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Macroscopic Electromagnetism

Maxwell’s
equations:

(no net free charges)

(non-magnetic)

(ohmic conduction)

I Absorption and Reflection

Linear Optics

In a linear, non-conducting medium:

Solution:

where: complex!

Define complex refractive index:

absorptionrefraction
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Absorption

Reflection

Intensity decay of wave:
(Beer’s law)

Define absorption coefficient:

At normal incidence:

Reflectivity R for a material’s surface 
contains information on its absorption!

Relationship between components of ñ and εr

and

if                 (weak absorption):
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The classical dipole oscillator model

Inside a material the electric field of an EM wave may 
interact with:

• bound electrons (e.g. interband transitions)
• ions (lattice interactions)
• free electrons (plasma oscillations)

Equation of motion for a bound electron in 1D:

where

stationary solutions:

Displacement of charge causes polarisation:

(N: oscillator density)

background
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Real and imaginary part of εr

Can now calculate                           and 

Optical constants for a classical dipole oscillator
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Local field corrections

In a dense medium:
• atoms experience “local field” composed of external
field E and polarization from surrounding dipoles

• treat interacting dipole as being at centre of sphere 
surrounded by a polarized dielectric

Clausius-Mossotti relationship: 

electric
susceptibility
per atom

Problems with the classical oscillator model

• no information on selection rules
need quantum mechanics

• interband transitions should depend on the density of  
states g(E)

• One possible modification:

write: 

line shape of transition
(from classical oscillator model)

“oscillator strength”
(from QM)
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Treat interband transitions through time-
dependent perturbation theory - Fermi’s 
golden rule gives transition probability:

with matrix element:

joint density 
of states

dipole moment E-field of incident wave

Bloch 
wavefunctions

where

II Interband optical transitions 

f

i

conduction band

valence band

Matrix element for interband transitions: 

deduce conditions for dipole allowed 
(direct) transitions.

Consider:
(1) wavevector conservation
(2) Parity selection rule
(3) dependence on photon energy

absorption

emission
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Conditions for direct interband transitions

(1) wavevector conservation

only if or

typically:

“vertical”
transitions

absorption emission

E

k

Eg

(2) parity selection rule

odd parity

only if             and             have different parity!

Eg

conduction band

valence bands

p

isolated 
atom

sp3-hybrid in crystal 

p-antibonding

s-antibonding

p-bonding

s-bonding

In a typical 4-valent system (e.g. group IV or III-V compound):

expect to see strong absorption for these materials
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(3) Dependence of transition probability on photon energy 

Final state is an electron-hole pair

If Mif is independent of the photon energy hω, the joint 
density of states contains the dependence of the transition 
probability on hω. For this case:

Absorption coefficient
(for direct transitions):

where reduced effective mass

Examples for direct semiconductors

data

a) InSb at 5K b) GaAs at 300K

deviations from                                 e.g. due to 
phonon absorption or non-parabolicity of the bands. 
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Indirect interband transitions

(i) wavevector conservation:

• Indirect gap: valence band maximum and conduction band
minimum lie at different wavevectors,

• direct transitions across the indirect gap forbidden, but 
phonon-assisted transitions may be possible.

with phonon wavevector

E

k

Eg

qphonon

(ii) probability for indirect transitions:

• perturbation causing indirect transitions is second order
optical absorption much weaker than for direct 
transitions!

• find absorption coefficient 

phonon absorption
or emission
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Example for an indirect semiconductor: Si

E2

E1
Eg

Eg

E1

E2

mostly
direct

transitions
indirect

transitions

Band structure: Absorption spectrum:
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Series of absorption peaks 
just below the energy gap

Coulomb interaction 
between electron and hole 
gives rise to “excitonic”
states (bound electron-hole 
pairs)

Absorption coefficient of CuO2 at 77K:

III Excitons

Wannier-Mott Excitons Frenkel Excitons

• strongly (tightly) bound excitons
• binding energy ~ 0.1 – 1eV
• typically found in insulators and 
molecular crystals (e.g. rare gas 
crystals, alkali halides, aromatic 
molecular crystals)

• particle often localized on just 
one atomic/molecular site  

• weakly bound (free) excitons
• binding energy ~ 10meV
• common in inorganic 

semiconductors (e.g. GaAs, 
CdS, CuO2...)

