Topic 30 — Curved Mirrors

We should be fairly familiar with reflection and refraction at plane interfaces,
so now we move on to ask how curved interfaces affect wavefronts — that is, we
find explore the phenomena of focussing, image formation, and magnification.
The interfaces we look at will be, as in the lens surface we treated in our
discussion of Newton’s rings, parts of spherical surfaces. Of course, if we
really want to design an optical instrument we will probably use a computer
program, which will not only allow us to explore the performance of the
instrument but will even print out an order for the appropriate components.

T30.1 Approximations and Sign Conventions

Approximations

Throughout the treatment of optical instruments we make the parazial ap
prozimation, that the rays make a small enough angle a to the axis that

sin(a) = tan(a) ~ «,

although most of the figures we draw will exaggerate the angles in order to
make the angles visible. These small-angle rays are known as parazial rays.

Sign Conventions

In order to get unambiguous formulae, we need to adopt a sign convention.
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We choose a so-called Cartesian convention, in which

the origin of the Cartesian system is located at the vertex of the curved
boundary or mirror, and at the centre of a thin lens, with the z axis
directed along the optical axis from left to right.

object, image, and centre of curvature distances are defined to be the
x coordinates of the y, z planes which contain them. Thus distances to
points or planes to the right of the vertex or lens centre are positive,
those to the left are negative.

light sources and objects are placed to the left of the first surface in
the system, so that the light rays travel from left to right, but the
object has a negative x coordinate and the object distance will thus be
negative.

angles are taken to be positive or negative dependent on whether their
tangents are positive or negative.

The way we use these sign conventions is two-fold

when deriving equations, just use geometry and put in the signs at the
end to get general-purpose equations;

when using the general-purpose equations, substitute distances with the
appropriate Signs.

T30.2 Image formed by curved mirror on and off axis

AF876- 882

To start with, we look at the formation of images in curved mirrors. Qualita-
tively, we can see what happens by looking at a concave mirror as shown in

!Note that we shall use the Cartesian sign convention, that is Group I case 1 of T.

Smith’s report on the Teaching of Geometrical Optics (1934). This appears to be the
one in most common use. One user of an alternative (Group II case 1) scheme, in which
distances are counted positive if they are actually traversed by a light beam, negative
if not (i.e. if they lead to a virtual image) is S.C. Strong Concepts of Classical Optics,
Freeman (1958). Note that Hecht uses a virtual image negative convention, as do Alonso
and Finn.
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Figure T30.1: Reflection in a concave spherical mirror.

figure T30.1. A ray of light from A; is reflected off the mirror at a distance y
from the optical axis, to cross the axis again at Ay. If the centre of curvature
is at C, it is obvious that the two points A; and A, must be on opposite sides
of C.

Now let us make this more quantitative. In the figure, the laws of reflec-
tion tell us that #; = 6. Now using the fact that the exterior angle of a
triangle is equal to the sum of the two opposite internal angles we have

0 = <Z5—CV1=Q—2

T ll
02 = 09 — :g—g
lg T
but as 6; = 0,
y_Y¥_Y¥_¥
T ll lz T
or
1 1 2
ll lQ T

and as all the distances in this case are negative, this is the final result.
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focus, focal length AF876-7

Figure T30.2: The focal length of a concave spherical mirror.

If light is incident from infinity, as shown in figure T30.2, it will be focused
at a distance of 2/r, so the focal length is 2/r. In this case the radius r is

negative (distance to centre of curvature negative) so the focal length is also
negative.

convex mirror

In the case of a convex mirror, shown in figure T30.3, we have a similar set
of equations

01 = Qﬁ-i-a/l:y'i'2
T ll
02 = 09 — :g—g
lg T
but as 68, = 6,
) Yy



Figure T30.3: Reflection in a convex spherical mirror.

or
1 1 2

lQ ll - T
but in this case [ is negative, but r and [, are positive, so putting the correct

signs in we recover
1 1 2

Lo
Again, the focal length is 2/r, but this time r is positive so the focal
length is positive.

size of image AF878

What we generally want to do with an optical system is to form an image,
and one of the things we want to know about an image is its size, so that
we can compute the magnification of the system. An image may be real (the
rays pass through the image) or virtual (the rays do not pass through the
image, but the rays produced do).

In general we assume that the image is ‘perfect’, as defined by Maxwell:
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e all rays from a point on the object which enter the optical system pass
(really or virtually) through a single image point;

e if the object lies in a plane perpendicular to the axis of the system, the
image will lie in a parallel plane;

e the image is geometrically similar to the object.

magnification AF881

Figure T30.4: Magnification of the image reflected in a concave spherical
mirror.

The way to find the magnification is to locate the object and image, and
then use the ray which is reflected from the centre of the mirror and passes
through the top of the image. Referring to figure T30.4, the triangles A; VB,
and A, VB, are similar (all angles equal) so

hi  hy

L
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and the magnification will be
—hy Iy
hi L

which is negative because we have measured all heights in the Cartesian
system, and the fact that it is negative shows that the image is inverted with
respect to the object.

For example, consider a shaving or make-up mirror which is concave with
a radius of curvature of 400 mm. If it is desired to form an image 250 mm
from the eye, how far from the mirror should one place one’s face?

M =

z=-400 z=-x z=0 2=250-x

Figure T30.5: A concave spherical mirror used as a make-up or shaving
mirror.

If the face is z from the mirror as shown in figure T30.5, then the image
will be 250 — z on the other side, so that (with the sign convention)
2 _ 1. 1
400 z 250—z

which gives us a quadratic in = to solve, with solutions

T = 561
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which gives us an inverted, reduced image (I; = =561, [, = =311, M =
S TURR: 11
—561 561

z =89
(I; = —89, Iy = 161), which is the solution we seek.
The magnification of the face is then

250 -89

=1.,
—89

that is, the image is upright and magnified.

The distance of 250 mm is the typical nearest distance at which the eye
may comfortably focus — the so-called near point. For children the distance
is shorter, typically 70 mm or so, and in old age it gets greater — hence the
tendency of old people without glasses to hold a book at arm’s length to read
it, and the comment to the doctor ‘there is nothing wrong with my eyes, it
is just that my arms are not long enough.’

spherical aberration AF878
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Figure T30.6: Spherical aberration of a concave spherical mirror.
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Note that all this only works properly within the paraxial approximation. If
we include rays at larger angles, as in figure T30.6, the focus is no longer a
point. There is a line of high intensity, the envelope of the rays which we
would expect to go through the focus, forming what is called a caustic. You
may have noticed such a cusp-shaped pattern on the surface of a cup of tea
when the cup is standing in bright sunlight and one side of the cup is acting as
a cylindrical mirror. This deviation from a point focus is known as spherical
aberration. If we have a parabolic rather than a spherical mirror, then we
can bring light from infinity to a point focus — or alternatively form a parallel
beam from a point source. This is the geometry used in car headlights, for
example.

T30-9



