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Syllabus

The lecture course on Magnetism in Condensed Matter Physics will be given in 7 lectures broken up into
three parts as follows:

Contents

1. Isolated Ions

Magnetic properties become particularly simple if we are able to ignore the interactions between
ions. In this case we are able to treat the ions as effectively “isolated” and can discuss diamagnetism
and paramagnetism. For the latter phenomenon we revise the derivation of the Brillouin function
outlined in the third-year course. Ions in a solid interact with the crystal field and this strongly
affects their properties, which can be probed experimentally using magnetic resonance (in particular
ESR and NMR).

2. Interactions

Now we turn on the interactions! I will discuss what sort of magnetic interactions there might be,
including dipolar interactions and the different types of exchange interaction. The interactions lead to
various types of ordered magnetic structures which can be measured using neutron diffraction. I will
then discuss the mean-field Weiss model of ferromagnetism, antiferromagnetism and ferrimagnetism
and also consider the magnetism of metals.

3. Symmetry breaking

The concept of broken symmetry is at the heart of condensed matter physics. These lectures aim to
explain how the existence of the crystalline order in solids, ferromagnetism and ferroelectricity, are
all the result of symmetry breaking. The consequences of breaking symmetry are that systems show
some kind of rigidity (in the case of ferromagnetism this is permanent magnetism), low temperature
elementary excitations (in the case of ferromagnetism these are spin waves, also known as magnons),
and defects (in the case of ferromagnetism these are domain walls). I will also discuss experimental
measurements of spin waves with inelastic neutron scattering.

Reading

• The text designed for this course is ‘Magnetism in Condensed Matter’, by S. J. Blundell, OUP 2001.
Highly recommended !

• ‘Solid State Physics’, by N. W. Ashcroft and N. D. Mermin, chapters 31, 32 and in particular 33
(Magnetic ordering), contain a good overview of some of the material in the course, although written
in cgs units. The relevant chapters in the solid state texts by Kittel, Burns and Rosenberg can also be
consulted.

Further (somewhat more specialised) material can be found in

• ‘Theory of Magnetism’, by K. Yosida (Springer 1996) [much more advanced and uses cgs units]

• An advanced, but informative description of the ideas concerning broken symmetry may be found in the
second chapter of ‘Basic Notions of Condensed Matter Physics’, P. W. Anderson (Westview Press 1984,
1997). For enthusiasts only!

These handouts contain some background, figures, tables, formulas and other useful material to accom-
pany the lectures. They don’t contain any detailed derivations - those will be presented in the lectures.
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Some basic definitions.

• A magnetic solid consists of a large number of atoms with magnetic moments. The magnetization M
is defined as the magnetic moment per unit volume. Usually this vector quantity is considered in the
‘continuum approximation’, i.e. on a lengthscale large enough so that one does not see the graininess
due to the individual atomic magnetic moments. Hence M can be considered to be a smooth vector
field, continuous everywhere except at the edges of the magnetic solid.

• In free space (vacuum) there is no magnetization. The magnetic field can be described by the vector
fields B and H which are linearly related by

B = µ0H, (1)

where µ0 = 4π × 10−7 Hm−1 is the permeability of free space. The two magnetic fields B and H are
just scaled versions of each other, the former measured in Tesla (abbreviated to T) and the latter
measured in Am−1.

• In a magnetic solid the relation between B and H is more complicated and the two vector fields may
be very different in magnitude and direction. The general vector relationship is

B = µ0(H+M). (2)

In the special case that the magnetization M is linearly related to the magnetic field H, the solid is
called a linear material, and we write

M = χH, (3)

where χ is a dimensionless quantity called the magnetic susceptibility. In this special case there is
still a linear relationship between B and H, namely

B = µ0(1 + χ)H = µ0µrH, (4)

where µr = 1 + χ is the relative permeability of the material.

• Consider a region of free space with an applied magnetic field given by fields Ba and Ha, connected
by Ba = µ0Ha. So far, everything is simple. Now insert a magnetic solid into that region of free
space. The internal fields inside the solid, given by Bi and Hi, can be very different from Ba and
Ha respectively. This difference is because of the magnetic field produced by all magnetic moments
in the solid, known as the demagnetization field. In fact Bi and Hi can both depend on the position
inside the magnetic solid at which you measure them.

• A useful simplification occurs when the magnetic susceptibility is very small. For a linear material
with χ� 1, we have that M � Ha, Hi ≈ Ha and Bi ≈ µ0Hi. We can then get away with imagining
that the magnetic field in the material is the same as the magnetic field that we apply. Hence we
can drop the subscripts and write the susceptibility as

χ =
M

H
≈ µ0M

B
. (5)
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• Measurement of magnetization

(a) Force in gradient field

In a non-uniform magnetic field sample with a net magnetic moment will be attracted towards
regions of stronger field in order to minimise its magnetic energy E = −M · BV . The sample will
experience a force proportional to the magnetization M and the local field gradient

Fz = −dE
dz

=M
dB

dz
V (6)

(b) Induced magnetic flux

Moving a magnetized sample relative to a pickup coil creates a variable magnetic flux Φ(t) and this
induces an emf in the coil. An oscillating sample motion will induce an oscillating emf with an
amplitude proportional to the sample magnetization.

 
 

 
 
 
 
 
 
 

 

pick-up  
coil ( 

�
 B) 

oscillating  
rod 

Magnetization measurement via force in gradient field (Faraday balance) and induced flux (vibrating
sample magnetometer).
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1. Isolated ions

Magnetic properties become particularly simple if we are able to ignore the interactions between ions.
In this case we are able to treat the ions as effectively “isolated” and can discuss diamagnetism and
paramagnetism. For the latter phenomenon we revise the derivation of the Langevin and Brillouin functions
outlined in the third-year course. The ions can interact with the crystal field and this can be probed
experimentally using magnetic resonance (in particular ESR and NMR).

