Topic 28 — The Michelson Interferometer

In the systems we have looked at so far which involve interference by division
of amplitude the path length differences where fixed by the geometry of the
system. In Michelson’s! interferometer we have control over the geometry.

Note that in interference by division of amplitude we do not need a spa-
tially coherent wave, as it is the amplitude at one point which is split and
sent by different paths to interfere, not that from different points on the
front.

L28.1 Michelson interferometer FGT1038, AF/84, H35/
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Figure L28.1: The Michelson interferometer: see the text for a detailed de-
scription.

The arrangement is very simple (see figure 1.28.1): a source (which may be
extended) is divided by a partly-silvered mirror, travels to two mirrors, and is
recombined again by the beam-splitter. Any path length difference gives rise
to interference. One mirror (C in the diagram) can be moved perpendicular
to its own plane: it can also be tilted.

! Albert Michelson was born in Strzelno, Poland, on December 19th 1852. The family
left Poland to escape anti-Semitism, worked across Europe, steamed to New York, and
joined the gold rush to California. Travelling via Panama, they escaped the lawless,
malaria and small-pox ridden city of Porto Bello by canoe through the swamps and later
by mule. Finally they reached San Francisco, and Albert’s father set up a store in a mining
town. Albert himself eventually went to Naval College, where he came top in optics and
25th in seamanship. The Navy then sent him to sea for two years!
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compensating plate for white light H354- 355

One beam passes through the beam-splitter three times, the other only once.
This means that there will be a path length difference which will be wave-
length dependent if the glass is dispersive. We can eliminate this by using
a compensator plate, which is the same as the beam-splitter but unsilvered.
Obviously this is less important for a source which emits a narrow range of
wavelengths than for, say, a white light source.
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Figure L28.2: The relative positions of the mirrors in the Michelson interfer-
ometer are best thought of by thinking of the relative position of the mirrors
in terms of the image of the movable mirror in the beam splitter.

The easiest way of thinking about the system is to think of the beam
splitter acting as a mirror, so that one of the interfering signals comes straight
through the beam-splitter from mirror D, one comes from the image of mirror
C in the beam-splitter (see figure 1.28.2), and the mirror and the image are
separated by a distance d.

circular fringes H356

Now suppose we look at an angle 6 to the normal, and the mirror D and the
image of C are d apart. The path difference is then (as proved in the context
of non-normal incidence on a film in Lecture 26)

A = 2d cos(h)
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and?

there will be dark rings (because of the extra phase shift in one path) at
angles which satisfy

cos(f) = ;d

where p is an integer.

If we arrange for the amplitudes of the signals travelling along the two
paths to be equal, then the total amplitude may be written as

Eioy = Ey (1 - eim) )

the relative sign being negative because although the light along each path
has been reflected once from a mirror, at the beam-splitter one beam was
internally reflected at the part-silvered back surface and one was externally
reflected. There will thus be a phase difference of 7 between them. In a
similar manner to the intensity in Young’s slits we write

B = Eoez'kA/2 (e—ikA/Q _ eikA/2) :
so that the intensity distribution will be
I() = 1I(0)sin® (kdcos(9))

. 2m
= I(0)sin® (Tdcos(e)) :
ZNote that if there is a dark central fringe, with po = 2d/), then this po is likely to be
large (for example, if d is 100 mm and A is 500 nm, py will be 400,000). It may be more
convenient to count rings in order away from the centre, by

2dcos(61) = (po—1)A
2dcos(f2) = (po—2)A
2d cos(H;,;‘)‘ : (po — m)A

and then if we write
mA = 2d(1—cos(f))
~ 2d(1—(1- %0,’; +.)

mA
-
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Figure L28.3: The pattern of circular fringes produced in the Michelson
interferometer with both mirrors perpendicular to the beams and with a
spacing of 100 wavelengths.

