n!

]

. (188)

which is slso convergent for all x.

Now apply this method to commonly occuring physical problems, particularly those

that arise from trying to solve Schrödinger’s equation.

Laguerre’s equation

In PHAS2222 the radial eq. of the H atom is written:

d2F

dr2
− 2κ

dF

dr
+

[

2Z

r
− ℓ(ℓ+ 1)

r2

]

F = 0

where Z is the charge on the atom, κ =
√
−2E, ℓ the orbital angular momentum of the

electron is an integer ≥ 0, κ its energy, and the range is 0 ≤ r ≤ ∞. This equation is also

known as Laguerres equation.

Analysing this eq. for r → 0 shows:

p(r) = −2κ, p0 = 0;

q(r) =

[

2Z

r
− ℓ(ℓ+ 1)

r2

]

, q0 = −ℓ(ℓ+ 1). (189)

There are no other singular points so expanding about this point will give solutions with

radius of convergence, ρ = ∞.

Indicial equation:

k(k − 1) + kp0 + q0 = 0

k(k − 1) − ℓ(ℓ+ 1) = 0

k2 − k − ℓ(ℓ+ 1) = 0

(k + ℓ)(k − (ℓ+ 1)) = 0

k = −ℓ, ℓ + 1

Solution with k = −ℓ

F (r) =
∑

n=0

anr
n−ℓ, a0 6= 0

is unbounded (ie ∞) at r = 0, so unphysical.
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Solution k = ℓ+ 1 gives

F (r) =
∑

n=0

anr
n+ℓ+1, a0 6= 0

rewrite as

F (r) =
∑

j=ℓ+1

ajr
j , aℓ+1 6= 0

dF

dr
=
∑

j

jajr
j−1

d2F

dr2
=
∑

j

j(j − 1)ajr
j−2

Substituting in

∑

j=ℓ+1

j(j − 1)ajr
j−2 − 2κ

∑

j=ℓ+1

jajr
j−1 + 2Z

∑

j=ℓ+1

ajr
j−1 − ℓ(ℓ+ 1)

∑

j=ℓ+1

ajr
j−2 = 0

∑

j=ℓ+1

[j(j − 1) − ℓ(ℓ+ 1)]ajr
j−2 =

∑

j=ℓ+1

[2κj − 2Z]ajr
j−1

∑

j=ℓ

[j(j + 1) − ℓ(ℓ+ 1)]aj+1r
j−1 =

∑

j=ℓ+1

[2κj − 2Z]ajr
j−1.

Equating powers of rj−1 gives

[j(j + 1) − ℓ(ℓ+ 1)]aj+1 = [2κj − 2z]aj

and the recurrence relation

aj+1 =
(2κj − 2Z)

j(j + 1) − ℓ(ℓ+ 1)
aj

with j > ℓ.

As j → ∞
aj+1

aj
→ 2κ

j + 1

which means that for large r, F (r) behaves as exp(2κr), remember

exp(2κr) = 1 + 2κr +
(2κr)2

2!
+ . . .

(2κr)n

n!
. . .

exp(2κr) is not bounded so series must terminate.

Let n be highest term allowed, then an+1 = 0

(2κn− 2Z) = 0
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κ =
Z

n
= (−2E)

1
2

which leads directly to the energy levels of the H atom

E = − Z2

2n2
, n = 1, 2, 3, . . .

with the condition n > ℓ.

These solutions are known as Laguerre polynomials (terms can be written down using

recurrence relation). These are orthogonal polynomials (like Hermite and Legendre). In

fact there are a set for each value of ℓ.
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4 Legendre Functions

Solve Legendre’s differential equation

d

dµ

[

(1 − µ2)
dΘ

dµ

]

+

[

ℓ(ℓ+ 1) − m2

1 − µ2

]

Θ = 0 . (190)

For m = 0 there is no azimuthal dependence on the angle φ:

d

dµ

[

(1 − µ2)
dΘ

dµ

]

+ ℓ(ℓ+ 1) Θ = 0 . (191)

Special case of ℓ = 0

Start with the even simpler case that we can treat by A-level methods. For ℓ = 0,

d

dµ

[

(1 − µ2)
dΘ

dµ

]

= 0 .

This means that the quantity inside the square bracket must be some constant C;

(1 − µ2)
dΘ

dµ
= C .

This equation separates as
∫

dΘ =
∫

C

(1 − µ2)
dµ ,

giving the solution

Θ = C 1
2
ℓn

(

1 + µ

1 − µ

)

+D . (192)

Legendre equation is ordinary second-order DE. so solution contains two arbitrary inte-

gration constants, written here as C and D. There are two independent solutions of the

equation

P0(µ) = 1 , (193)

Q0(µ) = 1
2
ℓn

(

1 + µ

1 − µ

)

, (194)

where subscript denotes the value of ℓ.

Since Legendre equation is homogeneous, most general solution is a linear superposi-

tion of P0 and Q0,

Θ(µ) = C Q0(µ) +DP0(µ) .

Note that Q0(µ) diverges at θ = 0, i.e. µ = cos θ = +1.

Away from ℓ = m = 0, the solutions are more complicated. In general, one solutions

is finite at µ = ±1, whereas the other one blows up there. To find such solutions, we must

apply series methods.
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4.1 Series solution

First note the eq. remains unchanged if we let µ → −µ. As before, this means can write

independent solutions as either odd or even functions of µ. This condition is satisfied by

solutions obtained for ℓ = m = 0, (194).

Carrying out a differentiation, Legendre’s eq. becomes

d2Θ

dµ2
− 2µ

(1 − µ2)

dΘ

dµ
+
ℓ(ℓ+ 1)

(1 − µ2)
Θ = 0 , (195)

which is ordinary at µ = 0 but has regular singularities at µ = ±1, expect series solutions

about µ = 0 will converge for |µ| < 1.