1.1 Introduction

In this introductory section we recall some basic facts about magnetism and also prove a
theorem (the Bohr-van Leeuwen theorem) which shows that even the existence of a bar magnet
is enough to show that quantum mechanics is needed!

The Bohr magneton: Consider an electron (charge −e, mass me) performing a circular orbit around the
nucleus of a hydrogen atom. The current I around the atom is I = −e/τ where τ = 2πr/v is the orbital
period, v = |v| is the speed and r is the radius of the circular orbit. The magnitude of the angular
momentum of the electron, mevr, must equal h̄ in the ground state so that the magnetic moment of the
electron is

µ = πr2I = − eh̄

2me

≡ −µB (7)

where µB is the Bohr magneton, defined by

µB = eh̄/2me. (8)

This is a convenient unit for describing the size of atomic magnetic moments. The Bohr magneton takes
the value 9.274×10−24 Am2. Note that sign of the magnetic moment in equation 7 is negative. Because
of the negative charge of the electron, its magnetic moment is antiparallel to its angular momentum.

g-factor: The energy of the electron in a magnetic field B is

E = gµBmsB (9)

where g is known as the g-factor. The energy levels therefore split by an amount gµBB. A natural
consequence of Dirac’s theory of the electron (outside the scope of this book) is that g is precisely equal
to two. Actually the g-factor is not quite two but takes the value

g = 2(1 +
α

2π
+ · · ·) = 2.0023 . . . (10)

where α is the fine structure constant, a dimensionless quantity given by

α =
e2

4πε0h̄c
=

1

137.04
. (11)

This theoretical value obtained from quantum electrodynamics (QED) agrees with experiment to an as-
tonishing degree of precision.

Bohr-von Leeuwen theorem: In classical statistical mechanics the partition function for N particles, each
with charge q, is proportional to

∫ ∫

exp(−βE({ri,pi}) d3Nr d3Np

where i = 1, . . . , N . The effect of a magnetic field is to shift the momentum of each particle; we must
replace pi by pi − qA where A is the magnetic vector potential. The limits of the momenta integrals run
from −∞ to ∞ so this shift can be absorbed by shifting the origin of the momentum integrations. Since
the partition function is not a function of magnetic field, neither is the free energy, so the magnetization
must be zero.
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=⇒ need quantum theory to account for magnetic properties of materials.

H =
∑

i

p̂2i
2m

+ V + µB(L+ gS) ·B+
e2

8m

∑

i

(B× r̂i)
2

The next two sections explore, respectively, the third and second terms on the right-hand side
of this equation.

1.2 Diamagnetism

The diamagnetic susceptibility χ of a solid composed of N ions (each with Z electrons of mass m) in
volume V with all shells filled is given by

χ = −N
V

e2µ0
6m

Z
∑

i=1

〈r2i 〉

The measured diamagnetic susceptibilities
of various ions plotted against Zeffr

2,
where Zeff is the number of electrons

in the ion and r is a measured ionic radius.
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1.3 Paramagnetism

In general B = µ0(H+M). For a linear material M = χH where M is the magnetic moment per volume
(the magnetization) and χ is the magnetic susceptibility (dimensionless) so that B = µ0(1 + χ)H. Note
that because of the definition of M, χ represents the magnetic moment induced by a field H per unit
volume.

Magnetic susceptibilities are often tabulated in terms of the molar magnetic susceptibility χm where
χm = χVm and where Vm is the molar volume (the volume occupied by 1 mole of the substance).
The following are measured at 298 K:

χ/10−6 χm/(10
−10 m3 mol−1)

water −90 −16.0
benzene −7.2 −6.4
NaCl −13.9 −3.75

CuSO4·5H2O 176 192
MnSO4·4H2O 2640 2.79×103

Al 22 2.2
Na 7.3 1.7

1.4 Langevin and Brillouin functions

For atoms with total angular momentum J a magnetic field will tend to align them while temperature
will tend to disorder them. The magnetization (normalized by the saturation magnetization, when they
are all aligned) is M/Ms = BJ(y) where y = gJµBJB/kT and gJ is the appropriate g-factor. BJ(y) is a
Brillouin function and it, and some limiting cases, will be examined in the lecture.

(a) Langevin function (J = ∞): L(y) = coth y − 1

y
= B∞(y)

(b) J = 1
2
=⇒ B1/2(y) = tanh(y)

(c) Brillouin function: This is the general case and is given by

BJ(y) =
2J + 1

2J
coth

(

2J + 1

2J
y

)

− 1

2J
coth

y

2J

6



1.5 The ground state of an ion and Hund’s rules

Hund’s Rules:

(1) maximize S;

(2) maximize L;

(3) J = |L− S| if less than half full, J = |L+ S| if more than half full.

The ground state can be written using a term symbol 2S+1LJ where L is written using a letter according
to

L 0 1 2 3 4 5 6

S P D F G H I

e.g. For Dy3+, with outer shell 4f9: f electrons have l = 3, so use 2l+1 = 7 of them as spin-up, and have
2 left for spin-down =⇒ S = 7 × 1

2
− 2 × 1

2
= 5

2
(=⇒ 2S + 1 = 6). All the spin-up electrons give no net

angular momentum, so only get a contribution from the 2 spin-down electrons which we have to maximize
=⇒ L = 3 + 2 = 5. We are more than half full, so J = |5 + 5

2
| = 15

2
. =⇒ Term symbol = 6H15/2.

↑ ↓
ml = 3 • •

2 • •
1 •
0 •

−1 •
−2 •
−3 •

Theoretical value of effective moment, µeff = gJµB
√

J(J + 1) where

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)

rare-earth (4f) ions:

ion shell n S L J 2S+1LJ gJ gJ
√

J(J + 1) µeff/µB (exp.)