If we alter the spacing between the mirrors, so as to increase the spacing,
as d gets larger for a given fringe # must get larger — that is a ring will appear
from the centre and expand. One fringe appears for each movement of \/2
of the mirror.

measurement of refractive index

Any transparent object inserted in one arm of the interferometer, with re-
fractive index n and filling a length ¢ of the arm, will alter the optical length
of that arm by (n — nga;) t. As the material will be traversed twice by the
light, this changes the optical path length by 2 (n — ny;,) ¢, causing the fringe
pattern to shift by
2(n — nair)
A

This can be used to measure, for example, the refractive indexes of gases.

fringes.

straight fringes H357

If we set one mirror at a very slight angle, we are back to the same situation as
the wedge. Fringes will be seen at positions which correspond to increments
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of A\/2 in the wedge thickness.
If we use white light with the mirror at the same distance but slightly
angled, we get colonred fringes, fading to white as the different coloured

fringes systems overlap.
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Figure 1.28.4: The variation of fringe intensity with distance for (top) a
wavelength ), (centre) a wavelength of 1.05\ and (bottom) a doublet source
containing both wavelengths.

If the light comes from a source with two spectral lines close together (sodium
is the typical example) each line will have a similar but not identical fringe
system. If 2d cos(f) is an integer number of wavelengths for both lines, the
fringes will coincide and the visibility will be good. As the mirror is moved,
the fringe visibility will vary, as shown in figure .28.4.

When the visibility of the fringes is good, and cos(f) =~ 1,

2d = p1 A1 = pao

1 1
—py =2 (— - —) .
b1 — P2 NN

Of course, this will happen for large values of p if the two wavelengths are
close together.

If d is changed to d + Ad to reach the next peak in visibility, we must
have changed p; — py by 1 (see the close-up in figure L.28.5), so

or

1 1
pr—po+1=2(d+ Ad) (Y‘T)'
1 2
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Figure 1.28.5: Close-up of the variation of fringe intensity with distance for
(top) a wavelength A, (centre) a wavelength of 1.05\ and (bottom) a doublet
source containing both wavelengths.

Subtracting and rearranging

My N

2Ad ~ 2Ad

Thus by counting the number of variations of visibility of the fringes in the
Michelson interferometer as the mirror is moved, to get an average value of

Ad, we can measure the splitting of a doublet spectral line.

A= — )\ =
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Figure L.28.6: The variation of fringe intensity with angle for (top) a wave-
length A, (centre) a wavelength of 1.05) and (bottom) a doublet source con-
taining both wavelengths, at a mirror spacing of 1000 wavelengths.

Figures 1.28.6 and L.28.7 show the variation with angle of the same lines
and the doublet, as the spacing d is changed from 1000 wavelengths to 1000.1
wavelengths.
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Figure L28.7: The variation of fringe intensity with angle for (top) a wave-
length A, (centre) a wavelength of 1.05\ and (bottom) a doublet source con-
taining both wavelengths, at a mirror spacing of 1000.1 wavelengths.

stellar interferometer - sizes of stars H530-532(for interest only)

An important feature of light from sources of finite size is the degree of spatial
coherence of the light. It is fairly clear (and the van Cittert - Zernicke theorem
is a formal proof) that in the central maximum of the diffraction pattern all
the signals are adding up in phase, so the width of the central peak is a
measure of the spatial coherence.

Now the angular half-width of the diffraction pattern from a circular
source is (Rayleigh’s criterion again)

A
0 =1.22 y
where d is the source diameter.

In other words, if we take light from such a source at angles more than
about # apart, we expect to lose coherence and not to be able to make
interference patterns.

This is what the Michelson stellar interferometer does. The mirror separa-
tion is increased until the fringes are no longer visible: this gives the angular
diameter of the source, or, if we know its distance, its actual diameter.
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Figure L.28.8: Michelson’s stellar interferometer: the mirrors are adjustable
so as to vary the aperture with which a distant star is viewed.
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