Look for solutions in the series form

Θ =
∞
∑

n=0

an µ
n ,

Θ′ =
∞
∑

n=0

n an µ
n−1 ,

Θ′′ =
∞
∑

n=0

n(n− 1) an µ
n−2 . (196)

Inserting the expressions for Θ, Θ′ and Θ′′ into Eq. (195), we find

∞
∑

n=0

n(n− 1) an

[

µn−2 − µn
]

− 2
∞
∑

n=0

n an µ
n + ℓ(ℓ+ 1)

∞
∑

n=0

an µ
n = 0 . (197)

Grouping together all similar powers of µ simplifies things a bit:

∞
∑

n=0

n(n− 1) an µ
n−2 =

∞
∑

n=0

{n(n+ 1) − ℓ(ℓ+ 1)} an µ
n . (198)

To get recurrence relation, change dummy variable n→ n+ 2 on left of Eq. (198):

∞
∑

n=−2

(n+ 1)(n+ 2) an+2 µ
n =

∞
∑

n=0

{n(n + 1) − ℓ(ℓ+ 1)} an µ
n . (199)

Comparing coefficients of powers of µ then gives

an+2 =
(n+ 1)n− ℓ(ℓ+ 1)

(n+ 1)(n+ 2)
an . (200)

Recurrence relation links terms differing by two units in n. As for harmonic oscillator

equation, is a direct consequence of the DE being even under µ→ −µ, means that there

are odd and even solutions of Legendre’s equation.

Even solutions
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an+2 =
n(n+ 1) − ℓ(ℓ+ 1)

(n+ 1)(n+ 2)
an =

(n− ℓ)(n+ ℓ+ 1)

(n + 1)(n+ 2)
an . (201)

Solution is therefore

pℓ(µ) = a0

[

1 − ℓ(ℓ+ 1)

2!
µ2 +

(ℓ− 2)(ℓ)(ℓ+ 1)(ℓ+ 3)

4!
µ4 + · · ·

]

. (202)

Odd solutions

Starts from a1 giving

qℓ(µ) = a1

[

µ− (ℓ− 1)(ℓ+ 2)

3!
µ3 +

(ℓ− 3)(ℓ− 1)(ℓ+ 2)(ℓ+ 4)

5!
µ5 + · · ·

]

. (203)

Clear that pℓ(µ) is even function of µ, as a1 etc = 0, whereas qℓ(µ) is odd function.

Most general solution is

fℓ(µ) = Apℓ(µ) +B qℓ(µ) . (204)

Earlier found the explicit forms of the solutions for ℓ = 0, viz

P0(µ) = 1 and Q0 = 1
2
ℓn

(

1 + µ

1 − µ

)

.

Since P0(µ) is even and Q0(µ) is odd, want to identify P0 with p0 and Q0 with q0.

Putting ℓ = 0 in Eq. (202),

p0(µ) = a0

[

1 − 0(1)

2!
µ2 +

(−2)(0)(1)(3)

4!
µ4 + · · ·

]

= a0 P0(µ) . (205)

Every term (except first) has an ℓ factor which kills it.

Odd solution of Eq. (203) is a bit more complicated:

q0(µ) = a1

[

µ− (−1)(2)

3!
µ3 +

(−3)(−1)(2)(4)

5!
µ5 + · · ·

]

= a1

[

µ+
1

3
µ3 +

1

5
µ5 + · · ·

]

,

(206)

which is the series expansion of 1
2
ℓn

(

1 + µ

1 − µ

)

.

Shows all is OK for ℓ = 0. Get an infinite series for q0(µ) but one which terminates

for p0(µ).

Does the infinite series converge? Apply D’Alembert ratio test to investigate.

4.2 Range of Convergence

Series goes up by steps of two in n. For D’Alembert ratio test have then to compare

(n+ 2)’nd term with n’th

R =

∣

∣

∣

∣

∣

an+2 µ
n+2

an µn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(n+ 1)n− ℓ(ℓ+ 1)

(n + 1)(n+ 2)
µ2

∣

∣

∣

∣

∣

. (207)
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Convergence depends upon large n, where

R −→
[

1 − 2

n

]

µ2 −→ µ2 . (208)

R < 1 guarantees convergence and this is true if |µ| < 1, exactly as expected because of

the regular singular points of Legendre equation at µ = ±1.

To see that Q0(µ) = 1
2
ℓn

(

1 + µ

1 − µ

)

does indeed blow up at µ = ±1; just put it into your

calculator and see the error message flashing! Important point to note that µ = cos θ = ±1

corresponds to θ = 0◦ and 180◦, need finite answers at these two points. Why should the

electrostatic potential be infinite at the top and bottom of a sphere?

Avoided this problem with P0(µ) = 1 because series terminates with finite number of

terms (for ℓ = 0 just a single one). No issue with convergence. Only way out; to get

finite answers at µ = ±1 series must terminate. End up with a polynomial rather than

an infinite series.

Going back to recurrence relation of Eq. (200),

an+2 =
(n+ 1)n− ℓ(ℓ+ 1)

(n+ 1)(n+ 2)
an ,

series terminates if numerator on right hand side vanishes for some value of n;

(n + 1)n− ℓ(ℓ+ 1) = (n− ℓ)(n+ 1 + ℓ) = 0 . (209)

The convention that Re{ℓ} ≥ −1
2

means that we need

ℓ = n . (210)

For even solution need ℓ to be any positive even integer,

For odd solution need ℓ to be any positive odd integer.

2B22 Quantum Mechanics course shows that condition ℓ be an integer corresponds

to the quantisation of orbital angular momentum in integral units of h̄. Result obtained

here is fundamental to this, Atomic and other branches of Physics.

For any (non-negative) integer N , p2N (µ) and q2N+1(µ) are polynomials in µ, but that

p2N+1(µ) and q2N(µ) are infinite series which diverge at µ = 1. Clearly interested in

solutions which are finite at θ = 0◦; group them with a common notation. Let

Pℓ(µ) =

{

pℓ(µ) ℓ even ,
qℓ(µ) ℓ odd ,

Qℓ(µ) =

{

pℓ(µ) ℓ odd ,
qℓ(µ) ℓ even .

(211)
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Pℓ(µ) is a polynomial but Qℓ(µ) is an infinite series which blows up at µ = 1. Fur-

thermore

Pℓ(−µ) = (−1)ℓ Pℓ(µ) ,

Qℓ(−µ) = (−1)ℓ+1Qℓ(µ) . (212)

Summary

Only for non-negative integers ℓ do we have solutions of Legendre’s equation which

are finite at µ = ±1. These are the Legendre polynomials Pℓ(µ). There are also Legendre

functions of the second kind, Qℓ(µ), but these blow up at µ = ±1. The Qℓ are far less

important in Physics and will be largely neglected.

Standard to “normalise” Legendre polynomials such that

Pℓ(1) = 1 . (213)

From the series representation of Eqs. (202) and (203), we then see that

P0(µ) = 1 ,

P1(µ) = µ ,

P2(µ) = 1
2
(3µ2 − 1) . (214)

Going back to Eq. (118), original Laplace equation in spherical coordinates, most

general solution which has no φ dependence is

V (r , θ) =
∞
∑

ℓ=0

[

αℓ r
ℓ + βℓ r

−ℓ−1
]

Pℓ(cos θ) , (215)

where sum is over discrete integers ℓ, and αℓ and βℓ are constants fixed by boundary

conditions.