Gd3+ 4f7 7 7
2

0 7
2

8S7/2 2 7.94 8.0

Tb3+ 4f8 8 3 3 6 7F6
3
2

9.72 9.5
Dy3+ 4f9 9 5

2
5 15

2
6H15/2

4
3

10.63 10.6

Ho3+ 4f10 10 2 6 8 5I8
5
4

10.60 10.4

transition metal (3d) ions:

ion shell n S L J 2S+1LJ gJ gJ
√

J(J + 1) µeff/µB (exp.) 2
√

S(S + 1)

Ti3+, V4+ 3d1 1 1
2

2 3
2

2D3/2 4/5 1.55 1.8 1.73

V3+ 3d2 2 1 3 2 3F2 2/3 1.63 2.8 2.83
Cr3+, V2+ 3d3 3 3

2
3 3

2
4F3/2 2/5 0.77 3.8 3.87

Mn3+, Cr2+ 3d4 4 2 2 0 5D0 - 0.00 4.9 4.90
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1.6 Crystal field

In a crystal the ion sits in an electric field of the surrounding ions. For transition-metals the magnetic
electrons are in the outer shell and they are affected quite strongly by the crystal. This often leads to
orbital quenching - the orbital part of the wavefunction is frozen - and µeff is given by µeff = 2µB

√

S(S + 1).

To appreciate crystal field effects consider the shapes of the various d-orbitals, shown below (together with
s and p orbitals). The graphs give a visual representation of the distribution of electron density, i.e. dx2−y2

has large density along the x and y axes whereas dxy has large density in-between the x and y axes.

Consider now the 3d ion in the centre of an octahedron of oxygen ions, as is usually the case in transition-
metal oxides. Examine the projection of orbitals in the xy plane. The dx2−y2 orbital has higher energy
than the dxy orbital due to the electrostatic Coulomb interaction with the Oxygen orbitals.

�����

�

�

�
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The d-orbitals can be classified into 2 classes, eg orbitals which point along the x, y and z axes (dz2 ,dx2−y2)
and the t2g (dxy, dyz, dzx), which point between these axes. The following figures show the crystal-field
splitting for a 3d element in an octahedral and a tetrahedral environment.
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Simple example of orbital quenching In La2CuO4 Cu
2+ ions sit in the centre of an oxygen octahedron

with a small elongation along the c-axis. The highest single-electron orbital level is dx2−y2 as this has the
largest overlap with the four close-by Oxygens in the basal plane. Cu2+ has 9 electrons in the 3d shell,
which occupy the levels in increasing energy, this leaves an unpaired electron in the dx2−y2 orbital.
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Hund’s rules for the free ion give L = 2, S = 1/2, J = 5/2, however the strong crystal-field splitting lead to
an orbital singlet ground state. The strong crystal field environment has essentially quenched the orbital
part of the angular momentum, so the magnetic moment is given by spin alone, L = 0 and J = S, g = 2.
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Strong- and weak-field cases Consider Fe2+ 3d6 ions in an octahedral crystal field. Two possible ground
states can occur depending on the strength of the crystal field splitting ∆ compared to the Coulomb energy
cost U for putting two electrons in the same orbital. The (a) weak-field ∆ < U and (b) strong field
∆ > U cases are illustrated below. In some materials case (a) high-spin is realized, other materials case
(b) low-spin.
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Jahn-Teller Effect We have assumed so far that all we need to do is to work out what kind of symmetry
the local environment has and then deduce the electronic structure and hence figure out the magnetic
properties based on how many electrons there are to fill up the energy levels. Sometimes the magnetic
properties themselves can influence the symmetry of the local environment! This comes about because
it can sometimes be energetically favourable for, say, an octahedron to spontaneously distort as shown
below. The energy cost of increased elastic energy is balanced by a resultant electrostatic energy saving
due to the distortion. This phenomenon is known as the Jahn-Teller effect. For example, Mn3+ ions (3d4)
in an octahedral environment show this kind of behaviour, but Mn4+ (3d3) do not.
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1.7 Magnetic resonance techniques

Principle: use static field B to induce splitting of levels and a much smaller transverse oscillating field
Bx(t) = Bx cos(2πνt) to induce transitions between levels. The system can absorb energy from the
oscillating field when the frequency matches that of an allowed transition hν = ∆E.

Semiclassically one can think that the magnetic moments precess around the field at a frequency given
by γB where γ is the gyromagnetic ratio. A system of magnetic moments in a magnetic field can absorb
energy at this frequency and thus one may observe a resonant absorption of energy from an electromagnetic
wave tuned to the correct frequency. This is magnetic resonance and it can take a number of different
experimental forms, depending on what type of magnetic moment is resonating.

Electron spin resonance

Zeeman splitting of the electron spin in magnetic field of 1 Tesla is 2µB×1 T =0.1 meV, which corresponds
to electromagnetic radiation with frequency ν ∼ 25 GHz in the microwave range, so with frequencies of
this magnitude one probes Electron Spin Resonances.

Example ESR in Mn2+

S=5/2, L=0, J = 5/2, gJ = 2.
Hamitonian is Ĥ = gJµBBJ and the selection rule for ESR transitions is ∆mJ = ±1. Hyperfine interaction
with the nuclear moment I = 5/2 is AJ · I, and this is usually much smaller than the Zeeman splitting
gJµBB. To first order split each Zeeman mJ level into 2I + 1 levels. The selection rule for transitions is
∆mI = 0 and ∆mJ = ±1 as the high frequency of EM radiation does not couple directly to the nuclear
moment (need MHz frequencies see below). Leads to splitting of ESR spectrum in 2I + 1 lines.

Example ESR for Ni2+ S = 1 Figure below shows splitting of lines due to easy-plane crystal field
anisotropy Ĥ = gµBBSz +DS2

z .
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NMR = Nuclear Magnetic Resonance

NMR uses much lower, RF frequency ν ∼ 10 MHz because the nuclear magnetic moments are much
smaller, µN = eh̄/2mN ∼ 10−3µB. See directly transitions of the nuclear moments with selection rule
∆mI = ±1. Used in chemistry, biology and medicine.