• particle moving in a medium 
of effective dielectric 
constant εr

e

h

e
h
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Weakly bound (Wannier) Excitons

Separate exciton motion into centre-of-mass and relative motion:

CM motion:

Relative motion:

exciton momentum:

exciton mass:

kinetic energy:

where

where

where

Binding energy:

reduced mass

(Rydberg)

Exciton radius:

a0 = 0.529Å (Bohr radius)

E-k diagram for the weakly bound exciton
(a) uncorrelated electron-hole pair

(one-electron picture)
(b) exciton (one-particle picture)

transitions where light line   
intercepts with

wavevector conservation:wavevector  conservation:

“vertical transitions”

continuum onset at band edge
for

;

E
E

k
k

Eg

RX n=1
n=2

...
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Exciton-Polariton

• Absorption occurs at point where 
photon dispersion intersects exciton 
dispersion curve.

• exciton-photon interaction leads to 
coupled EM and polarization wave 
(polariton) travelling in the medium

altered dispersion curve 
(2 branches)

• But: if exciton damping (phonon 
scattering...) is larger than exciton-
photon interaction we can treat 
photons and excitons separately.

k

E

exciton

photon

I II

Examples for weakly bound excitons: GaAs

• sub-gap excitonic absorption 
features

• exciton dissociation through 
collisions with LO phonons 
becomes more likely at 
higher T → exciton lifetime 
shortened and transition line 
broadened

• Coulomb interactions 
increase the absorption both    
above and below the gap 
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Examples for weakly bound excitons: GaAs

At low temperature (here: 1.2K) and in ultra pure material, the 
small line width allows observation of higher excitonic transitions: 

n=1
n=3

n=2

Eg

here:

Tightly bound (Frenkel) excitons

• radius of weakly-bound excitons:
model of bound e-h pair in dielectric medium 
breaks down when an is of the order of interatomic 
distances (Å)
have tightly bound excitons for small εr , large μ

• tightly-bound electron-hole pair, typically located on 
same unit (atom or molecule) of the crystal (but the 
whole exciton may transfer through the crystal)

• large binding energies (0.1 – 1eV) → excitons persist at 
room temperature.
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Transition energies for tightly bound excitons

• transition energies often correspond to those found in the 
isolated atom or molecule that the crystal is composed of

• theoretical calculations may be based e.g. on tight-
binding or quantum-chemical methods

• often need to include effects of strong coupling between 
excitons and the crystal lattice (polaronic contributions)

Examples for tightly bound excitons: rare gas crystals

absorption spectrum of crystalline Kr at 20K:
E1=10.2eV Eg=11.7eV

Eb=1.5eV Note: the lowest 
strong absorption 
in isolated Kr is at 
9.99eV

close to lowest 
excitonic transition 
E1 in crystal



LM Herz - Optical Properties of Solids 
HT2011 20



LM Herz - Optical Properties of Solids 
HT2011 21

de Broglie wavelength for an 
electron at room temperature:

If we can make structured semiconductors on these length 
scales we may be able to observe quantum effects!
Possible using e.g. molecular beam epitaxy (MBE) or 
metal-organic chemical vapour deposition (MOCVD)

GaAs substrate

AlxGa1-xAs (barrier)

AlxGa1-xAs (barrier)

GaAs (well)

valence
band

conduction
band

E(k=0)

Eg 
(AlGaAs)

Eg 
(AlGaAs)

Eg 
(GaAs) confined 

electrons
confined 

holesd

gr
ow

th
 d

ire
ct

io
n 

z
VI Low-dimensional systems

Effect of confinement on the DOS
Confinement in a particular direction results in discrete energy states, but 
free movement in other directions gives rise to continuum. 
→ Joint density of states g(hω) (for direct CB-VB transitions):

3D (bulk) 2D (Q well) 1D (Q wire) 0D (Q dot)
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Quantum well with infinite potential barriers