4.3 Generating Function for Legendre Polynomials

Working out electrostatic potential due to point charge q at z = a.
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In terms of the distance from the point z = a, potential is simply

V =
q

4πε0

1

r1
· (216)

To evaluate it in terms of r and θ, use the cosine rule to obtain

r 2
1 = r2 + a2 − 2r a cos θ , (217)

which leads to a potential of

V (r , θ) =
q

4πε0
[r2 + a2 − 2r a cos θ]−

1
2 . (218)

There is no φ dependence because the charge was placed on the z-axis.

If we are interested in the potential in the region r > a, then we can expand Eq. (218)

in powers of a/r,

V (r , θ) =
q

4πε0 r

[

1 +
(

a

r

)2

− 2
(

a

r

)

cos θ

]−
1
2

.

≈ q

4πε0 r

[

1 − a2

2r2
+
a

r
cos θ +

3a2

2r2
cos2 θ + · · ·

]

=
q

4πε0 r

[

1 +
a

r
cos θ +

a2

r2
1
2
(3 cos2 θ − 1) + · · ·

]

(219)

Already know the general solution for Laplace’s equation in any region where there is

no charge. If the potential is to remain finite at large r, all the αℓ coefficients in Eq. (215)

must vanish and so

V (r , θ) =
1

r

∞
∑

ℓ=0

βℓ

rℓ
Pℓ(cos θ) . (220)
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To determine the values of the βℓ, look what happens at θ = 0 where, by definition,

Pℓ(cos θ) = 1. In the forward direction r = r1 + a, and so

V (r , θ) =
1

r

∞
∑

ℓ=0

βℓ

rℓ
=

q

4πε0 r

1

(1 − a/r)
=

q

4πε0 r

∞
∑

ℓ=0

aℓ

rℓ
. (221)

Comparing different powers of r in the two sums, can read off

βℓ =
q

4πε0
aℓ . (222)

Final solution at all angles

V (r , θ) =
q

4πε0

1√
r2 + a2 − 2r a cos θ

=
q

4πε0 r

∞
∑

ℓ=0

aℓ

rℓ
Pℓ(cos θ) . (223)

Have solved a problem in electrostatics but result gives general method to derive

Legendre polynomials. Comparing the two expressions for the potential in Eq. (223), and

dropping elecrostatics factor outside gives

1

r

1
√

1 + a2/r2 − 2 (a/r) cos θ
=

1

r

∞
∑

ℓ=0

aℓ

rℓ
Pℓ(cos θ) . (224)

Change to notation where t = a/r and x = cos θ,

g(x, t) ≡ 1√
1 − 2x t+ t2

=
∞
∑

ℓ=0

Pℓ(x) t
ℓ . (225)

This is the generating function for the Legendre polynomials. Only valid if | t |< 1, which

corresponds to r > a, otherwise there are convergence problems.

If you expand the square root using the binomial expansion, and compare powers of

t, then you get the same answers as we got before, viz

P0(x) = 1 ,

P1(x) = x ,

P2(x) = 1
2
(3x2 − 1) . (226)

etc.

4.4 Recurrence Relations

Apart from physical interpretation, generating function helps derive recurrence relations

between Legendre polynomials. In practice most efficient way of deriving polynomials.
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Differentiate the generating function of Eq. (225) partially with respect to t

∂g(x, t)

∂t
=

x− t

(1 − 2x t+ t2)3/2
=

∞
∑

n=0

nPn(x) tn−1 . (227)

Multiply both sides by 1 − 2x t+ t2 to give

(x− t)
1

(1 − 2x t+ t2)
1
2

= (1 − 2x t+ t2)
∞
∑

n=0

nPn(x) tn−1 . (228)

On the left-hand side see once generating function for Legendre polynomials, which

means

(x− t)
∞
∑

n=0

Pn(x) t
n = (1 − 2x t+ t2)

∞
∑

n=0

nPn(x) tn−1 . (229)

This equation is a power series in t which is supposed to be valid for a range of values

of t. Consequently it must be valid separately for each power of t. Exactly same argument

used in the series solution of DEs. Writing out explicitly all different powers,

x
∞
∑

n=0

Pn(x) tn−
∞
∑

m=0

Pm(x) tm+1 =
∞
∑

ℓ=0

ℓ Pℓ(x) t
ℓ−1−2x

∞
∑

n=0

nPn(x) tn+
∞
∑

m=0

mPm(x) tm+1 .

(230)

Formula written with different dummy indices ℓ, m, and n so can change a couple of them

easily. Let

m −→ n− 1 ,

ℓ −→ n + 1 .

Then all terms in the sums contain same tn factor. Reading off coefficient get

xPn(x) − Pn−1(x) = (n+ 1)Pn+1(x) − 2nxPn(x) + (n− 1)Pn−1(x) .

Grouping like terms together gives the recurrence relation

(2n+ 1) xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x) . (231)

Thus, if you know Pn(x) and Pn−1(x), the recurrence relation allows you to obtain the

formula for Pn+1(x).

For example, putting n = 1 in Eq. (231), we get

3xP1(x) = 2P2(x) + P0(x) . (232)

Since P0(x) = 1 and P1(x) = x, this then immediately gives P2(x) = 1
2
(3x2 − 1).
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Using instead n = 2, we obtain

5xP2(x) = 3P3(x) + 2P1(x) , (233)

which means that

P3(x) = 1
2
(5x3 − 3x) .

4.5 Orthogonality of Legendre Polynomials

The Legendre differential equations for Pn(x) and Pm(x) are

d

dx

[

(1 − x2)P ′
n(x)

]

+ n(n+ 1)Pn(x) = 0 ,

d

dx

[

(1 − x2)P ′
m(x)

]

+m(m+ 1)Pm(x) = 0 . (234)

Multiply the first of Eqs. (234) by Pm(x) and the second by Pn(x) and subtract one

from the other to find:

Pm(x)
d

dx

[

(1 − x2)P ′
n(x)

]

−Pn(x)
d

dx

[

(1 − x2)P ′
m(x)

]

= [m(m+ 1) − n(n+ 1)] Pm(x)Pn(x).