Schematic diagram of an NMR experiment. The sample sits inside a radio frequency (RF) coil which
produces an oscillating field at RF frequency. A static magnetic field is provided by a magnet. The static
field B0 and the oscillating field B1 are perpendicular.

Applications of Magnetic Resonance
- understand hyperfine effects
- determine g-factors and anisotropy effects, hence understand local symmetry of ions/dopants in crystals
- detect structural phase transitions via local symmetry changes
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Appendix: Some remarks about spin

Magnetism in solids depends crucially on the properties of electronic spin. Here are some brief notes
which remind you of some of the basic quantum mechanics that describes the spin of an electron, a spin- 1

2

particle.

The behaviour of the electron’s spin is connected with a rather strange algebra, based on the three Pauli
spin matrices which are defined as

σ̂x =

(

0 1
1 0

)

, σ̂y =

(

0 −i
i 0

)

, σ̂z =

(

1 0
0 −1

)

. (12)

It will be convenient to think of these as a vector of matrices,

σ = (σx, σy, σz). (13)

We now define the spin angular momentum operator by

Ŝ =
1

2
σ̂ (14)

so that

Ŝx =
1

2

(

0 1
1 0

)

, Ŝy =
1

2

(

0 −i
i 0

)

, Ŝz =
1

2

(

1 0
0 −1

)

. (15)

Notice that we are using the convention that angular momentum is measured in units of h̄, so that the
angular momentum associated with an electron is actually h̄S. A general wave function can then be
written

|ψ〉 =
(

a
b

)

= a|↑z〉+ b|↓z〉 (16)

where a and b are complex numbers and it is conventional to normalize this state so that

|a|2 + |b|2 = 1. (17)

The wave function |ψ〉 is known as a spinor.

The total spin angular momentum operator Ŝ is defined by

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z (18)

and since the eigenvalues of Ŝ2
x, Ŝ

2
y or Ŝ2

z are always 1
4
= (±1

2
)2, we have the result that for any spin-state

|ψ〉
Ŝ2|ψ〉 = (Ŝ2

x + Ŝ2
y + Ŝ2

z )|ψ〉 =
(

1

4
+

1

4
+

1

4

)

|ψ〉 = 3

4
|ψ〉. (19)

Many of these results can be generalised to the case of particles with spin quantum number s > 1
2
. The

most important result is that the eigenvalue of Ŝ2 becomes s(s + 1). In the case of s = 1
2
which we are

considering in this appendix, s(s + 1) = 3
4
, in agreement with equation 19. The commutation relation

between the spin operators is
[Ŝx, Ŝy] = iŜz (20)

and cyclic permutations thereof. Each of these operators commutes with Ŝ2 so that

[Ŝ2, Ŝz] = 0. (21)

Thus it is possible to simultaneously know the total spin and one of its components, but not possible to
know more than one of the components simultaneously.

The raising and lowering operators Ŝ+ and Ŝ− are defined by

Ŝ+ = Ŝx + iŜy

Ŝ− = Ŝx − iŜy. (22)
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For an operator Â to be Hermitian, one must have that Â† = Â where † implies an adjoint operation
(for matrices this means “take the transpose and then complex conjugate each element”). The raising

and lowering operators are not Hermitian (because Ŝ†
+ = Ŝ− and Ŝ†

− = Ŝ+) and therefore they do not
correspond to observable quantities. They are nevertheless very useful. Straightforward application of
equations 20 and 22 yields the following commutation relations

[Ŝ+, Ŝ−] = 2Ŝz, (23)

[Ŝz, Ŝ±] = ±Ŝ±, (24)

and
[Ŝ2, Ŝ±] = 0. (25)

Another useful relation, proven by direct substitution is

Ŝ+Ŝ− + Ŝ−Ŝ+ = 2(Ŝ2
x + Ŝ2

y) (26)

and this provides a convenient representation for Ŝ2, namely

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z (27)

=
1

2

(

Ŝ+Ŝ− + Ŝ−Ŝ+
)

+ Ŝ2
z . (28)
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Condensed Matter Option MAGNETISM Handout 2

2. Interactions

Now we turn on the interactions! I will discuss what sort of interactions there might be, including dipolar
interactions and the different types of exchange interaction. The interactions lead to various types of ordered
magnetic structures which can be measured using neutron diffraction. I will then discuss the Weiss model
of ferromagnetism, antiferromagnetism and ferrimagnetism and also consider the magnetism of metals.

2.1 Magnetic dipolar interaction

Two magnetic dipoles µ1 and µ2 separated by r have an energy

µ0
4πr3

[

µ1 · µ2 −
3

r2
(µ1 · r)(µ2 · r)

]

2.2 Exchange interaction

(a) Origin of exchange

Consider a simple model with just 2 electrons which have spatial coordinates r1 and r2 respectively. The
wave function for the joint state can be written as a product of single-electron states, so that if the first
electron is in state ψa(r1) and the second electron is in state ψb(r2), then the joint wave function is
ψa(r1)ψb(r2). However this product state does not obey exchange symmetry, since if we exchange the two
electrons we get ψa(r2)ψb(r1) which is not a multiple of what we started with. Therefore, the only states
which we are allowed to make are symmetrised or antisymmetrised product states which behave properly
under the operation of particle exchange.