Schrödinger’s eqn inside the well:

outside the well:

wavefunction along z:

with wavevector

confinement energy:

Bandstructure modifications from confinement

bulk GaAs
(Γ-valley)

GaAs QW

E1,e

E1,hhE1,lhJz=3/2
heavy
holes Jz=1/2

light 
holes

electrons
J=1/2

holes
J=3/2

bandstructure for 2D motion is 
altered (quantum confinement 
leads to valence band mixing)

k

EE

E2,e
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Optical transitions in a quantum well

as before, matrix element:
wavefunctions now:

(i) changes slowly over a unit cell (compared to uc, uv)
(ii) unless                                          (k-conservation)

dipole transition criteria (as before) electron-hole spatial overlap in well

valence/conduction band
Bloch function

hole/electron 
wavefunction along z

Selection rules for optical transitions in a QW

(i) wavevector conservation:

(ii) parity selection rule: and           must differ in parity

(iii)

need sufficient spatial overlap between electron and hole wave-
functions along the z-direction. For an infinite quantum well:

N.B.: expect some deviation in finite quantum wells!  

(iv) unless and   have equal parity

as
before

unless
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(v) energy conservation:

and for                  (at the band edge):

hh
1 

–
e1

lh
1 

–
e1

hh
2 

–
e2

Eg

photon
energy

band
gap of 

well
material

confinement
energy of 

electron/hole

kinetic
energy in

plane of QW

lh1hh2
hh1

e1
e2

allowed
dipole

transitions

Absorption of GaAs/AlAs MQW (d=76Å) at 4K:

Example: absorption of a GaAs/AlAs QW

below each onset of 
absorption: excitonic 
features (X)

above onset: flat 
absorption, since 2D 
joint density of states 
independent of hω

deviation from Δn=0,
in particular at high Ehh1-e1 (continuum)

hh2-e2 (continuum)
lh1-e1 (continuum)

lh2-e2 (continuum)

hh1-e1
(X) hh2-e2 

(X)lh1-e1
(X) lh2-e2 

(X)

e1-hh3
(X)

hh3-e3 
(X)

e3-hh1
(X)
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Influence of confinement on the exciton

Confinement brings 
electron and hole closer 
together.

enhanced exciton 
binding energy

increased oscillator 
strength

bulk GaAs

GaAs MQW
n=1

n=2

T=300K

lh

hh
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Classic Lorentz dipole oscillator model (again):

solutions are as before, but with               (no retaining force!) 

with plasma frequency

and background dielectric constant

dielectric constant:

real and imaginary part of the dielectric constant:

V Optical response of a free electron gas

AC conductivity of a free electron gas

Can re-write equation of motion as:

electron with momentum p is accelerated by field but looses 
momentum at rate 

obtain electron velocity:

and using

AC conductivity

where (DC conductivity)

optical measurements of εr equivalent to those of AC conductivity!

and
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Low-frequency regime

At low frequency of the EM wave, or                :

Skin depth (distance from surface at which incident power has 
fallen to 1/e):

For Cu at 300K: σ0=6.5×107 Ω-1m-1

δ = 8.8mm @ ν = 50Hz
δ = 6.2μm @ ν = 100MHz

and one may approximate:

In a typical metal: N ≈ 1028 – 1029 m-3, σ0 ≈ 107Ω-1m-1

Drude model predicts: γ ≈ 1014 s-1

At optical frequencies:    (weak damping)

(i) largely imaginary
wave mostly reflected

(ii) largely real
wave partly transmitted,
weak absorption (             )

High-frequency regime

and
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Reflectivity in the high-frequency regime

doped 
semiconductors: 
large background 
dielectic constant 
(  ) from 
higher-energy 
interband transitions

most metals:
(if no strong 

optical transitions at 
higher photon 
energy) 

Example: Reflection from Alkali metals

4403500.860.91Cs

3603120.961.15Rb

3152821.061.40K

2102051.462.65Na

2051541.954.70Li

λUV

(nm)
λp

(nm)
ωp/2π

(1015Hz)
N 

(1028m-3)
Metal

measured at low T calculated from measured UV
transmission cut-off

• high reflectivity up to UV wavelengths
• good agreement between measurement and Drude-Lorentz model
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1382.185.90Au

