Topic 21 — Interference - Basic phenomena

We have already encountered the phenomenon of interference, in the context
of the quarter-wave plate. The interference we met there was interference by
division of amplitude, that is to say, the beams which interfered were formed
from exactly the same original wave by reflecting part of it and transmitting
another part. The two bits which later came together to interfere therefore
had a well-defined phase relationship.

Young’s slits FGT1027-1029, AF912-913

Figure L21.1: The pattern of peaks in waves from Young’s slits, showing the
directions in which they reinforce each other.

The first interference experiments we will look at, however, require division
of wavefront to produce two separated sources. The prototype experiment
was that of Thomas Young (1803), shown in figure L21.1.

If the light from the source slit arrives in phase at the two slits S; and
Ss, the phase difference at the screen is given by the path length difference
dy — dy, as shown in figure L21.2. If the slits are h apart, and very narrow,
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Figure L21.2: The geometry for calculating the path length difference in
Young’s experiment.
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we have

dz—dl = T

This will give bright lines if the path lengths differ by an integer number
m of wavelengths

so that the signals add in phase.

We can, of course, think of this in terms of phasors. The largest resultant
we can obtain by adding two vectors occurs when the two vectors are pointing
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in the same direction: that is, the largest sum of two phasors occurs when
the phasors are in phase.

We can make this rather more quantitative if we calculate the total electric
field on the screen at (z,y). This will be the sum of the signals from the two
slits, that is, the two cylindrical waves centred on the slits. If we incorporate
in the amplitude factor A both the 1/ Vkr term which is appropriate to the
decrease of amplitude with distance from the slit and the amplitude of the
wave at the slit. We assume, as discussed before, that we can neglect the
variation of amplitude with distance compared with the variation of phase
with distance. Then

E(fl?,y,t) _ Aei(wt—kd1) +A€i(Wt—kd2)
Aei(wt—k(d1+d2)/2) [e_ik(dl—d2)/2) + eik(dl_d2)/2)]
= 24/ HATRD) cos(k(dy — di)/2))

9 Aeiwt—k(di1+d>)/2) cos(kyh/2z))

which shows that the intensity has a cos® variation as shown in figure 1.21.3,
with a bright line at ¥ = 0, and the next bright line at
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Figure L21.3: The (ideal) pattern of intensities in Young’s experiment.
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In a typical experiment, we might have A = 500 nm, A = 0.2 mm, z =
0.5 m. Then the separation of the fringes will be

_zA .5 x500x107°

Ay = A — — 1.25 mm.
y= 0.2 x 10-3 mm

Visibility of fringes

We may define the visibility of fringes, the contrast between the maxima and
the minima, by

Tax — I
V= max min )
Imax + Imin

In the case we have just discussed, in which the two slits gave rise to
signals of equal amplitude, the visibility is 1, the maximum possible.

Suppose, though, the two slits let through light with different amplitudes,
A and B say, so that

B(z,y,t) = ¢t 4ol 4 pet -]
= Wik(d+d)/2) (A 4 B) cos(k(dy — do)/2) — i(A — B)sin(k(dy — dy)/2)]

Now the intensity is proportional to |E|?, and

|E|* = (A+ B)*[cos(k(dy — d2)/2)]* + (A — B)?[sin(k(dy — d)/2)]"
= A%+ B* + 2AB{[cos(k(d; — do)/2)]? — [sin(k(d; — d2)/2)]*}
A? + B% + 2AB cos(k(dy — dy)).

The maximum value of this clearly occurs when the cosine equals 1, the
minimum when the cosine equals —1, and so

(A+ B)* — (A— B)?
(A+B)?2+4+ (A—-B)?
4AB
2(A?2 + B?)
4A/B
2(1+ A?/B?)

V

This expression is 1 when A = B, as we expect from our previous result,
and the visibility of the fringes will be less than 1 if A and B are different.
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Lloyd's single mirror

Figure L.21.4: Alternative methods of dividing the wave-front for interference
experiments.

Other ways of splitting the wavefront

Slits are not the only way in which two closely-spaced sources can be formed.
The same thing can be done using three other arrangements (see figure L.21.4).
In all cases, though, different spatial regions of the original wavefront are sent
by different paths and allowed to interfere.

Modifications of the Young’s slits arrangement

If the space between the slits and the screen is filled with, instead of air, a
material with refractive index n, the wavelength will be reduced to A/n, and
the spacing of the fringes will thus be reduced to

_:E)\

Ay = —.
y hn
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If a slip of transparent material of thickness %, refractive index n, is placed
over one slit, that will increase the optical path length in that path by (n—1)¢.
As a result the fringes will be shifted, the fringe which would have appeared
at y now appearing (if the slip is placed over the lower slit) at y — (n—1)tz/h.

L21.1 Coherence FGT409, FGT414, AF911
interference of two coherent sources FGT415-416, AF909- 911

If the sources in Young’s experiment were not slits illuminated by light, but
dipole aerials driven by sinusoidal electric signals, there would be no question
about what the fields would look like. For each dipole it would have a spatial
distribution characteristic of the dipole and a time variation consisting of
on continuous single-frequency wave. For light, however, from say a gas
discharge tube each atom will send out a pulse, and another atom will fire at
a time that is not correlated (unless we arrange this specially, as in a laser).

wave fronts AF937

The spatial distribution of atoms will mean that there is also an spatial
distribution of phase - a wavefront is only approximately flat.

The degree to which a wave approximates to the ideal of a plane infinite
wave train is described by its coherence.

Coherence is measured as

e temporal coherence, measuring the time for which the waves passing
a particular point maintain a clear phase relationship. This may also
be quoted as a longitudinal coherence length, the product of coherence
time with wave speed.

e spatial coherence, measuring the distance across the wavefront which
one can go without substantial drift of phase, also quoted as transverse
or lateral coherence length.

Typical longitudinal coherence lengths
e white light — a few wavelengths
e discharge tubes (such as street lamps) — few millimetres

e low-pressure discharge tubes, e.g. *Kr lamp — few metres
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Figure L21.5: In light from, for example, a sodium flame, each atom sends
out a short pulse of light (top). If all the atoms radiated ‘in step’ the result
would be as shown in the middle graph. In reality, the atoms ‘fire’ at random,
giving the irregular wave shown at the bottom.

e laser — kilometres readily achievable.

practical coherent sources

As aresult of temporal coherence limits, if we look at large path differences we
begin to lose the interference. In Young’s experiment, this gives a reduction
in fringe visibility as we move away from the straight-through direction.

If we use large sources, the spatial coherence limits the level of interfer-
ence.
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Figure L21.6: The fading of the fringe pattern at larer angles in Young's
experiment, as a result of the finite coherence length of the light.
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