For electrons the overall wave function must be antisymmetric so the spin part of the wave function must
either be an antisymmetric singlet state χS (S = 0) in the case of symmetric spatial state or a symmetric
triplet state χT (S = 1) in the case of an antisymmetric spatial state. Therefore we can write the wave
function for the singlet case ΨS and the triplet case ΨT as

ΨS =
1√
2
[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS

ΨT =
1√
2
[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]χT (29)

where both the spatial and spin parts of the wave function are included. The energies of the two possible
states are

ES =

∫

Ψ∗
SĤΨS dr1 dr2

ET =

∫

Ψ∗
TĤΨT dr1 dr2

so that the difference between the two energies is

ES − ET = 2

∫

ψ∗
a(r1)ψ

∗
b (r2)Ĥψa(r2)ψb(r1) dr1 dr2. (30)
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Now S1 · S2 is equal to −3/4 if S = 0 and −1/4 if S = 1. Hence, the Hamiltonian can be written in the
form

Ĥ =
1

4
(ES + 3ET)− (ES − ET)S1 · S2. (31)

This is the sum of a constant term and a term which depends on spin. The constant can be absorbed into
other constant energy terms, but the second term is more interesting. The exchange constant (or exchange
integral), J is defined by

J = ES − ET = 2

∫

ψ∗
a(r1)ψ

∗
b (r2)Ĥψa(r2)ψb(r1) dr1 dr2. (32)

and hence the spin-dependent term in the Hamiltonian can be written

Ĥspin = −JS1 · S2. (33)

If J > 0, ES > ET and the triplet state S = 1 is favoured. If J < 0, ES < ET and the singlet state S = 0
is favoured. This equation is relatively simple to derive for 2 electrons, but generalising to a many body
system is far from trivial. Nevertheless, it was recognised in the early days of quantum mechanics that
interactions such as that in equation 33 probably apply between all neighbouring atoms. This motivates
the Hamiltonian of the Heisenberg model:

Ĥ = −
∑

〈ij〉

JijSi · Sj (34)

where Jij is the exchange constant between the ith and jth spins. 〈ij〉 means that each interacting pair of
spins ij is counted only once in the summation. Usually Jij is equal to a constant J for nearest neighbour
spins and is 0 otherwise.

(b) Direct exchange — the exchange interaction arising from the Coulomb interaction between electrons
on neighbouring magnetic ions due to direct overlap.
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(c) Superexchange — the exchange interaction between non-neighbouring magnetic ions which is me-
diated by a non-magnetic atom (i.e. no direct overlap).

Superexchange in a magnetic oxide. If the moments on the transition metal (M) atoms are coupled antifer-
romagnetically, the ground state (a) can mix with excited configurations like (b). The magnetic electrons
can thus be delocalized over the M–O–M unit, thus lowering the kinetic energy. If the moments on the
metal (M) atoms are coupled ferromagnetically, the ground state (d) cannot mix with excited configura-
tions like (e) because these configurations are prevented by the exclusion principle. The ferromagnetic
configuration therefore costs more energy.

Superexchange is the most common magnetic interaction in insulators, e.g. La2CuO4, MnO, MnF2, NiO.

(d) Exchange in metals — the exchange interaction between magnetic ions mediated by the spin-
polarization of the conduction electrons.

RKKY interaction (RKKY=Ruderman, Kittel, Kasuya and Yosida) =⇒ JRKKY (r) ∝ cos(2kFr)

r3
. The

interaction is long range and has an oscillatory dependence on the distance between the magnetic moments.
Hence depending on the separation it may be either ferromagnetic or antiferromagnetic. The coupling is
oscillatory with wavelength π/kF because of the sharpness of the Fermi surface.

Example: metallic Dy, Ho and dilute magnetic alloys, i.e. Mn2+ (S = 5/2) doped into metallic Cu.
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2.3 Magnetic structures

Many different magnetic ground states result from the different interactions which may occur in different
crystals. These include (a) ferromagnets, (b) antiferromagnets, (c) spin glasses and (d) cone and (e) helical
structures.

In ferromagnets, the magnetic moments are in parallel alignment. In antiferromagnets, adjacent magnetic
moments lie in antiparallel alignment. In cone and helical structures, the direction of the magnetic moment
precesses around a cone or a circle as one moves from one site to the next. In spin glasses, the magnetic
moments lie in frozen random arrangements.

A rich variety of magnetic ground states are found in the rare earth metals. Many of these have hexagonally
close packed crystal structures and a few show helimagnetism with the axis of the helix being perpendicular
to the hexagonally close packed planes, (i.e. along the c-axis). The plane in which the spins rotate in Tb,
Dy and Ho is the hexagonally close packed plane, but in Er and Tm the easy axis for spins is the c-axis
so that the c component of the spins is modulated sinusoidally over certain temperature regions. The
exchange interaction in rare earth metals is an indirect RKKY interaction via the conduction electrons.

Measurement of magnetic structures with neutron scattering

Neutrons have spin and are scattered by the periodic arrangement of magnetic moments in a crystal.
Bragg scattering occurs when the scattering wavevector Q coincides with a reciprocal lattice vector of the
magnetic unit cell. An example for the antiferromagnet MnO is shown on the next page.
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Magnetic structure of MnO:

Neutron scattering data from MnO:
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2.4 Weiss theory of ferromagnetism, antiferromagnetism and ferrimagnetism

The Weiss model is a particular type of molecular field or mean-field theory which means that it assumes
that all spins “feel” an identical average internal field produced by all their neighbours. This field is
proportional to the magnetization. We will develop this model in detail in the lectures and show how it
applies to a ferromagnet. The case of an antiferromagnet and a ferrimagnet is a simple extension of this.
The predictions of this model do not work well near TC where the fluctuations play a dominant rôle. The
graphical solution of the Weiss model for B = 0 is shown below.

Above: The magnetisation as a function of temperature, deduced for different values of J .

Material TC magnetic moment

(K) (µB/formula unit)

Fe 1043 2.2

Co 1395 1.7

Ni 631 0.6

Gd 289 7.5

MnSb 587 3.5

EuO 70 6.9

EuS 16.5 6.9

Properties of some common ferromagnets.
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The magnetisation as a function of temperature for J = 1
2
, calculated for different values of the applied

field B. The phase transition is only present when B = 0.
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Condensed Matter Option MAGNETISM Handout 3

3. Symmetry breaking

3.1 Introduction

Lots of ordered phases in condensed matter physics (e.g. ferromagnets and antiferromagnets, even solids
themselves) are characterised by a temperature dependence in which physical properties show a marked
difference above and below some critical temperature TC. Such phases are characterised by an order
parameter, which in the case of ferromagnetism is just the magnetization, and is zero for T > TC and
non-zero for T < TC.