1382.175.86Ag

1152.618.47Cu

λp

(nm)
ωp/2π

(1015Hz)
N 

(1028m-3)
Metal

Example: Reflection from transition metals

measured at low T calculated from

These transition metals should be fully reflective up to deep UV
But we know: Gold appears yellow, Copper red 

Reflection of light from Au, Cu and Al:

Drude-Lorentz model does 
not account fully for 
optical absorption of 
transition metals 
(especially in the visible)

need to consider 
bandstructure 
(damping has weak 
effect at these 
frequencies)

Au

Cu

Al

D-L model for
ωp=15.8eV (Al)

D-L model for
ωp=9eV (Au)
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Example: Reflection from Copper
Electronic configuration of Cu: [Ar] 3d10 4s1

Transitions (in visible range of spectrum) between relatively 
dispersionless bands of tightly bound 3d electrons and half-filled 
band of 4s-electrons:

strong interband absorption for → copper appears red !

Ef

3d
bands

Example: Reflection from doped semiconductors

Free-carrier reflectivity of InSb:

for

where

Can determine effective mass of majority carriers 
from free carrier absorption
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Example: Free-carrier absorption in semiconductors

For free carriers in the weak absorption regime (             ):

predict:

But experiments on n-type samples show:

where

Deviations arise from:
• intraband transitions involving phonon scattering
• in p-type semiconductors: intervalence band absorption
• absorption by donors bound to shallow donors or acceptors

Example: Impurity absorption in semiconductors

In doped semiconductors the electron (hole) and the ionized 
impurity are attracted by Coulomb interaction hydrogenic system 

Observe Lyman series for transitions from 1s level of 
Phosphor to p levels, whose degeneracy is lifted as a 
result of the anisotropic effective mass of the CB in Si

Absorption of Phospor-doped silicon at 4.2K:

conduction band

valence band

n=2
n=
n=1
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Plasmons

At the plasma edge (               ): 
What happens at this frequency?

• Polarization induced by the EM wave:

P is equal and opposite to incident field

• Wavevector

At the Plasma edge a uniform E-field in the material 
shifts the collective electron w.r.t the ionic lattice!

where

Plasma oscillations for εr=0:
applied EM wave resulting charge 

distribution
induced macroscopic 
polarization

• For a (transverse) wavevector , the resulting charge 
distribution corresponds to a longitudinal oscillation of 
the electron gas with frequency ωp!

• The quantum of such collective longitudinal plasma 
oscillations is termed a plasmon.

++ ++ +

++ ++ +

++ ++ +
-- -- -

-- -- -

-- -- -

-- -- -

++ ++ +
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Example: Plasmons in n-type GaAs

Light scattered from n-type GaAs at 300K:

Energy conservation:

from data:

Expect
from:

plasmon
emission

plasmon
absorption
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VI Optical studies of phonons

Dispersion relation for a diatomic linear chain:

0

optical 
branches

(1LO + 2TO)

acoustic
branches

(1LA + 2TA)

EM radiation is a transverse wave with wavevector 
and can thus interact directly only with TO modes in polar 
crystals near the centre of the Brillouin zone.

transverse optical (TO) phonon:

transverse acoustic (TA) phonon:
light 

dispersion

Harmonic oscillator model for the ionic crystal lattice

Diatomic linear chain under the influence of an external electric field:

Equations of motion:

where
frequency of TO mode near centre of Brillouin 
zone (with effective spring constant C)

reduced mass

relative displacement of positive and negative ions

x+

x-
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Add damping term to account for finite phonon lifetime:

Displacement of ions induces polarization  P = NQx
Dielectric constant (as before):

Rewrite this result in terms of the static ( ) and the high-frequency 
(     ) limits of the dielectric constant: 

Lattice response in the low-damping limit

Long phonon lifetimes:

Consider Gauss’s law. In the absence of free charge:

or

wave must be 
transverse (            )

longitudinal wave 
possible (            )
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What happens at εr=0 ?

