Topic 18 — Standing Waves and Waveguides

Note that this topic is presented only as background material and
is not. material which will be asked about in the examination.

Just as in one dimension (standing waves on a string or on a bar) standing
waves exist in two and three dimensions. Again, it is the combination of the
differential equation (the wave equation) and the boundary conditions which
give the standing waves.

T18.1 Standing waves AF919

Standing waves in two and three dimensions AF926- 929

Figure T18.1: The lowest mode of vibration of a square membrane.

Figure T18.2: A second mode of vibration of a square membrane.

The simplest case is a two-dimensional square drum with sides L, and L,:
the movement of the drum membrane may be written as a wave

6(37, Y, t) = aei(wt_kmx_kyy)
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Figure T18.3: A third mode of vibration of a square membrane.

which reduces with fixed boundary conditions to a product of sine waves for
each direction of the form

. . N T . N T
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f(.’t, Yy, ) =ae Sin Lac Sin Ly

where n, and n, are integers. Typical standing wave patterns on a square
drum are shown in figures T18.1, T18.2 and T18.3.

Figure T18.4: The lowest mode of vibration of a circular membrane.

For a circle, the displacement again factors, but this time into a product
of radial and angular functions. The radial functions include oscillations, but
also have an amplitude which varies with distance from the origin'. Two of
the lower-frequency modes are shown in figures T18.4 and T18.5.

!This amplitude variation is in line with the 1//r variation that we predicted on
energy grounds in the last lecture. Technically, the functions involved are known as Bessel
functions, and are written as J,(kr) for integer n.
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Figure T18.5: A mode of vibration of a circular membrane, showing one
radial node but maintaining circular symmetry.

T18.2 sound waves in pipes - end corrections AF922

If the boundary conditions do not correspond to rigid edges, we have to be
a little more careful. Consider a pipe that is open at one end. Why should
the pressure in the wave suddenly drop to zero there? Surely the sound wave
will "leak’ from the end? Yes, it will — the maths becomes complicated, but
in general a good approximation is to add an ‘end correction’ of the order of
0.8 times the radius of the tube.

T18.3 Simple waveguides AF930-933

There are many situations in which we want to generate a wave at one point
and send it to another point rather than broadcasting it over a wide area.
That is, we want to ’pipe’ waves along specific paths. The full theory of
the waveguides which can accomplish this is rather complicated, but there
is a half-way house in terms of standing waves in two or three dimensions,
in which a wave is confined between two surfaces and guided in a particular
direction. This simple case illustrates several of the important features of
waveguides.

Suppose we have a wave in two dimensions &(z,y,t) confined between
planes at y = 0 and y = a, and treat the planes as rigid boundaries (fig-
ure T18.6. A wave that starts off with wave-vector k = (k;,k,) will be
reflected off the top surface, as a result of which its k, component will be re-
versed but its k, component will be left alone. Its next reflection will reverse
k, back to its original value. At any point in the waveguide, then,

f(.ﬁ, y,t) = Aetwt—kaz—kyy) 4 Bei(wt—keztkyy)
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A Guided Wave System
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Figure T18.6: A pair of reflecting planes, forming a wave-guide.

Withg:oa‘tyzo,y:aso
g(iﬁ, Y, t) =C Sin(kyy)ei(‘ﬁ*kzw)

with k, = =%

That is, we have a standing wave in the y direction but a travelling wave
in the x direction. The amplitude will have nodal planes perpendicular to
the y direction, where the sine function is zero.

The phase velocity in the z direction is

But if the wave velocity in free space is ¢, the components k; and k, satisfy
2 1.2 g
kzc —+ ky = E

We know the form of k,, so

Bo= -
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Figure T18.7: The nodal planes in a two-dimensional wave guide.

From this we can obtain the phase velocity, which is the velocity in the
direction in which the wave is actually propagating,

vp = —

1— n?w2c?

w?a?

i.e. the phase velocity is greater than the free space velocity.
The group velocity, on the other hand, is

_dw
 dkg

Vg
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Vg =C"— = —
WY
so the group velocity is less than c.
Note that if
n’n?c?
" <1

k; and the velocity become imaginary. But imaginary k, converts the com-
plex exponential into a real one — the signal decays with distance into the
guide. This means that there is a lower cutoff-frequency which is different
for each mode or value of n.

Optical fibres are examples of guided-wave systems, for light. Acoustic
waveguides are common — the inner ear is an example — and their potential
for eavesdropping is famous?.

2 Acoustics, Musurgia Universalis is a fascinating book written in 1650 by Athanasius
Kircher, a Jesuit priest. The book includes illustrations of a building with horns shaped
like conch shells embedded in the walls to gather sound and focus it at secret listening
posts.
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