Topic 9 - Waves in Finite Systems

normal modes, harmonics FGT381, AF919-921

So far we have talked about waves travelling along infinite strings. Current
physics department budgets only run to strings of finite length. If we fix the
ends of a string of length L, one end at x = 0 and the other at z = L, what
sort of motions are possible? In mathematical terms, what is the effect of
imposing boundary conditions on the motion?

If the frequency is fixed at w then a general form for the displacement y
at time ¢ and position £ would consist of two waves of unknown amplitudes
a and b, which in general may be complex,

y(x, t) — aei(wt-l—kw) + bei(wt—kw).

We have chosen these forms so that the time variation of the two terms is
the same, and we will be able to factor it out later. We know, though, that
y(xz,t) =0 at x = 0 for all ¢, so

0= (a+b)e™"
or
a = —b.

(If we think about the physical significance of this, it means that we have
equal and opposite waves travelling in the two directions along the string.)
Thus

y(.’L‘,t) — aei(wt+kw) _ aei(wt—kw)
— et [eikw _ efikw}

= 2iae™' sin(kx).

We must now impose the boundary condition at the other end, y = 0 at
x = L for all t. Thus we must have

sin(kL) =0

or
kL =nm
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where n is an integer. Writing this in terms of wavelength A,

oL _
b\ =nm

from which we deduce that only a certain set of wavelengths is allowed, those
for which (labelling them with n)

that is, A, is 2L, L, 2L/3..., which have nodes (positions of zero displace-
ment) at the ends of the string and 0, 1, 2... further nodes in between, with
1, 2, 3... antinodes (positions of maximum displacement) along its length.

Figure T9.1: The displacements in the four lowest-frequency normal modes
of transverse vibration of a stretched string with fixed ends.

These wavelengths are the normal modes on the string, and are sketched
in figure T9.1. Instead of specifying the wavelengths, we could specify the
frequencies,

2mc  nme
Wy = — = —.

An L

These are the normal frequencies, mode frequencies, or eigenfrequencies.
Note that they arise because of the boundary conditions. There are no limits
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on the frequencies which can be sent along a continuous string, but if we put
limits on the motion we can only have certain frequencies.

nodes/antinodes of standing wave

Of course, all we have done to set up those standing waves is to superpose
running waves of equal amplitude but opposite sign, travelling in opposite
directions, but we have produced a disturbance in the general case a = Ae'?
where A and ¢ determine the amplitude and phase

y(z,t) = 2iae™'sin(kx)
—  —2Asin(wt + @) sin(kx)
when we take the real part. That is, we have a wave where the zeros of

displacement are always in the same place, and the amplitude simply varies
sinusoidally with time.

‘ Two equal and opposite running waves give a standing wave

Of course, we can force a string to vibrate at other frequencies: these
natural frequencies are the only ones at which it will vibrate freely — that
is, they are the ones which will satisfy the equation of motion with no applied
force.

example - steel wire

As an example, take a steel wire which weighs 12.5 grammes per metre length.
If this is put under a tension of 800 N (reasonable for a wire in a piano, say,
and equivalent to the weight of a person), the sound velocity will be

_ 1
\[ \/125x103 odms

Now suppose that the length of this wire is half a metre. The ends will be

fixed (the case we treated above). The allowed wavelengths will therefore be

1m, L m,Lm, etc., and the corresponding frequencies are

» 9 ’ 3
wavelength

506 Hz

759 Hz,

which lie in the range of musical notes (concert A, for example, is 440 Hz).
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wire with free ends

Fixed boundaries are not the only possibility. Instead suppose that the wire is
stretched between supports so that the ends can slide vertically in frictionless
grooves, so the the displacement is not zero but the transverse force is zero
at the ends. We will just sketch the derivation of the normal modes for this
situation.

As before, we start with a general solution

y(l‘,t) — aei(wt-l—kw) + bei(wt—kw)'
Now, though, the transverse force! Tdy(z,t)/0z = 0 and at x = L for all .
Evaluating the derivative,

oyzx,t
x

— ikaei(wt—l—kw) _ ikbei(wt—kw)7

which gives at x =0 .
0 =ik(a — b)Te™"

or
a=b.
Apart from the sign, this is the result we had before. Thus
y(l', t) = aei(Wt+k$) + aei(wtfkw)

— aeiwt [ez’kz + 6—zkw]
= 2ae™" cos(kx).

We must now impose the boundary condition at the other end, dy/0x = 0
at x = L for all t. Thus we must have, as before,

sin(kL) =0

leading to the same results
2L
Ap = —.
n
That is, the allowed wavelengths are the same as before, but the patterns of

displacement are different, as shown in figure T9.2.

1Tt is important to remember that it is the force that is zero. In this case this is the
same as saying that the gradient of the string is zero, but it is important to think of the
condition as applying to the force: otherwise, mistakes are likely to occur later when we
deal with reflection and refraction, when we must match forces rather than gradients.
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Figure T9.2: The displacements in the four lowest-frequency normal modes
of transverse vibration of a stretched string with ends supported with no
transverse force.

T9.1 Longitudinal and transverse waves

T9.2 Polarisation

Exactly as with the oscillator, we can have transverse oscillations in either
of two directions, or we can have (as on a wave going down a spring, or
sound in air) longitudinal motion. The direction of motion is perpendicular
to the direction of travel of the wave we have transverse polarisation; if it
is parallel we have longitudinal polarisation. If the motion of transverse
polarisation stays in one plane, we have plane polarisation, but if there is a
phase difference between the motions in the two directions we have, as for
Lissajous figures, circular or elliptical polarisation.
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