++ ++ +

++ ++ +

++ ++ +

-- -- -

-- -- -

-- -- -

Again: Wavevector of EM wave in medium: 

→ all ions of same charge 
shift by the same amount 
throughout the medium

→ result can be seen as a 
transverse wave (  ) 
with k ≈ 0 or as a 
longitudinal wave ( ) 
in orthogonal direction.

The Lyddane-Sachs-Teller relationship

At εr=0 the induced polarization corresponds to a 
longitudinal wave, i.e. εr(ωLO)=0

Lyddane-Sachs-Teller 
relationship

→ In polar crystals the LO phonon frequency is always higher 
than the TO phonon frequency

→ In non-polar crystals,                 and the LO and TO phonon 
modes are degenerate (at the Brillouin zone centre) 

And from                                     follows:
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Dielectric constant and Reflectivity for undamped lattice

“Reststrahlen” band
(R=1)

Influence of damping

Lattice Reflectivity: For finite phonon lifetime 
(γ≠0) at resonance:

→ Reststrahlen band no 
longer fully reflective

→ general broadening of 
features
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Measurements of IR reflectivity

Fourier transform infrared spectroscopy (FTIR):

• measure interference pattern 
I(d) as a function of mirror 
displacement d

• I(d) gives Fourier transform 
of sample transmission T(ν)
multiplied with system 
response S(ν):

detector

sample

IR source

M1

M2
d

Example: reflection spectra for zinc-blende-type lattices

measured at RTmeasured at 4.2K
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Phonon-Polaritons

Examine more closely the dispersion relations for phonons and the 
EM wave near the Brillouin zone centre:

If no coupling occurred:
• But: coupling between TO 

phonon and EM wave leads to 
modified dispersion

• resulting wave is mixed 
mode with characteristics of    
TO polarization and EM wave

• LO phonon dispersion remains 
unchanged as it does not couple 
to the EM wave

Phonon-Polariton dispersion:

→ two branches for ω(k)

upper polariton
branch

lower polariton
branch

Reststrahlen band
(perfect reflection,
no mode can propagate)
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Inelastic Light Scattering

• Scattering of light may be caused by fluctuations of the 
dielectric susceptibility χ of a medium

• time-dependent variation of χ may be caused by elementary 
excitations, e.g. phonons or plasmons

• scattering from optical phonons is called Raman scattering
and that from acoustic phonons Brillouin scattering

• if u(r,t) is the displacement (of charge) associated with the 
excitation, the susceptibility can be expressed in terms of a 
Taylor series:

Polarization in the medium:

let light wave with frequency ω

lattice wave with frequency ωq

where

unscattered polarization wave

Anti-Stokes scattering Stokes scattering
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Energy & momentum conservation for inelastic scattering

Scattering process:
energy conservation:

wave vector conservation:

Anti-Stokes scattering requires absorption of a phonon and 
therefore sufficiently high temperature. In general the ratio of
Anti-Stokes to Stokes scattering intensities is given by:

Maximum momentum transfer in backscattering geometry, where:

Inelastic light scattering probes phonons with small wave vector

ωin, kin
ωout, kout

ωq, q

Raman spectroscopy: Experimental details

Require detection of optical phonons within  typical frequency 
range 1cm-1 < ωp < 3000cm-1

→ need excitation source (laser) with sufficiently narrow 
bandwidth

→ need detection system with high dispersion and ability 
to suppress elastically scattered light

Typical set-up:

La
se

r detector

sample

filter
polarizer

analyzer G1

G2

M2

M1

M4

M5

M3

S1

S2,3

S4

double-
grating
spectrometer
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Raman spectra for zinc-blende-type semiconductors

Brillouin scattering: Experimental details

Require detection of acoustic phonons near the centre of the 
Brilloiun zone where ωq=vacq  → need to be able to measure shifts 
of only a few cm-1 !

Set-up based on a Multipass 
Interferometer:

Brillouin spectrum for Si(100):
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Phonon lifetimes

Experimental evidence for finite phonon lifetimes from
i. Reflectivity measurements: R<1 in Reststrahlen band 

→

ii. Raman scattering: non-zero width of Raman line

Data suggests phonon lifetimes of 1-10ps in typical 
inorganic semiconductors.