Now integrate both sides of this expression over x from −1 to +1:

∫ +1

−1

{

Pm(x)
d

dx

[

(1 − x2)P ′
n(x)

]

− Pn(x)
d

dx

[

(1 − x2)P ′
m(x)

]

}

dx

= [m(m+ 1) − n(n + 1)]
∫ +1

−1
Pm(x)Pn(x) dx . (235)

What we have to do now is show that the left hand side of Eq. (235) vanishes. This we

do through integrating by parts.

∫ +1

−1
Pm(x)

d

dx

[

(1 − x2)P ′
n(x)

]

dx =
[

Pm(x) (1 − x2)P ′
n(x)

]+1

−1
−
∫ +1

−1
(1−x2)P ′

n(x)P
′
m(x) dx.

(236)

Now the first term on the RHS of Eq. (236) equals zero because (1− x2) = 0 at both the

limits. On the other hand, the second term is cancelled by an identical one coming from

the second term in Eq.(235) where m⇔ n. Hence

[m(m+ 1) − n(n + 1)]
∫ +1

−1
Pm(x)Pn(x) dx = 0 , (237)

which means that, if n 6= m,

∫ +1

−1
Pm(x)Pn(x) dx = 0 . (238)
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This the Orthogonality relation. It is analogous to orthogonality of two vectors except

that have integral over a continuous variable rather than sum over components.

To construct equivalent of a unit vector, evaluate integral when m = n:

In =
∫ +1

−1
[Pn(x)]2 dx . (239)

Many ways of working this out, but easiest uses generating function of Eq. (225). Writing

this twice gives

1√
1 − 2x t+ t2

=
∞
∑

n=0

Pn(x) tn ,

1√
1 − 2x t+ t2

=
∞
∑

n=0

Pm(x) tm . (240)

Multiply these two expressions together to give a double summation over n and m.

1

1 − 2x t+ t2
=

∞
∑

n=0

∞
∑

m=0

Pn(x)Pm(x) tn+m . (241)

Now integrate over x from −1 to +1:

∫ +1

−1

dx

1 − 2x t+ t2
=

∞
∑

n=0

∞
∑

m=0

∫ +1

−1
Pn(x)Pm(x) tn+mdx . (242)

The integral on the left gives

1

2t
ℓn

(

(1 + t)2

(1 − t)2

)

=
1

t
ℓn
(

1 + t

1 − t

)

= 2
∞
∑

n=0

t2n

2n+ 1
. (243)

Have already shown that integral on RHS vanishes unless n = m and so only have a

single sum:

RHS =
∞
∑

n=0

In t
2n . (244)

Comparing coefficients of t2n on left and right hand sides gives

In =
∫ +1

−1
[Pn(x)]2 dx =

2

2n + 1
. (245)

The orthogonality and normalisation of Legendre polynomials can be written as

∫ +1

−1
Pm(x)Pn(x) dx =

2

2m+ 1
δm n , (246)

where the Kronecker delta symbol for two integers m and n is defined by

δm n =

{

1 for m = n
0 for m 6= n .

(247)
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4.6 Expansion in series of Legendre polynomials

Last year learned how to expand a function f(x) in a Maclaurin series:

f(x) =
∞
∑

n=0

αn x
n

for −1 < x < 1. Also, in the first year Waves and Optics course, learned about expanding

functions in series of sine and cosine functions. Such Fourier expansions will be the topic

of the next section. Here expand f(x) in an infinite series of Legendre polynomials:

f(x) =
∞
∑

n=0

an Pn(x) . (248)

Start with a simple example:

f(x) =
15

2
x2 − 3

2
=

15

2
· 1

3
(2P2(x) + P0(x)) −

3

2
P0(x) = P0(x) + 5P2(x) .

Whenever the power series for f(x) only has a finite number of terms, i.e. is a polynomial,

can calculate coefficients by solving system of algebraic equations. Example above is of

this kind. If f(x) is not a polynomial then can still calculate the coefficients using the

orthonormality integral of Eq. (247). Multiplying Eq. (248) by Pm(x) and integrating

from −1 to +1 gives

∫ +1

−1
f(x)Pm(x) dx =

∞
∑

n=0

an

∫ +1

−1
Pn(x)Pm(x) dx =

∞
∑

n=0

an
2

2n+ 1
δm n =

2

2m+ 1
am .

(249)

Hence

am =
2m+ 1

2

∫ +1

−1
f(x)Pm(x) dx . (250)

Example 1. Calculate the Legendre coefficients for f(x) =
15

2
x2 − 3

2
. Putting in the

explicit forms for the Legendre polynomials, we have

a0 =
1

2

∫ +1

−1

(

15

2
x2 − 3

2

)

dx =
1

2

(

15

3
− 3

)

= 1 ,

a1 =
3

2

∫ +1

−1

(

15

2
x2 − 3

2

)

x dx = 0 (integrand odd),

a2 =
5

2

∫ +1

−1

(

15

2
x2 − 3

2

)

(

3x2

2
− 1

2

)

dx =
5

4

(

45

5
− 24

3
+ 3

)

= 5 .

These agree with what we found using direct algebra.
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Example 2. Obtain the first two the Legendre coefficients for f(x) = eαx.

a0 =
1

2

∫ +1

−1
eαx dx =

1

2α

(

eα − e−α
)

=
sinhα

α
,

a1 =
3

2

∫ +1

−1
x eαx dx = 3

(

coshα

α
− sinhα

α2

)

,

where we had to do some integration by parts.

4.7 Return to the Potential Problem

Laplace equation in spherical polar coordinates and with axial symmetry (no φ depen-

dence) has general solution for electrostatic potential in charge-free space

V (r, cos θ) =
∞
∑

ℓ=0

(

Aℓr
ℓ +

Bℓ

rℓ+1

)

Pℓ(cos θ) . (251)

Suppose that V (r) → 0 as r → ∞. This means that all the Aℓ = 0 and

V (r, cos θ) =
∞
∑

ℓ=0

Bℓ

rℓ+1
Pℓ(cos θ) . (252)

To fix the values of Bℓ coefficients, need another boundary condition:

Example

Suppose that on an isolated sphere of radius a the electrostatic potential varies like

V (r = a, θ) = V0 e
α cos θ. How does the potential behave for large distances?

Using the Legendre series example already worked out,

B0 = V0a
sinhα

α
,

B1 = 3V0a
2

(

coshα

α
− sinhα

α2

)

,

and

V (r, cos θ) = V0

[

a

r

sinhα

α
+ 3

a2

r2

(

coshα

α
− sinhα

α2

)

cos θ + 0
(

1

r3

)

]

.

