Topic 11 - Acoustic Waves in Fluids and Impedance
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The oscillating piston sends waves of compression and
rarefaction along the tube.
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Figure T11.1: The propagation of a wave in a fluid.

T11.1 Bulk Modulus FGT390-392, AF758-760

Imagine a tube of fluid being driven by a sinusoidally moving piston. This
will produce regions of compression and rarefaction. If the ambient pressure
is P, the resulting pressure may be written

P=F+p

where p is the change induced by the piston. If we take a fixed mass of fluid,
which had a volume Vj under the pressure F;, it is not going to be moved
bodily all the way along the pipe, but it is going to have its volume altered,
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say to
V=V+w.

Now the degree to which a fluid can be compressed is measured by its bulk
modulus:

_ f:hange in pre:ssure _ dP _ —VE. (T11.1)
fractional change in volume dv/v dv

Note the sign: increasing pressure results in decreased volume, so the
negative sign ensures that the bulk modulus comes out positive.

T11.2 Wave in a fluid

Now we derive the equation of motion for an element of the fluid. The
derivation follows very closely that for the rod. Consider (figure T11.1) an
element of the tube of cross-sectional area A and initial thickness dz. As a
result of the disturbance there is a change in thickness d¢

_ 9
d¢ = Z~da,

which corresponds to a fractional increase in volume
AdE  0¢
Adzx Oz

the volume strain, and therefore to a change in pressure

o
-B,—.
o0x

But the difference in pressure across the element of fluid is

P'—P=P(zx+dz)— P(z) = (P(x) + g—];dx> — P(z) = Z—I;dx

but, as it is only the disturbing pressure p which varies with z,

Op
P - P=""dz.
8x$
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The force on the element is (P’ — P)A in the negative x direction, the mass of
the element is pgAdzx (the density will be slightly altered, but we may ignore
the product of the change in density and the change in pressure as it is small
compared with the terms we keep), so

op 0%¢

Adz = ppAdz =
AT

T

and substituting for the pressure we get

0°¢ _ B, 0%¢

that is, a wave with velocity v = y/Ba/po-

Note that so far nothing we have said has been specific to any type of
fluid — we could use this formula to describe sound waves in, for example,
a liquid such as water or a gas such as air.

T11.3 Sound waves in a gas

Let us now look specifically at a gas. What is B? That depends on the
conditions. If the pressure is changed quickly, but the changes in pressure are
not too great, so that the local heating and cooling which would accompany
compression and expansion are not smoothed out by thermal conduction, the
process is adiabatic. This is the usual condition for sound in a gas, so

PV7 = constant (T11.3)

where v is a constant characteristic of the type of gas.

Then, differentiating
VYdP + PV 'dV =0

Thus P
—V—=yP=B8B
av =7 2
where ‘a’ is for ‘adiabatic’. For normal sound waves the pressure changes are
tiny (about 107'0 of an atmosphere for a sound wave which is just audible

at 1 kHz) so the conditions are met."

1 _ 05/0T), _ 0S/0V)y0p/0S)v _ Op/dV)s
7= 85/aT)y  9T]AV),0p/dT)v _ dp/oV)r
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Thus the wave velocity v = \/ B./po = \/ vPo/ po-

For a typical diatomic gas at NTP we have py ~ 1 kg m™3, v = 7/5,
Py =~ 10° Pa, so v =~ /1.4 x 10° ~ 374 m s~'. The value usually given for
air is 330 m s

Characteristic impedance

T11.1 general form

Impedance describes the ‘response’ of a material carrying waves to a ’force’.
I have used inverted commas round ‘force’ and ‘response’ as these words are
being used in a general sense, and the ideas apply to electrical as well as to
mechanical systems. Table T11.1 gives some examples.

Note that in all cases the product of the ‘force’ and the ‘response’ gives an
energy flux: for example the electrical power IV, or a pressure (force/area)
multiplied by a velocity giving a rate of doing work per unit area.

As a detailed example, consider pressure waves in a gas. The most useful
definition of the ‘force’ is the pressure. The product of a pressure and a
velocity will give a power per unit area, and this gives the useful definition

. excess pressure
Z = Specific acoustic impedance = > P r©_P (T11.4)
particle velocity ¢

But we know from the equations we had before that

g%

b= aax

and if we have a wave of the form
f — goei(wt—kx)

we get

B,ik&e'@=k) Bk B, ——
Z = a - = = — = = Ba .
iwé‘oez(wt—km) w c poc Po

This is a constant, which is independent of the frequency of the wave: it
is a characteristic of the material itself.

and C,, differs from Cy by the term pdV/9T),, which is simply the gas constant R for a
perfect gas.
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Wave system ‘Force’ ‘Response’ Impedance

Transverse wave on string Force F' Velocity v Flv=pc=+Tu
Pressure wave in fluid Excess pressure p Velocity 5 p/§ = pc=+/Bp
Elastic wave on rod Stress o Velocity & o/ =pc=+Yp
Electric current Voltage V Current V/I=R
Electromagnetic wave Electric field E = Magnetic field H E/H = \/p 0/ €r€0
Usually p, =1, and so Z = Zy/\ /€, = Zy/n
T': tension;

(: mass per unit length

p: density; ¢ wave speed; B: bulk modulus
o: stress; Y: Young’s modulus

R: electrical resistance

1. relative permeability

€-: relative permittivity (dielectric constant)
1o: permeability of free space;

€o: permittivity of free space

Zy: impedance of free space;

n: refractive index

Table T11.1: Impedances for several wave systems.
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