Origin of short phonon lifetimes: anharmonic potential 
experienced by the atoms:

Anharmonic terms make possible higher-order processes, e.g. 
phonon-phonon scattering:

acoustic
branch

optical branch
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VII Optics of anisotropic media

A medium is anisotropic if its macroscopic optical properties 
depend on direction
Examples:

gas, liquid,
amorphous 
solid

polycrystalline crystalline liquid crystal

anisotropic
isotropic

εr and χ in an anisotropic medium

Polarizability now depends on direction in which E-field is applied
→ relative electric permittivity εr and susceptibility χ now tensors:

→ D and E no longer necessarily point into the same direction!
But can always find coordinate system for which off-diagonal 
elements vanish, in which case:

In the directions of these principal crystal axes E and D are parallel.

or
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Propagation of plane waves in an isotropic medium

Ampere’s and Faraday’s law for plane waves:

homogeneous matrix equation, require

where                     is the wavevector in free space.
Choosing a coordinate system along the crystal’s principal axes 
yields:

Solving the matrix equation (                        ) yields:

This provides a dispersion relationship

Can obtain the refractive index from the ratio of phase 
velocities in vacuo and inside medium:
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Two solutions:
(i) Sphere:

for ordinary ray
(polarized ⊥ to k-z plane)

(ii) ellipsoid of revolution

for extraordinary ray
(polarized in k-z plane) 

Propagation of plane waves in uniaxial crystals

In uniaxial crystals (optic axis along z):                      ,

nok0

nek0

nok0
n(θ)k0

nok0 k2

k3 k-direction

θ

Ordinary vs extraordinary rays in uniaxial crystals

(a) ordinary ray:
E, D polarized ⊥ to plane 
containing k and the optic axis;
Refractive index:

(b) extraordinary ray:
E, D polarized in plane 
containing k and the optic axis

nok0

nok0

k3

θ

nok0

nek0 k2

k3

θk2

D
E

k k

S
S

E,D H

H



LM Herz - Optical Properties of Solids 
HT2011 48

Comments on wave propagation in uniaxial crystals

1) Faraday’s & Ampere’s law for plane waves in dielectrics:
D is normal to both k and H
H is normal to both k and E

N.B.: this does not imply E ⊥ k!
2) All fields are of the form 

wavefronts are ⊥ to k.
3) The phase velocity v is in the direction of k with

4) As usual, the group velocity is
vg is normal to the k-surface! 

5) The pointing vector  is normal to E and H 
Can show: for small Δk S normal to k-surface

6) From (5) and (1) follows that E is parallel to the k-surface.

Refraction at the surface of a uniaxial crystal

k0

k

e-ray

air
crystal

optic
axis

α

βϕ phase matching condition:

N.B.: Snell’s law holds for the directions of 
k in the media, but this is not necessarily 
the direction of ray propagation!

Example: Double refraction at normal incidence:
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VIII Non-linear Optics

Linear optics:
Polarization depends linearly on the electric field:
Electrons experience harmonic retaining potential

refractive index n, absorption coefficient α, reflectivity 
R independent of incident EM wave’s intensity

But:
If E-fields become comparable to those binding electrons in the 
atom, anharmonic (non-linear) effects become significant.
For an H-atom:

need EM wave intensity
Possible with tightly focused laser beams!

In an anisotropic medium, non-linear response will depend on 
directions of E-fields wrt the crystal:

Second-order non-linear polarization components:

Third-order non-linear polarization components:

The non-linear susceptibility tensor

For a medium in which we may in general write:

now power-dependent!

linear non-linear part
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Non-linear medium response to sinusoidal driving field

If and the applied field                          , then:

second-order nonlinearity: rectification and frequency doubling
third-order nonlinearity: frequency tripling

low applied 
field amplitude:

high applied 
field amplitude:

Second-order nonlinearities (NL)

Treatment of non-resonant 2nd order NL within oscillator model:

Assume →

Assume anharmonic potential:
Equation of motion:

Use trial solution:

Obtain
displacement
amplitudes:
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Calculating the induced polarization:

linear susceptibility, as before

second-order non-linear susceptibility

Can re-write the second-order non-linear susceptibility as:

→ materials with large linear susceptibilty also have a 
large non-linear susceptibility

→ in a centrosymmetric medium, U(x) = U(-x)
and therefore C3 = 0 and χ(2)=0

second-order nonlinearities only occur in 
media that lack inversion symmetry!

