Topic 1 — Simple Oscillations and their De-
scription

Waves play a crucial role in an enormous range of physical phenomena, and
are involved in most of our everyday experiences. The light by which you
can see me, the sound of my speaking, are examples of waves. Modern
communication, by radio, microwave, or optic fibre, exploits the properties of
waves. Down in the fundamental structure of matter it is wave-like properties
of particles that control the quantum world, and which in turn determines
the way everyday material behaves. The aim of this course is to teach you
about the properties of waves in general, and some aspects of light and sound
in particular. We will learn when we have to worry about the wave nature
of light, and when it is sufficient to think of light travelling in straight lines.
Before we discuss waves, though, we need to establish some basic ideas
and notations. For these we will have to remind ourselves of the behaviour of
simple harmonic oscillators — in a sense the first few lectures might be called
‘all dressed up with nowhere to go’. The link to waves will be developed
gradually, after we have looked at some general features of waves, as we
move from the properties of isolated oscillators through a chain of masses
linked by springs. Figures 0.1 and 0.2 show a range of oscillatory systems.

T1.1 Simple Harmonic Oscillations FGT345-374, AF19/4,
AF197-198

frictionless mass on spring FGT350, AF19/

The prototypical simple harmonic oscillator is a mass on spring on a flat
frictionless surface (to avoid gravity, even though gravity won’t affect the

result). We assume a linear spring, with a force F' = —kx opposing a stretch
of . »
x

Important point: linear equation, so if x; and x, are solutions, so is x1 + 5.
Check:

d2§t12(t) = ka1 (t) (0.2)
d2$2(t) .
m—n = —kxo(t) (0.3)
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Figure 0.1: A selection of simple harmonic oscillators.
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Similarly, if x(¢) is a solution, any constant multiple of z(t) is a solution.
Note that if equation had been, for example,

dx

_ 2

then this would not be true.

Now we know that we can satisfy equation 0.1 with either z(¢) = sin(wot)
or z(t) = cos(wpt) provided that wy = (/k/m. This is the characteristic
motion of a simple harmonic oscillator. wy is the angular frequency of the
oscillation. We know that each of these functions starts to repeat itself after
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its argument wyt reaches 27, and the corresponding time ¢ = 27 /wy is the
period of the wave, 7.

Note that the form of the frequency is characteristic of a lot of waves: it
is the square root of some sort of modulus, or stiffness, divided by a measure
of inertia. The heavier the mass the more sluggish the motion and the longer
the period.

General Solution

To find the general solution of the SHO equation we may need the cos, the
sin, or a combination. cos alone corresponds to starting the motion with
a maximum displacement at ¢ = 0, and so far we have not specified the
magnitude of the displacement. sin alone corresponds to starting with no
displacement, but of course with a non-zero velocity v = (d/dt) sin(wyt).
The general solution is

x(t) = acos(wot) + bsin(wot).
With no less generality we can write

a = Acos(9)
b= —Asin(¢)

(which still allows ¢ and b independently to take any value between plus and
minus infinity), and then

z(t) = Acos(d) cos(wpt) — Asin(g) sin(wpt) = A cos(wot + ¢).

The maximum displacement is A, the amplitude of the oscillation, and ¢
is the phase shift. This is, of course, just equivalent to a shift in time, as we
can write ¢ = wplow so that

z(t) = Acos(wo(t + o).

Energy

At any instant, the system of mass and spring typically has kinetic and
potential energy. The kinetic energy, %va, is often denoted by T, and is

1 1
T = §mv2 = §mA2w§ sin?(wo (¢ + to)).

T1-3



The potential energy U is 3ka?

1 1
U= §k$2 = 5/@42 cos®(wo(t + o).
This shows us three things:

e first, the kinetic and potential energies are always positive;
e second, energy is exchanged between kinetic and potential;

e third, the total energy (remembering that k = mw?) is

1 1
E=T+U = §mw§A2 [sinQ(wo(t + 1)) + cos® (wo(t + to))] = §mw§A2,
which is constant.

Of course, in general there will be some loss in the system (for example,
heating of the spring as a result of the repeated compression and extension),
but we will ignore that for the present.

pendulum (derivation not required) AF197- 198

Other oscillating systems can be described in just the same way. The classic
example is the pendulum:

mi + mgsinf =

milf + mgl =

2 _
Wy =

~a © O

T1.2 Motion in a circle, projection on a line, phasors
FGT915-916, AF193

Sine and cosine are known as circular functions', and there is a close link
between the simple harmonic oscillator and motion in a circle. Imagine a disk
of radius A, turning around its axis with angular frequency wq. If a point on

!Because as functions of a continuous parameter they trace the projections on the axes
of a point moving around a circle. You might like to consider why cosh and sinh are known
as hyperbolic functions.
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the circumference lies on the positive z axis at time 0, then the radius vector
to that point on the circumference will have turned to an angle 6 in a time
6/wo. In fact its coordinates in the xy plane will be (A cos(#), Asin(f)), or
(A cos(wot), A sin(wot).

‘ The rotating vector is called a phasor.

If we imagine a light pinned to the wheel, if we look along the axis of the
wheel we will see the light describing a circle. If we look down at the edge of
the wheel we will see the light going up-down-up-... . But it’s making that
movement in a rather special way. What we see is just the y position of the
light, which is A cos(wpt) - in other words it is executing simple harmonic
motion:

simple harmonic motion is the projection of circular motion onto one

axis

T1.3 Maths used in this Topic

Trigonometric Formulae

cos(a) cos(b) — sin(a) sin(b) = cos(a + b)

cos®(a) +sin®*(a) = 1
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Figure 0.2: A further selection of simple harmonic oscillators.
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Figure 0.3: Relationship between a rotating vector and simple harmonic
motion.
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