Liquid–solid phase transition. The high temperature state has translational symmetry. This symmetry is
broken as the system becomes a solid.

Paramagnet–Ferromagnet phase transition. The high temperature state has rotational symmetry. This
symmetry is broken as the system becomes a ferromagnet.

It is found to be a general principle that symmetry is broken at the critical point. As illustrated above,
in a ferromagnet above TC all directions are equivalent, whereas below TC the system “chooses” a unique
direction for all the spins to point. The higher rotational symmetry is broken. In a liquid there is perfect
translational invariance, but in a solid this symmetry is broken. All points are no longer equivalent
(although there is still the lower periodic symmetry that every point is equivalent to any point located an
integer combination of lattice basis vectors away).
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An important point to notice is that it is impossible to change symmetry gradually. Either a particular
symmetry is present or it is not. Hence, phase transitions are sharp.

3.2 Landau’s Theory of Phase Transitions

Mean field theories are the simplest type of theory that can be constructed to describe many different
types of phase transition and give similar results in each case. (They go under different names in different
cases: e.g. Bragg-Williams theory for order-disorder transitions in alloys, Weiss theory in ferromagnetism,
and the general idea is contained in Landau’s theory of phase transitions). A mean-field theory means that
it assumes that all spins “feel” an identical average exchange field produced by all their neighbours. This
field is proportional to the magnetization.

In Landau’s theory, we write down the free energy for a ferromagnet with magnetization M as a power
series in M . Because there is no energetic difference between ‘up’ or ‘down’, this power series cannot
contain any odd power of M . There we can write for the free energy F (M) the expression

F (M) = F0 + a(T )M2 + bM4 (35)

where F0 and b are constants (we assume b > 0) and a(T ) is temperature dependent. We can show
that this system yields an appropriate phase transition if we allow a(T ) to change sign at the transition
temperature TC. Thus in the region of interest, near the transition, we write a(T ) = a0(T − TC) where a0
is a positive constant. To find the ground state of the system, it is necessary to minimize the free energy
so we look for solutions of ∂F/∂M = 0. This condition implies

2M [a0(T − TC) + 2bM2] = 0. (36)

The left-hand side of this equation is a product of two terms, so either of them could be zero. This means

M = 0 or M = ±
[

a0(TC − T )

2b

]1/2

. (37)

The second condition is only valid when T < TC, otherwise one is trying to take the square root of a
negative number. The first condition applies above or below TC but below TC it only produces a position
of unstable equilibrium (which can be deduced by evaluating ∂2F/∂M2). Thus the magnetization is zero
for temperatures T ≥ TC and is non-zero and proportional to (TC − T )1/2 for T just below TC.

3.3 Models

In order to discuss some of the consequences of symmetry breaking it is convenient to think about some
simple models. At this stage we won’t worry about what the microscopic basis of these models are.

The nearest neighbour Heisenberg model has a Hamiltonian

H = −
∑

〈ij〉

JSi · Sj

where the constant J is the exchange integral and
∑

〈ij〉

denotes a sum over nearest neighbours. The spins

Si are treated as three-dimensional vectors because we allow them to point in any direction in three-
dimensional space. However the sum can taken be over a lattice of 1, 2 or 3 dimensions. We must
distinguish between the dimensionality of the lattice on which the spins sit, d, and the dimensionality
of the spins themselves (in general this is known as the dimensionality of the order parameter), D. For
the Heisenberg model D = 3 (because the spins are three dimensional vectors). However we could be
considering a lattice of spins in 1, 2 or 3 dimensions (or 4 dimensions if we wanted to!) so d can be 1, 2,
3, . . .

The Hamiltonian of the Ising model involves only the z-component of the spin:

H = −
∑

〈ij〉

JSz
i S

z
j .
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Here the dimensionality of the order parameter D = 1 (the spins are only allowed to point along ±z).

The one-dimensional Ising model (D = 1, d = 1).

If the Ising spins are placed on a one-dimensional lattice, we will show that there is no phase transition.

The two-dimensional Ising model (D = 1, d = 2).

If the Ising spins are placed on a 2D lattice, a phase transition will result. The proof of this was one of the
outstanding achievements of twentieth century statistical physics (Lars Onsager solved it in 1944) and his
solution is beyond the scope of the course. This illustrates that even problems which are simple to state
are by no means easy to solve.

3.4 Continuous Phase transitions and critical exponents

Near the phase transition temperature TC, the dimensionless reduced temperature t defined by t = (T − TC)/TC
is small. In this regime

χ ∝ t−γ T > TC
M ∝ (−t)β T < TC

M ∝ H
1

δ T = TC

where α, β, and γ are critical exponents.

Model Mean-field Ising Ising Heisenberg

D any 1 1 3

d any 2 3 3

β 1
2

1
8

0.326 0.367

γ 1 7
4

1.2378(6) 1.388(3)

δ 3 15 4.78 4.78

Critical exponents for various models.

Mean-field methods ignore correlations and fluctuations which become very important near TC.

Despite the failure of mean-field theory to successfully account for critical behaviour in systems with
dimensionality below four, it is only necessary to consider a small representative set of ideal statistical
models to calculate critical exponents of any physical system if the hypothesis of universality is accepted.
This hypothesis is based on the observation that critical exponents do seem to be surprisingly independent
of the type of phase transition, whether liquid—gas, ferromagnetic—paramagnetic, superconducting—
non-superconducting, or any other. It is supposed that for a continuous phase transition, the (static)
critical exponents depend only on

1. The dimensionality of the system, d.

2. The dimensionality of the order parameter, D. (Actually the symmetry of the order parameter).

3. Whether the forces are short or long range.

There are a number of exactly solved models:

1. Most cases for d = 1. Unfortunately, such systems do not exhibit continuous phase transitions.

2. All cases for d ≥ 4, which give mean-field solutions.

3. Most cases for long range interactions, which give mean-field solutions.
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4. d = 2, D = 1. This is the 2D Ising model (Onsager 1944).