(This may also be shown directly from the definition 
of P(2) - see question sheet.)
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The second-order non-linear coefficient tensor dij

27 components in χ(2)
ijk

In many cases crystal symmetry requires that most of the 
components of dij vanish.

But some of these components must be the same 
(e.g. χ(2)

xyz EyEz =  χ(2)
xzy EzEy, so  χ(2)

xyz =  χ(2)
xzy because 

ordering of fields is arbitrary)
Second-order response can be described by the simpler 
tensor dij, i.e.

2nd order NL: Frequency (three-wave) mixing

Presume two waves are travelling in the medium, with

The induced polarization is:

Feynman diagrams for second-order nonlinear frequency mixing:
ω1

ω2

ω1 + ω2

ω1

- ω2

ω1 - ω2

difference-frequency
generation

sum-frequency
generation
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2nd order NL: Frequency doubling

Consider the generation of second harmonics in more detail:

Maxwell’s
equations:

Wave equation:

Consider propagation of second-harmonic wave in z-direction:

Let this wave be generated from two fundamental waves:

where is the phase mismatch between 
fundamental and second harmonic wave

Obtain specific wave equation:

Assume that the variation of the complex field amplitude is small 
(slowly varying envelope approximation):

Obtain DE for increase of the second harmonic along the direction 
of propagation:
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2nd order NL: Phase matching conditions

For efficient frequency conversion, we 
need the fundamental wave and the higher 
harmonic to be in phase throughout the 
crystal, i.e.  where

0 L

E(ω)
E(ω)

E(2ω)

The second-harmonic field at length L for arbitrary        is:

For constant fundamental wave amplitudes (thin crystal) the 
second harmonic intensity is then given by: 

First intensity minimum at:

But: dispersion in media means 
that in general:

Example: Sapphire

→ need too thin a crystal to 
achieve efficient 2nd

harmonics generation

Second-harmonic intensity after propagation through crystal of 
length L without phase matching
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2nd order NL: Phase matching in a uniaxial crystal
In general, in the birefringent medium, but since the 
refractive index now depends on the direction of propagation and
wave polarization wrt the optic axis, for some geometries we may
have → phase matching!

Here, phase matching occurs for the fundamental travelling as 
extraordinary (polarization in plane) and the 2nd harmonic as 
ordinary (polarization ⊥ to plane) with

no
ω

phase-matching 
direction

θ

no 
2ω

ne
ω ne 

2ω

Third-order nonlinearities

Third-order effects become important in centrosymmetric (e.g. 
isotropic media) where
For three waves with frequencies the third-order 
nonlinear polarization is

generates a wave with e.g.: 

ω1

ω3

ω1 + ω2+ ω3ω2

ω
ω

-ω
ω

ω
ω
ω

3ω

ω
-ω ωS

ωS

(a) four-wave mixing (b) frequency tripling

(d) stimulated Raman scattering(c) Optical Kerr effect
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3rd order NL: The optical Kerr effect
Optical Kerr effect: and

no phase mismatch

In an isotropic medium (χ(2)=0): 

Refractive index varies with light intensity!
light intensity

where

Refractive index:

Optical Kerr effect: at high intensity I

Example: Kerr lensing

n(x) x
Laser beam with spatially varying 
profile (e.g. Gaussian beam) 
experiences in the medium a higher 
refractive index at the centre of the 
beam than the outside → medium 
acts as a lens!

Propagation of an intense gaussian beam through a Kerr medium:
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3rd order NL: Resonant nonlinearities

for
(weak absorption)

Consider medium with optical transition at 
resonance with incident wave of Intensity I

find that absorption decreases as higher 
state become more populated:

Absorption coefficient for

Can view saturable absorption as a third-order optical nonlinearity!

hν


