Topic 3 — Combinations of Oscillations

In the last lecture we looked at the use of the complex exponential repre-
sentation, and the way to handle it in computing energies. Now we want to
look at the effects of superposing simple harmonic oscillations. An example
might be a stretched string with a bead on it, which we drive with some form
of magnetic coupling. The driving forces might be in or out of phase, of the
same or different amplitudes, and might even have different frequencies. We
assume, though, that the oscillations are continuous, and in a fixed phase
relationship to one another.

L3.1 Superposition of two motions AF200-208
same frequency — same amplitude

The superposition of two oscillations may be treated in the phasor represen-
tation. We are adding together two vectors, both rotating with the same
angular velocity. Thus the resultant will also be rotating with that angular
velocity, as shown in figure T3.1.

Consider first two vectors of equal amplitude, a, with phase difference ¢,
as in figure T3.2.We use the cosine formula to calculate the amplitude:

A? = a®+a® —2a*cos(m — ¢)
= 2a*(1 + cos ¢)
= 4a®cos?(¢/2)
A = 2acos(¢/2).

Also, from the right-angled triangle in the diagram,

siny = as}i;qﬁ
_ 2asin(¢/2) cos(¢p/2)
2a cos(¢/2)
= sin(¢/2)
b= o2

We could equally well (or, perhaps, more easily) use the complex expo-
nential notation. The resultant motion is

Re [Aez'(wt-l-'tﬁ)] — Re [aeiwt + aez’(wt+¢)]
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rotating through 6 = wt
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Figure T3.1: Addition of two phasors.

— Re [aez’(wt+¢/2) (ew/z + e*i‘f’/Q)]

= 2acos(¢/2)Re [ei(“’t+¢/2)] :
From this we immediately identify the amplitude as 2acos(¢/2), and the
phase ¢ as ¢/2.

Many similar signals

We can use the phasor picture to consider what will happen when we add
together several identical oscillatory signals, as in figure T3.3. The first
point to note is that when there is no phase difference between them, if we
add N identical signals we will obtain a total amplitude which is N times
each individual amplitude. The energy, though, which is proportional to
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Figure T3.2: Addition of two phasors of equal amplitude.

the square of the amplitude, will now be N? times the original energy’.
As the phase difference increases, though, the phasor diagram showing the
addition starts to curl round on itself, eventually forming a closed loop, and
the resultant gets shorter. For more vectors, as in figure T3.4, the resultant
can be quite a small fraction of the maximum possible factor of N times the
initial amplitude.
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Figure T3.3: Addition of many phasors of equal amplitude: 50 phasors with
relative phase difference 0 (top), 1 degree, 2 degrees and 10 degrees (bottom).

Tt is instructive to think about the conservation of energy here. There is no problem
in this situation where we are imagining some sort of force driving the oscillator — think
about the work that is being done by each successive forcing function.
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Figure T3.4: Addition of many phasors of equal amplitude: 500 phasors with
relative phase difference 10 degrees.

Different frequencies — beats

We now consider the possibility that the signals being combined may have
different frequencies.
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Figure T3.5: Superposition of two signals with different frequencies, showing
the phenomenon of beats.

Suppose the signals have the same amplitude and phase, for example two
unit amplitude sine signals.?

71(t) = Re [ei(wlt—ﬂ'/Q)]
72(t) = Re [ei(wztfw/2)]

2Note the trick used in this derivation, when we have the sum of two complex expo-
nentials, of taking out a factor which is the average of the two, in order to obtain a cosine
function. We will meet this way of simplifying expressions of this sort several times later
in the course.
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z1(t) +72(t) = Re [e‘i”/Q (ei“’lt + eiwzt)]
— Re [efiw/2ei(w1+w2)t/2 (ei(wrwz)tﬂ + efi(wlfwz)t/Q)]

= 2cos MRG [e—iw/Qei(w1+w2)t/Q]
— t ¢
= 2c0s (Cd1 2&)2) sin ((dl —;UJQ) .

This is the product of two functions, with half-sum and half-difference fre-
quencies, and the resulting disturbance is shown in figure T3.5. The higher-
frequency term is called the carrier frequency, the lower-frequency pattern
which modulates the amplitude of the carrier is the enwvelope. This is the
phenomenon of beats.

How will we perceive this effect? If we generate two sounds with slightly
different frequencies, the ear will hear the high average frequency with its
amplitude varying according to the envelope. This amplitude variation is
called beating. What the ear will detect, though, the change in amplitude of
the sound, which means that the beat frequency is the simply the difference
in the two underlying frequencies. This is because a peak in the amplitude,
that is the peak in the loudness of the sound, occurs twice in every period
associated with (w; — wsy)/2. The diagram in figure T3.6 shows the modulus
of the signal — note that it oscillates about a mean value, and the frequency
of this oscillation, the beat frequency, is double the frequency of the envelope
of the signal.

2

| sin(t-m0) + sin(13-4-70) |

1+ cos(0.3--17)

05—

-10 -5 0 s 0
t

Figure T3.6: Superposition of two signals with different frequencies, giving
beats. Here we are plotting the absolute value of the signal. The variation of
the loudness has twice the frequency of the envelope function of the signal.
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L3 Supplementary material: addition of pha-
sors

Same frequency — different amplitude
The phasor diagram is shown in figure T3.7. Again we use the cosine rule to
find

R? = a® + b* + 2abcos(¢vp — ¢),

and take the ratio of the projections of the resultant onto the y and x axes
to find the phase angle

asin ¢ + bsin 1
tanf = .
acos ¢+ bcos

Figure T3.7: Addition of two phasors of different amplitudes.
Equally, we can use the complex notation, and recall
|Z1 + 22|2 = (21 + ZQ)(Zik + Z;)

= |21‘2 + |22|2 + (212; + 2221()

|21|2 + |22|* + 2Re(2123).
So, with

2 = aei(wt+¢)

2 = bei(wt+w)
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where a and b are real, we find
21+ 20|2 = a® + b? + 2abRe [ei(wt+¢)e—i(wt+¢)] _
Similarly, we know

¢ [Im(2z1 + 29)
+2) = tan”! |2
arg(z; + z9) an lRe(zl )

tan=! asin ¢ + bsiny
acosg+bcosy |

Different directions (polarization)

Thinking back to the model we are using here, of a bead on a wire, there is
no reason why the two oscillations should be in the same direction - we could
drive the bead with magnetic fields at right angles, and thus drive it round
a two-dimensional path. If the bead moves in a straight line, it is a linearly
polarized oscillator.

Linear, circular, elliptical polarization

If, however, we drive the bead with the same amplitude and frequency along
the x and y axes, but 7/2 out of phase, we drive it round a circle - after all,
this is just reconstructing the situation from which we derived the notion of
the phasor. If the two motions are in phase, we drive it in a straight line at
45 degrees to the axis. Intermediate phase shifts result in various elliptical
polarisations.

Lissajous figures

If the frequencies driving the x and y axes are different, we get the range of
rather elegant figures known as Lissajous patterns.

Mathematics used in this topic

The Cosine rule: if a and b are two sides of a triangle with an angle 6 between
them, then the third side c is given by

¢® = a® +b* — 2abcos(h).
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For complex numbers

|21 + zg\Z = (214 22)(2] + 23)
21 + |22]° + (2125 + 2227)

= |z1]* + |22|* + 2Re(2123).

and

I
arg(z1 +2) = tan™' [ m () + 22)]

Re(z1 + 22)

tan=" asin ¢ + bsiny
an acos ¢+ bcosy
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