Topic 8 - Derivation of Wave Equation - Con-
tinuous String
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Figure T8.1: A single-frequency wave on a beaded string.

We have seen that a string under tension, regularly loaded with masses, can
support a wave-like motion. For reasonably long wavelengths (figure T8.1)
the wave-like pattern is quite clear. At the minimum wavelength, however,
which is twice the bead spacing, alternate masses move up and down (fig-
ure T8.2) — without the continuous line joining the masses one would hardly
see this as a sinusoidal wave.

T8.1 Limiting form — wave equation

We drew an analogy between waves on a beaded string and waves in a crystal.
For classical wave motion, we should be able to ignore the discrete, atomic,
nature of material. We replace the discrete masses m by mass distributed
over the length of the string, and give the string a uniform density so that
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Figure T8.2: The minimum wave-length wave on a beaded string.

the mass of a length a of string will be pa. To see what happens, go back to
the equation of motion
d’y, T
di2  ma

(Yr=1 = 2Yr + Yr41)

and see what happens if we allow the spacing a to become very small: call
it z. Then

d2y'r — Z (yrl —Yr . Yr — yr—}—l)
de? m ox 0x

and, as dx is small, we can replace

Yret = Yr _ y(réz + dz) — y(rox) _ (d_y)
dz z=(r+1/2)éx

5.T 6.7;
dy, T ((d_y> _ (d_y) )
dt? m dz z=(r+1/2)6z dz r=(r—1/2)0z

But, of course,

() o () (&)
dz z=(r+1/2)éx dz z=(r—1/2)éx dz rz=riz

so if we smear the mass out, so that

so that

m = pdx
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we have
0’y T %
o2 pox?
We have replaced the total derivatives by partial derivatives because we have
replaced the discrete labels r for the position along the string by the contin-
uous variable x.
Thinking back to the discrete case, we said that the wave speed was
T/(m/a), so here the speed is \/7%
Also note that as dx is infinitesimal, there is no cut-off wavelength, and
we will always be in the regime 'wavelength large compared to details of
structure’, that is, in the non-dispersive regime.

T8.2 Transverse waves on a stretched string - direct
approach FGT380, AF761-763, AF919-921,

In our derivation of the wave equation for the string, we crept up on the
continuum equation by taking it as the limit of a string with masses on
it. Now let’s do the same job by treating it as a continuous object (see
figure T8.3) of mass p per unit length under tension 7.
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Figure T8.3: Forces on an element of a stretched string.

The length of the segment of string between = and x + dz is

2
ds = y/dz? + dy? = dxy|1 + (%) =dx
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provided that the slope is small.
The transverse force on the element ds is 7' sin(f 4+ df) — T sin(@), but as
f is small we may equate the sin to the tan, which is the gradient, so the

force is 5 5 52
Y Y Y
TI|= — == =T—dz.
[ <6:c ) r+dz (8:5) m] a:rQ dr

wave equation FGT380, AF761-763

We can then write the equation of motion

Force = Mass x Acceleration

9%y %y

a2 17 =Pl Fp
o 2

Py _, 9y
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Py 4 0%y

oz P 9x2

that is, a wave equation with wave speed ¢ = /T/p.

One possible source of confusion arises when we have a mechanical dis-
turbance. Two velocities are involved - the velocity of the particles, which
in the case of the wave on the string is always perpendicular to the string,
and varies with time and position, and the velocity of the wave itself, which
is parallel to the string. The velocity of the string is always transverse, and
is given by 0y /0t, i.e.

y(xz,t) = Re [aei(“’t_’”)}

= acos(wt—kzx) for real a
@ = Re [iwaei(‘”t*kw)]
ot

= —wasin(wt — kz).

In other words, the transverse velocity depends on the frequency and the
amplitude, and varies with time. The wave velocity is a constant: in a linear
wave (the only sort we deal with) it is independent of amplitude, although
(dispersion) it may depend on frequency.
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Mathematics used in this topic

Fundamental definition of a derivative:

d . flz+02) = f(2)

dz 520 0z

from which, by finding the first derivatives at two points a distance 6z apart,
it follows that the second derivative is
d? fz+02) —2f(2) + f(z — d2)

dz? (2) = 51;:1210 (02)? '

Whether we take a ‘one-sided difference’

flz+62) = f(z) _ df
0z Ndzz

or a ‘centred difference’

flz+d2) = f(2) _ df
0z ~dz

z+%6z

of course makes no difference in the limit §z — 0.
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