For those of you familiar with electrostatics, the cos θ term corresponds to the electric

dipole moment and the discarded next term the quadrupole moment etc.
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4.8 Associated Legendre Functions

In general φ dependence of solutions to Laplace’s equation is of form eimφ, where m is an

integer. To get the θ dependence, have to solve

d

dx

[

(1 − x2)
dPm

ℓ

dx

]

+

[

ℓ(ℓ+ 1) − m2

1 − x2

]

Pm
ℓ = 0 . (253)

Have here replaced µ → x and called Θ(µ) → Pm
ℓ (x).] Only for m = 0 do we get the

Legendre polynomials Pℓ(x). To solve the equation for m 6= 0 is even more tedious than

for m = 0. But results are important for Quantum Mechanics, where ℓ is known as the

angular momentum quantum number and m the magnetic quantum number.

Well behaved solutions of Legendre’s equation are only possible if

• ℓ is a non-negative integer.

• m is an integer with −ℓ ≤ m ≤ ℓ.

Solutions for m and −m are the same since only m2 occurs in Legendre’s equation.

For m > 0 the associated Legendre functions, Pm
ℓ , can be derived from the Legendre

polynomials using

Pm
ℓ (x) = (1 − x2)m/2

(

d

dx

)m

Pℓ(x) . (254)

The orthogonality relation is also a bit more complicated than that of Eq. (246):
∫ +1

−1
Pm

ℓ (x)Pm
n (x) dx =

2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓ n . (255)

Specific cases

ℓ = 1, m = 1:

P 1
1 (x) = (1 − x2)1/2 d

dx
x = (1 − x2)1/2 = sin θ .

ℓ = 2, m = 1:

P 1
2 (x) = (1 − x2)1/2 d

dx
1
2
(3x2 − 1) = 3x (1 − x2)1/2 = 3 sin θ cos θ .

ℓ = 2, m = 2:

P 2
2 (x) = (1 − x2)

d2

dx2
1
2
(3x2 − 1) = 3(1 − x2) = 3 sin2 θ .

As a couple of examples to check the orthogonality relations, consider
∫ +1

−1
P 1

2 (x)P 1
1 (x) dx =

∫ +1

−1
3x(1 − x2) dx = 0 .

∫ +1

−1

[

P 1
2 (x)

]2
dx =

∫ +1

−1
9x2(1 − x2) dx = 2

9

3
− 2

9

5
=

12

5
·

The last one agrees with the 2
5
3! of Eq. (255).
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4.9 Spherical Harmonics

Often (eg in Quantum Mechanics) gets the θ and φ dependence packaged together as one

function called a spherical harmonic Y m
ℓ (θ, φ). Thus

Y m
ℓ (θ, φ) = cℓ,m P

m
ℓ (cos θ) eimφ (256)

is a solution of Legendre equation. Here the constants cℓ,m could be chosen many ways.By

convention Y m
ℓ os normalised so that

∫ +1

−1
d(cos θ)

∫ 2π

0
dφ Y m ∗

ℓ (θ, φ) Y m′

ℓ′ (θ, φ) = δℓ,ℓ′ δm,m′ . (257)

Using Eq. (255), this is achieved with

cℓ,m = (−1)m

√

√

√

√

(ℓ−m)! (2ℓ+ 1)

(ℓ+m)! 4π
· (258)

In Quantum Mechanics you will at some stage need to remember the orthogonal-

ity/normalisation relation of Eq. (257) but you will NOT be required to remember the

actual algebraic form of Eq. (258).

The first few spherical harmonics are

Y 0
0 (θ, φ) =

1√
4π

,

Y 1
1 (θ, φ) = −

√

3

8π
sin θ eiφ ,

Y 0
1 (θ, φ) =

√

3

4π
cos θ ,

Y −1
1 (θ, φ) =

√

3

8π
sin θ e−iφ . (259)
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5 Fourier Analysis

Have expanded arbitrary vector A in terms of basis vectors êi which are orthogonal (and

normalised);

êm · ên = δm n . (260)

Have also seen that an arbitrary function of cos θ can be expanded as a series of

Legendre polynomials, which are orthogonal (and normalised);

∫ +1

−1
Pm(x)Pn(x) dx =

2

2m+ 1
δm n . (261)

The two formulae look very similar. The crucial difference between the two is that

the scalar product is defined differently in the two cases. For the Legendre polynomials,

the scalar product of two of them is given by an integral from −1 to +1. The factor of

2/(2m + 1) on the right hand side is of no real importance — one doesn’t have to work

with basis vectors of length one.

5.1 Fourier Series

The other place where you have met the expansion of functions in terms of orthogonal

functions is in the Fourier series that you saw in the Waves and Optics course in the first

year. A pure note on a violin corresponds to a sinusoidal variation in both position x and

time t. However, when the violinist bows the instrument, she or he excites a whole range

of notes. To find the notes, the initial signal must be expanded in a Fourier series. We

want here to justify and extend some of these first year techniques.

The orthogonality integral is most elegant in terms of complex exponentials:

∫ +π

−π
e−imx einx dx = 2πδm n . (262)

Using Euler’s relation, eimx = cosmx + i sinmx, we can then convert Eq. (262) into

integrals for sines and cosines to give

∫ +π

−π
cosmx sinnx dx = 0 for all m,n. (263)

Provided that m,n 6= 0,

∫ +π

−π
cosmx cosnx dx =

∫ +π

−π
sinmx sinnx dx = π δm n . (264)
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If m = n = 0, the the sine integral vanishes and we are just left with the cosine integral

∫ +π

−π
1 dx = 2π . (265)

Thus the functions
1√
2π

,
1√
π

cosmx ,
1√
π

sinmx , (266)

with m a positive integer, form an orthonormal set with respect to integration over the

interval −π ≤ x ≤ +π.

An arbitrary function f(x) in the interval −π ≤ x ≤ +π may be written in the form

f(x) = 1
2
a0 +

∞
∑

n=1

an cosnx+
∞
∑

n=1

bn sin nx , (267)

where the Fourier coefficients are given by

am =
1

π

∫ +π

−π
f(x) cosmx dx ,

bm =
1

π

∫ +π

−π
f(x) sinmx dx . (268)

Proof: Multiply both sides of Eq. (267) by sinmx and integrate from −π to +π.