Unfortunately, most real situations correspond to d = 3 and short-range interactions, which have not been
solved exactly.

3.5 Consequences of broken symmetry

When you break symmetry there are various consequences:

• Phase transitions: The system will have a sharp change of behaviour at a temperature Tc. We de-
scribe this by saying the system has changed phase (e.g. liquid → solid, paramagnet → ferromagnet,
etc). The region near the phase transition is called the critical region. (see section 3.4)

• Rigidity: Having broken the symmetry, the system will have a strong energetic preference for
staying in that broken-symmetry state and attempts to change the way the system has broken the
symmetry meet with resistance. Thus crystals don’t bend easily and ferromagnets show permanent
magnetism. (see section 3.5)

• Excitations: At T = 0 the system is perfectly ordered. At finite temperature this order is weakened
by excitations in the order parameter. In crystals these excitations are called lattice waves (quantized
into phonons), in ferromagnets the analogous modes are called spin waves (quantized into magnons).
(see section 3.6)

• Defects: If you break the symmetry differently in two adjacent parts of a macroscopic sample, the
boundary will contain a defect: e.g. a dislocation in a crystal or a domain wall in a ferromagnet.
(see section 3.7)

A summary of the properties of different broken symmetry phases is contained in the following table.

Phenomenon High T Low T Order Excitations Rigidity Defects

Phase Phase parameter phenomenon

crystal liquid solid ρG phonons rigidity dislocations,

grain

boundaries

ferromagnet paramagnet ferromagnet M magnons permanent domain walls

magnetism

antiferromagnet paramagnet antiferromagnet M (on magnons (rather subtle) domain walls

sublattice)

nematic∗ liquid oriented 〈 1
2
(3 cos2 θ − 1)〉 director various disclinations,

(liquid crystal) liquid fluctuations point defects

ferroelectric∗ non-polar polar P soft ferroelectric domain walls

crystal crystal modes hysteresis

superconductor∗ normal metal superconductor |ψ|eiφ – superconductivity flux lines

∗liquid crystals and ferroelectrics are outside the scope of this course, superconductivity will be covered in a separate set of
lectures

The order parameter for the crystal is ρG where G =reciprocal lattice vector.

3.6. Rigidity

The energy of a broken symmetry system is minimized when the symmetry is broken the same way
throughout it. If you try to change the way symmetry is broken in a macroscopic sample, forces will
appear reflecting that additional energy cost. This gives rise to a generalized rigidity. Three examples:
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(1) Crystals do not deform easily (in contrast to liquids) because there is an elastic energy proportional
to (∇u)2 where u is the lattice displacement, and the lattice transmits this force to the other end of a
macroscopic sample. Solids are therefore rigid.

(2) The spins are aligned in a ferromagnet and it costs energy to turn them with respect to each other.
Hence the phenomenon of permanent magnetism. (If the magnetization is non-uniform there is an exchange
cost proportional to (∇M)2.)

3.7. Excitations

A solid is perfectly ordered at T = 0 but at non-zero temperature this is disrupted by lattice vibrations,
quantized as phonons. The crucial feature of these is that it costs a vanishingly small energy to produce a
phonon, provided its wavelength is long enough. At low temperature we excite only the long wavelength
acoustic phonons; that we can do this expresses the fact that there is no energy gap in the phonon
dispersion relation at q = 0 (in contrast to the optic phonons). These phonons give rise to the T 3 heat
capacity at low temperature.

Whenever you have broken a continuous global symmetry (as you do when you make a solid from a liquid
or a ferromagnet from a paramagnet) it is possible to produce long-wavelength excitations in the order
parameter for vanishingly small energy cost. These excitations are called Goldstone modes (or sometimes
Goldstone bosons)– because they cost no energy they are “massless”.1

A ferromagnet is perfectly ordered at T = 0 but at non-zero temperature this is disrupted by spin waves,
quantized as magnons. The crucial feature of these is that it costs a vanishingly small energy to produce
a magnon, provided its wavelength is long enough. Thus the magnons play the same rôle in ferromagnets
as phonons do in solids and are the Goldstone modes of the system. We will show in the lecture that there
is no energy gap in the magnon dispersion relation at q = 0. These low energy magnons give rise to the
so-called Bloch T 3/2 law which describes the low temperature form of the magnetization:

M(T ) =M(0)[1− const × T 3/2].

It is also easy to show from this analysis that the heat capacity varies as T 3/2 at low temperature.

(a) Spin waves

A spin wave on a line of spins. (a) perspective view. (b) view from above.

The spin-wave dispersion and the Bloch-T 3/2 law will be derived in the lecture. If this derivation is repeated
for the one or two dimensional Heisenberg model it is found that the number of spin waves diverges as
soon as T > 0 so that no long range order is possible.

1In particle physics an example of this is the photon which is a Goldstone boson. For a superconductor, the situation is
rather different because it turns out that you are breaking a continuous local symmetry and you don’t get Goldstone modes.
The reason for this is rather subtle and is connected with the Higgs mechanism.
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(b) Measurement of spin waves

Spin wave dispersions can be measured using inelastic neutron scattering. In such an experiment the
magnitude of the incident neutron wave vector ki is not equal to the magnitude of the scattered neutron
wave vector kf . The energy of the neutron also changes from Ei = h̄2k2i /2mn to Ef = h̄2k2f/2mn because
the neutron produces an excitation in the sample of energy h̄ω and wave vector Q. Conservation of energy
and momentum implies that

Ei − Ef = h̄ω (38)

ki − kf = Q, (39)

so that a measurement of ki, kf , Ei and Ef allows a determination of ω and Q.