∫ +π

−π
f(x) sinmxdx = 1

2
a0

∫ +π

−π
sinmxdx+

∞
∑

n=1

an

∫ +π

−π
sinmx cos nx dx

+
∞
∑

n=1

bn

∫ +π

−π
sinmx sinnx dx . (269)

The first two terms on the right hand side clearly vanish because the integrands are odd.

The third term is only non-zero if m = n, which means that there is only one term in the

sum. Using Eq. (264), this gives

∫ +π

−π
f(x) sinmxdx =

∞
∑

n=0

bn π δm n = π bm , (270)

as required.

Alternatively, multiplying by the cosine,

∫ +π

−π
f(x) cosmxdx = 1

2
a0

∫ +π

−π
cosmxdx+

∞
∑

n=1

an

∫ +π

−π
cosmx cosnx dx

+
∞
∑

n=1

bn

∫ +π

−π
cosmx sinnx dx . (271)
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It is the third term which now vanishes for all m and n. If m = 0, only the first term

survives and
∫ +π

−π
f(x) cosmxdx = 1

2
a0 2π = π a0 , for m = 0 . (272)

On the other hand, if m 6= 0, it is the second term which is non-vanishing and

∫ +π

−π
f(x) cosmxdx =

∞
∑

n=1

an π δm n = π am . (273)

The 1
2

factor in front of a0 in Eq. (268) gives a consistent formula for all am.

Example 1: Rectangular wave. Consider the function

f1(x) =

{

+1 for 0 < x < π
−1 for − π < x < 0

Note that this is an odd function, i.e. f(x) = −f(−x). Using Eq. (268), this means that

all the even coefficients an = 0. [The cosnx are even functions and, when multiplied by

f(x), give odd integrands.] On the other hand

bn =
1

π

∫ π

0
sinnx dx− 1

π

∫ 0

−π
sinnx dx =

1

nπ

[

− cosnx
]π

0
− 1

nπ

[

− cosnx
]0

−π

=
1

nπ
[1 − cos nπ + 1 − cos(−nπ)] =

2

nπ
[1 − cosnπ] =

4

nπ
×
{

1 for n odd
0 for n even.

Thus the Fourier series becomes

f1(x) =
4

π

∑

n odd

1

n
sinnx .

As an example of how things look if we just take a finite number of terms, the picture

shows what happens when the series is truncated at n = 21. You see there are lots of little

oscillations (typically 21) and the sizes of these oscillations get smaller as the number of

terms increases. However, with a finite number of terms like this, the representation of

a function which changes so sharply near x = 0 is not perfect! Note that the original

function was not defined at x = 0 but the Fourier series has resulted in a representation

with f(0) = 0. This is typical of a case where the function is discontinuous and the

Fourier series will then converge to the mean of the results to the left and right of the

discontinuity at x = x0:

−→ lim
ǫ→0

1
2
{f(x0 + ǫ) + f(x0 − ǫ)} . (274)
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No matter how many terms you add, you never get it quite right at a discontinuity.

Thus in the next picture there are are 100 terms and there is still an overshoot of about

18%. With more terms, the overshoot always stays the same size but it just gets squeezed

into a smaller region in x. This is known as the Gibbs phenomenon. On the other hand,

one could not get anything like as good a description of a discontinuous function using a

power series.

2.85 2.9 2.95 3.05 3.1

0.2

0.4

0.6

0.8

1
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Periodic Functions

So far we have looked at functions defined in the region −π ≤ x ≤ +π. What happens

outside this region? Going back to Eq. (267), we see that the function is periodic with

period 2π since

f(x+ 2π) = 1
2
a0 +

∞
∑

n=1

an cosn(x+ 2π) +
∞
∑

n=1

bn sinn(x+ 2π)

= 1
2
a0 +

∞
∑

n=1

an cosnx+
∞
∑

n=1

bn sinnx = f(x) . (275)

Therefore we can use Fourier series either on a function which is defined just over an

interval −π ≤ x ≤ +π, or one which is periodic with period 2π.

Example 2: A function f2(x), which is periodic with period 2π, is defined by

f2(x) = x , 0 ≤ x ≤ π ,

= −x , −π ≤ x ≤ 0 .

f2(x) is an even function, as shown in the picture.

6
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−4π −2π 0 2π 4π

f(x)
x

0

π

−π π

Due to the eveness, the bn all vanish since the integrands are odd. This is a very

general trick — an odd function only has sines in its expansion whereas an even function

has only cosines. The even coefficients are:

a0 =
2

π

∫ π

0
x dx =

[

x2

π

]π

0

= π ,

where use has been made of the even character to integrate over half the interval.

an =
2

π

∫ π

0
x cosnx dx =

2

π

[

x

n
sinnx+

1

n2
cos nx

]π

0
.

The sine function vanishes at both limits, so that

an = − 2

πn2
[1 − (−1)n] .

This means that an = −4/πn2 if n is odd but that an = 0 for even n.
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Hence

f2(x) =
π

2
− 4

π

∑

n odd

1

n2
cosnx .

This series converges rather faster than the first example since, keeping terms only up to

n = 5, we get the picture:

-10 -5 5 10

0.5

1

1.5

2

2.5

3

The reason for this better behaviour is that, unlike the case in example 1, the original

function f2(x) has no sudden jumps, although it has sudden changes in slope. Note,

however, that with a finite number of terms the Fourier series never quite gets to zero.

Since f2(x) should vanish at x = 0, rearranging the Fourier series at this point gives

∑

n odd

1

n2
=
π2

8
·

The right hand side ≈ 1.234. Keeping only three terms on the left hand side gives

1 + 1/9 + 1/25 ≈ 1.151, which differs from the true answer by about 7%. This is another

manifestation of the convergence of the Fourier series.

General interval

So far only looked at x between ±π but the same formulae are valid for any range of

the same size, such as 0 ≤ x ≤ 2π. If, on the other hand, the fundamental interval is

−L ≤ x ≤ +L, just change variables to y = πx/L. Then

f(x) = 1
2
a0 +

∞
∑

n=1

an cos nπx
L

+
∞
∑

n=1

bn sin nπx
L
, (276)
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where the Fourier coefficients are given by

am =
1

L

∫ +L

−L
f(x) cos mπx

L
dx ,

bm =
1

L

∫ +L

−L
f(x) sin mπx

L
dx . (277)

The conditions under which a Fourier expansion is valid go by the name of Dirichlet

conditions, which are discussed by Boas. Roughly speaking, if f(x) is periodic with period

2L with a finite number of discontinuities, then the expansion is valid provided that

∫ +L

−L
| f(x) | dx is finite. (278)

Differentiation of Fourier series

General motto: be careful ! In the examples that we have looked at,

f1(x) =
d

dx
f2(x) .