Spin wave evergy vs. momentum in an alloy of Co0.92Fe0.08 obtained at room temperature (Sinclair and
Brockhouse 1960).

Spin wave dispersion relations in ferromagnetic Gadolinium at 78 K (TC = 300 K) along different directions in
the Brillouin zone (there are 2 modes as there as 2 atoms in the unit cell). The energy extrapolates to a

quadratic form ∼ |q|2 near Γ as expected for a ferromagnet.
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Schematic diagram of an inelastic neutron scattering experiment to measure magnons (or phonons).

 

 

The magnetization in a ferromagnet. At low temperatures this can be fitted using the spin-wave model and
follows the Bloch T3/2 law. Near the critical temperature, the magnetization is proportional to (T − Tc)

β

where β is a critical exponent. Neither behaviour fits the real data across the whole temperature range. The
data are for an organic ferromagnet which has Tc ≈0.67 K for which β ≈ 0.36, appropriate for the

three-dimensional Heisenberg model.
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3.7 Domains

If different regions of a macroscopic system break symmetry in different ways, then in the interface between
these regions the rigidity can break down. Therefore in general we expect domain walls, defects, vortices,
dislocations and other singularities. In ferromagnets the most important singularity is the domain wall.

A Bloch wall. The domain wall is about 300 lattice constants thick in iron.

Because it costs energy to have a domain wall (which is because spins have to be twisted with respect to each
other), some other interaction must stop the walls untwisting to save energy. This is the magnetocrystalline
anisotropy characterised by an energy K. This energy comes about because of the spin-orbit interaction
and is responsible for the hard and soft axes of magnetization (see next figure). In the magnetic domains
of a ferromagnet the magnetization will prefer to lie along the easy direction but between domains, in the
domain wall, it will have to rotate and a component will lie along the hard axis which will cost energy. In
the lecture we will show that the width of a Bloch wall is aπ

√

J/K where a is the lattice spacing and the
energy of the domain wall is proportional to

√
JK.

Magnetization in Fe, Co and Ni for applied fields in different directions showing anisotropy.
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A sample which is (a) uniformly magnetized, (b) divided into two domains, and (c) with a simple closure
domain structure.

The reason domains often form in ferromagnets (so that symmetry is broken in different ways in different
parts of the same sample) is that in this way a ferromagnetic object can save some dipolar energy if the
exterior of the object is not filled with magnetic field which costs B2/2µ0 energy per cubic metre.

Domains move through a sample as the field is applied (see the following figure). We can distinguish 2
broad classes of ferromagnetic materials based on how easy it is domains to move through a sample.

(1) Soft magnets are used in transformer coils, generators and motors. These have broad domain walls
(small K) which are thus easy to move. This leads to small coercive fields. An example is permalloy (a
commercial Ni/Fe alloy with an additional ingredient) which has a coercive field Bc ∼ 2× 10−7 T.

(2) Hard magnets are used as permanent magnets (e.g. in the back of loudspeakers, in motors, on the
front of fridges[!]) and in magnetic tape recording (in powder form). These have large hysteresis, narrow
domain walls (large K) so that it is easy to have domain wall pinning. Large ion moments and large crystal
fields are helpful and suitable materials often involve rare earths, e.g. Nd2Fe14B which has a TC = 585 K
and a coercive field Bc =1.2 T.
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Left: Effect of an applied field on the domain pattern on the surface of a single crystal iron whisker showing
domain wall displacement. Right: A hysteresis loop showing the saturation magnetization Ms, the remanent
magnetization Mr and the coercive field Hc.
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2.5 Magnetism in metals

So far we have only discussed the magnetism of insulators where the magnetic electrons are localized,
strongly bound to the parent ions. Metals also show similar magnetic phenomena, like paramagnetism and
ferromagnetism, but the fact that electrons are delocalized has important consequences on the magnetic
properties.

Pauli paramagnetism

Paramagnetism of the electron gas (Pauli paramagnetism): (neglect the orbital contribution and take
g = 2).

In an applied field B the electron band is spin-split into two spin sub-bands separated by gµBB = 2µBB.
The number of extra electrons with spin-up is δn↑ = 1

2
g(EF )µBB. This is also the number of the deficit

of electrons with spin-down, δn↓ =
1
2
g(EF )µBB. Thus the magnetisation is given by

M = µB(δn↑ − δn↓) = g(EF )µ
2
BB

and the susceptibility by

χ =
µ0M

B
= g(EF )µ0µ

2
B =

3µ0µ
2
Bn

2EF

using the result g(EF ) = 3n/2EF where n = N/V , the number of electrons per unit volume.

Density of states showing splitting of energy bands in a field B

Band ferromagnetism and spontaneously-split bands

The ↑ and ↓ spin bands can also split in the absence of an external field as in Fe, Ni, Co. When bands are
split electrons move from one band to the other to equalize the chemical potential leading to an imbalance
between the ↑ and ↓ populations and to a net magnetization M = µB(n↑−n↓). The band splitting occurs
because of the internal field due to exchange interactions and the criterion for this to be energetically
favourable is Ug(EF ) ≥ 1, where U is a measure of the strength of the magnetic interactions and g(EF ) is
the density of states at the Fermi energy. This condition is satisfied in the metallic ferromagnets Fe, Ni,
Co. When this condition is not satisfied, i.e. Ug(EF ) < 1 bands do not split spontaneously in zero field,
but in applied field the susceptibility χ is enhanced compared to the bare Pauli value µ0µ

2
Bg(EF ) by a

factor [1− Ug(EF )]
−1.
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Fe Ni ZrZn2

µ/µB 2.12 0.6 0.17

∆ (eV) 2.2 0.6 0.07

Tc (K) 1043 627 28

Magnetization per formula unit µ/µB, band splitting ∆ and ordering temperature Tc of some band
ferromagnets.
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