Does this hold for their Fourier series? Just try and see!

d

dx
f2(x) =

d

dx

(

π

2
− 4

π

∑

n odd

1

n2
cosnx

)

=
4

π

∑

n odd

1

n
sin nx = f1(x) ,

which works fine.

Now go one step further and look at the Fourier series for the next derivative

d

dx
f1(x) =

4

π

∑

n odd

cosnx .

The series clearly must blow up at x = 0 or x = ±π because we then have an infinite

number of terms equal to +1 or −1. Away from these points, the Fourier series oscillates

around zero as in the picture, which was calculated with terms up to n = 21. If one takes

more terms the peaks at x = mπ get higher but narrower.

To repeat, if the function is smooth then we can differentiate its Fourier series term

by term. At any discontinuities we have to be careful — sometimes very careful!

Parseval’s Identity

Suppose that f(x) is periodic with period 2π such that it has the Fourier series

f(x) = 1
2
a0 +

∞
∑

n=1

an cosnx+
∞
∑

n=1

bn sin nx . (279)
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Parseval’s theorem is that the average value of f 2 is given by

< f 2(x) >=
1

2π

∫ +π

−π
[f(x)]2 dx =

(

a0

2

)2

+
1

2

∞
∑

n=1

(a 2
n + b 2

n) . (280)

We can insert the representation of Eq. (279) into the left hand side of Eq. (280) and

simply carry out all the integrations. Now, by Eqs. (263, 264), there are no cross terms

which survive the integration, so that

1

2π

∫ +π

−π
[f(x)]2 dx =

1

2π

∫ +π

−π
dx

{

(

1
2
a0

)2
+

∞
∑

n=1

a 2
n cos2 nx+

∞
∑

n=1

b 2
n sin2 nx

}

. (281)

Now the average value < cos2 nx >=< sin2 nx >= 1
2
, so that Parseval’s identity follows

immediately.

Let us now see what this gives us for the two examples that we have worked out. In

the first case, f 2
1 (x) = 1, and hence

1 =
1

2

16

π2

∑

n odd

1

n2
,

that is
∑

n odd

1

n2
=
π2

8
·

But this is already the result that we got from looking at the sum of the Fourier series in

the second example at the position x = 0. The two answers are the same!

In the second case of the saw-tooth wave,

< f 2
2 (x) >=

1

2π

∫ +π

−π
x2 dx =

[

x3

6π

]+π

−π

=
π2

3
.

Hence
π2

3
=
(

π

2

)2

+
8

π2

∑

n odd

1

n4
.
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Thus
∑

n odd

1

n4
=
π4

96
·

This agrees with the output from Mathematica!

Complex Fourier series

For those of you who are happy with complex numbers, the complex Fourier series are

easier to handle than the real ones. If f(x) is periodic, with period 2π, then

f(x) =
+∞
∑

n=−∞

cn e
inx , (282)

where the complex coefficients are given by

cn =
1

2π

∫ +π

−π
e−inx f(x) dx . (283)

The proof of this follows immediately using the orthonormality condition of Eq. (262):

∫ +π

−π
e−imx einx dx = 2πδm n .

Example: Let us do example 1 again and show that we get the same answer.

cn =
1

2π

∫ 0

−π
e−inx (−1) dx+

1

2π

∫ +π

0
e−inx (+1) dx =

1

2π

[ −1

−in e
−inx

]0

−π
+

1

2π

[

1

−in e
−inx

]π

0

=
1

nπi
(1 − (−1)n) .

This means that all the even coefficients vanish and the odd ones are cn = 2/(nπi). The

complex Fourier series becomes

f(x) =
2

πi

+∞
∑

n=−∞

1

n
einx (n odd) =

2

πi

−1
∑

n=−∞

1

n
einx +

2

πi

+∞
∑

n=1

1

n
einx

= − 2

πi

∞
∑

n=1

1

n
e−inx +

2

πi

+∞
∑

n=1

1

n
einx =

4

π

+∞
∑

n=1

1

n

1

2i

(

einx − e−inx
)

,

where all the sums are over the odd values of n. You recognise the expression for sin nx

in the last bracket and so we have obtained the same result as before.

There is a form of Parseval’s identity which is valid for complex Fourier series:

1

2π

∫ +π

−π
| f(x) |2 dx =

1

2π

∫ +π

−π
f ∗(x) f(x) dx =

+∞
∑

n=−∞

| cn |2 . (284)
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5.2 Fourier Transforms

Go back to the expressions of eqs. (276, 277) for the Fourier series and Fourier coefficients

in the case of an arbitrary interval of length 2L:

f(x) = 1
2
a0 +

∞
∑

n=1

an cos nπx
L

+
∞
∑

n=1

bn sin nπx
L
,

where

an =
1

L

∫ +L

−L
f(t) cos nπt

L
dt ,

bn =
1

L

∫ +L

−L
f(t) sin nπt

L
dt.

Putting these together as one equation,

f(x) =
1

2L

∫ +L

−L
f(t) dt+

1

L

∞
∑

n=1

cos nπx
L

∫ +L

−L
f(t) cos nπt

L
dt+

1

L

∞
∑

n=1

sin nπx
L

∫ +L

−L
f(t) sin nπt

L
dt.

(285)

Using the trigonometric addition formula

cos nπx
L

cos nπt
L

+ sin nπx
L

sin nπt
L

= cos nπ
L

(t− x) , (286)

the Fourier series result can be written in the more compact form

f(x) =
1

2L

∫ +L

−L
f(t) dt+

1

L

∞
∑

n=1

∫ +L

−L
f(t) cos nπ

L
(t− x) dt . (287)

Fourier transforms are what happens to Fourier series when the interval length 2L

tends to infinity. To bring this about, define

ω =
nπ

L
and ∆ω =

π

L
. (288)

In the limit that L → ∞, the first term in Eq. (287) goes to zero provided the infinite

integral converges. Hence

f(x) =
1

π

∞
∑

n=1

∆ω
∫ +∞

−∞
f(t) cosω(t− x) dt . (289)

Now since ∆ω → 0 as L→ ∞, the sum in Eq. (289) can be replaced by an integral to

reveal the fundamental expression of Fourier transforms:

f(x) =
1

π

∫ ∞

0
dω

∫ +∞

−∞
f(t) cosω(t− x) dt . (290)
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Since cosω(t−x) is an even function of ω, we can extend the integration limit to −∞
provided that we divide by a factor of 2:

f(x) =
1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
f(t) cosω(t− x) dt . (291)

On the other hand, sinω(t− x) is an odd function of ω, which means that

0 =
1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
f(t) sinω(t− x) dt . (292)

Adding i times Eq. (292) to Eq. (291), we get

f(x) =
1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
f(t) [cosω(t−x)+i sinω(t−x)] dt =

1

2π

∫ +∞

−∞
dω
∫ +∞

−∞
f(t) eiω(t−x) dt.

(293)

Splitting up the exponential, we get to the final result that

f(x) =
1

2π

∫ +∞

−∞
dω e−iωx

∫ +∞

−∞
f(t) eiωt dt . (294)

Now introduce the Fourier transform

g(ω) =
1√
2π

∫ +∞

−∞
f(x) eiωx dx , (295)

and its inverse

f(x) =
1√
2π

∫ +∞

−∞
g(ω) e−iωx dω . (296)

The two equations look the same except that in one there is a +i in the exponent, whereas

in the other there is a −i. Eqs.(295, 296) have been defined symmetrically, each with a

1
√

2π factor. Many books put a 1/2π factor in front of one integral and unity in front of

the other.

The variable ω introduced here is an arbitrary mathematical variable but in most

physical problems it corresponds to the angular frequency ω. The Fourier transform rep-

resents f(x) in terms of a distribution of infinitely long sinusoidal wave trains where the

frequency is a continuous variable. You will come across this in Quantum Mechanics,

where such waves are eigenfunctions of the momentum operator p̂. Then g(ω) = g(p) is

the momentum-space representation of the function f(x).

Example

Consider

E(t) = E0 e
−γt/2 e−iω0t = E0 e

−(iω0+
1
2

γ)t for t ≥ 0
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and which vanishes for negative values of t. This could represent a damped oscillating

electric field which was switched on at time t = 0. The Fourier transform is

g(ω) =
1√
2π

E0

∫ +∞

0
eiωt e−i(ω0−

1
2

iγ)t dt =
1√
2π

E0
1

iω − iω0 − 1
2
γ

[

ei(ω−ω0+
1
2

iγ)t
]∞

0

Because of the damping, the integated term vanishes at the upper limit and so we are left

with

g(ω) =
1√
2π

iE0

ω − ω0 + 1
2
iγ

·

The intensity spectrum

I(ω) = | g(ω) | 2 =
E 2

0

2π

1

(ω − ω0)2 + γ2/4

is peaked at ω = ω0 with a width of γ. In plotting the figure we have taken γ = 1.
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Useful results

1) If f(x) is an even function of x, then

g(ω) =
1√
2π

∫ +∞

−∞
f(x) eiωx dx =

1√
2π

∫ +∞

−∞
f(x) cosωx dx

is an even function of ω.

2) Similarly, if f(x) is an odd function of x, then g(ω) is an odd function of ω:

g(ω) =
1√
2π

∫ +∞

−∞
f(x) eiωx dx =

i√
2π

∫ +∞

−∞
f(x) sinωx dx .

3) Differentiating Eq. (296),

f ′(x) =
1√
2π

∫ +∞

−∞
[−iω g(ω)] e−iωx dω , (297)
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so that −iω g(ω) is the Fourier transform of f ′(x). By extension, (−iω)n g(ω) is the

Fourier transform of dnf/dxn.

4) From Eq. (296),

f(x+ a) =
1√
2π

∫ +∞

−∞
[e−iωa g(ω)] e−iωx dω , (298)

so that e−iωa g(ω) is the Fourier transform of f(x+ a).

The Dirac delta function

The Kronecker delta symbol δi j has the property that

ai =
∑

j

δi j aj (299)

for any vector aj, provided that the sum includes the term where i = j. The Dirac delta

function is the generalisation of this to the case where we have an integral rather than a

sum, i.e. we want a function δ(x− t), such that

f(x) =
∫ +∞

−∞
δ(x− t) f(t) dt . (300)

This means that δ(t− x) is zero everywhere except the point t = x but there it is so big

that the integral is unity. This is rather like having a point charge in electrostatics —

it is an idealisation. δ(t − x) is not a function in the normal sense; it is just too badly

behaved.

Going back to Eq. (294),

f(x) =
1

2π

∫ +∞

−∞
dω e−iωx

∫ +∞

−∞
f(t) eiωt dt ,

we can rearrange it as

f(x) =
∫ +∞

−∞
f(t) dt

{

1

2π

∫ +∞

−∞
dω eiω(t−x)

}

. (301)

Thus we can identify

δ(t− x) =
1

2π

∫ +∞

−∞
dω eiω(t−x) . (302)

We have to be a bit careful about the convergence of the integral at large values of ω.

Let us cut off the integration at ω = ±N and then study what happens as N gets large.

δN(t− x) =
1

2π

∫ +N

−N
dω eiω(t−x) =

sinN(t− x)

π(t− x)
. (303)
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With N = 50, the figure shows a strong spike at t = x, but with lots of oscillations.

The spike gets sharper as N gets larger, but the lobes at the bottom remain a constant

fraction 2/3π of the central value. Note that δ(x) = δ(−x); the Dirac delta is an even

function.
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Parseval’s theorem

The equivalent of Parseval’s theorem for Fourier transforms is easily proved using the

Dirac delta-function. From Eq.(295),

g(ω) =
1√
2π

∫ +∞

−∞
f(x) eiωx dx ,

g∗(ω) =
1√
2π

∫ +∞

−∞
f ∗(y) e−iωy dy , (304)

where x is replaced by y in the second integral for clarity. Multiply the two expressions

together and integrate over ω.

∫ ∞

−∞
g∗(ω) g(ω) dω =

1

2π

∫ +∞

−∞
f ∗(y) dy

∫ +∞

−∞
f(x) dx

∫ +∞

−∞
eiω(x−y) dω . (305)

But the last integral is just 2π δ(y−x). The delta function removes the y integration and

puts y = x everywhere. The 2π factor knocks out the 1/2π factor outside and we are left

with
∫ ∞

−∞
g∗(ω) g(ω) dω =

∫ ∞

−∞
f ∗(x) f(x) dx . (306)

In words, the total intensity of a signal is equal to the total intensity of its Fourier

transform. You should check this on the example given in class where

| E(t) |2=| E0 |2 e−γt and | g(ω) | 2 =
E 2

0

2π

1

(ω − ω0)2 + γ2/4
.
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