
QUANTUM MECHANICS B PHY-413 Note Set No. 3SYMMETRY IN QUANTUM MECHANICS - PARITY.All the examples of quantum wells you have met so far have energy eigenfun
tions (station-ary states with de�nite energy) whi
h have a de�nite symmetry under the transformationx! �x: they are either symmetri
 or antisymmetri
:SYMMETRIC (or Parity +1):  E(�x) = + E(x) (1)ANTISYMMETRIC (or Parity �1):  E(�x) = � E(x) (2)Thus for the in�nite square well the symmetri
 states are  E(x) = 
osn�x=L; n = 1; 3; 5 : : :for �L=2 � x � L=2 and  E(x) = 0 for �L=2 < x < L=2; the antisymmetri
 ones  E(x) =sinn�x=L; n = 2; 4; 6 : : : for �L=2 � x � L=2 and  E(x) = 0 for �L=2 < x < L=2. Similarlyfor the �nite square well and, as we shall see later, for the harmoni
 os
illator potential V (x) =kx2=2. Inspe
tion of these potentials (Figures 1 and 2) reveals that they are all symmetri
 aboutthe 
hosen origin of 
oordinates, V (�x) = V (x) (3)We now pro
eed to show that this is the key ingredient:For all potentials whi
h are symmetri
al under re
e
tions about some point the en-ergy eigenfuntions have de�nite parity: they are either symmetri
 or antisymmetri
under re
e
tion of the axes about the symmetry point of the potential.1This is the simplest example of one of the most important 
on
epts in physi
s: symmetryunder some transformation - here a mirror re
e
tion about a suitably 
hosen origin - leads to a
onservation law - here the 
onservation of the symmetry (or parity) of energy eigenstates. Thefollowing proofs establish these important results for this spe
ial 
ase:(1) First we show that for V (�x) = V (x), energy eigenstates have de�nite symmetry underx! �x.The key step is to note that the symmetry of the potential implies the 
orresponding symmetryfor the Hamiltonian be
ause the kineti
 energy term ��h2=2m�2=�x2 is symmetri
 under x !�x: V (�x) = V (x) implies bH(�x) = bH(x) (4)Now 
onsider an eigenstate of the Hamiltonian, a solution of the TISEbH(x) E(x) = E E(x) (5)where E is a number, the energy eigenvalue. Now repla
e x by �x in this eigenvalue equation:bH(�x) E(�x) = E E(�x) (6)and then use the symmetry of the Hamiltonian to repla
e bH(�x) by bH(x),bH(x) E(�x) = E E(�x) (7)1The symmetry of the wave fun
tions is only obvious when we 
hoose the origin to be the point about whi
hthe potential is symmetri
al. If we were to 
hoose the origin of the in�nite square well problem to be at theleft wall of the potential the eigenfuntions would be  E(x) = sinn�x=L; n = 1; 2; 3; 4; 5; 6 : : : for 0 � x � L and E(x) = 0 for x < 0 and x > L . This is 
learly neither symmetri
 nor antisymmetri
 about x = 0 (draw the �rsttwo and see!), but is about x = L=2, the mid-point or symmetry point of the potential.1
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showing that  E(�x) is also an eigenstate of the Hamiltonian bH(x) with the same eigenvalue as E(x). We have therefore found two solutions of the TISE with the same energy eigenvalue E.But the solutions of the TISE are unique, at least for the 
ases we have studied so far, wherefor ea
h eigenstate there is a unique energy, eg. En = n2�2�h2=2mL2 for the in�nite square well.2 Thus the two eigenfun
tions are not independent and 
an therefore only di�er by a numeri
alfa
tor, say �,  E(�x) = � E(x) (8)Now repla
e x by �x in this equation, and then use this equation again to get rid of  E(�x) infavour of  E(x):  E(x) = � E(�x)= �2 E(x) (9)Comparison of the �rst and last items immediately yields,�2 = 1 whi
h immediately implies � = �1 (10)thereby establishing the result promised: E(�x) = � E(x) (11)viz. that the energy eigenstates are either symmetri
 or antisymmetri
 under mirror re
e
tionabout the symmetry point of the potential.(2) We now establish a result whi
h we shall see repeatedly in general form when we dealwith the angular momentum operators and with the hydrogen atom. First we must introdu
ethe parity operator bP whi
h 
arries out the mirror re
e
tion on the wave fun
tions; it is de�nedby: bP E(x) df=  E(�x) (12)First we see that our result above implies that the eigenvalues of bP are �1: equation (11) 
anbe rewritten using the de�nition of the parity operator to yieldbP E(x) = � E(x) (13)This is just the statement that the eigenvalue of the parity operator is +1 for symmetri
 wavefun
tions and �1 for antisymmetri
 wave fun
tions; we say that the energy eigenstates are alsoparity eigenstates and have parity �1. Thus we see that the energy eigenstates in asymmetri
 potential are simultaneously eigenstates of both the Hamiltonian andthe parity operator.In addition we will now show that the symmetry of the potential implies that bP
ommutes with the Hamiltonian.We saw above that  E(�x) is an eigenstate of the Hamiltonian,bH(x) E(�x) = E  E(�x)ie. bH(x) bP  E(x) = E  E(�x) (14)2When there is more than one wave fun
tion for a given energy we have degenera
y - the TISE does not havea unique solution. The result we prove here still holds true, but the proof is a little tri
kier; see the Appendix tothese notes. 3



where we used the de�nition of the parity operator on the left. Now let us operate with bP onboth sides of the TISE for  E(x),bP bH(x) E(x) = E bP E(x)= E  E(�x) (15)where we used the de�nition of the parity operator to rewrite the right hand side, whi
h is nowequal to that of the previous equation. We therefore dis
over that the order of bH and bP doesnot matter: bP bH(x) E(x) = bH(x) bP  E(x)ie. [ bP ; bH(x)℄ E(x) = 0 (16)Sin
e the result holds for any eigenstate, 3 it must hold for the operators alone:[ bP; bH(x)℄ = 0 (17)Summary: For a symmetri
 potential, V (�x) = V (x), and therefore symmetri
 Hamilto-nian, bH(�x) = bH(x),(a) eigenfun
tions of bH are simultaneously eigenfun
tions of bP with eigenvalues �1;(b) the parity operator bP 
ommutes with the Hamiltonian, [ bP ; bH(x)℄ = 0;Of 
ourse these results also hold in 3-dimensions, where the re
e
tion entails reversing allthree 
omponents of the 
oordinate ve
tor r = (x; y; z) ! �r = (�x;�y;�z). Two examplesof 3-dimensional symmetri
 potentials are the es
ape-proof parallelepiped and 
entral poten-tials in
luding the 
oulomb potential for the hydrogen atom; we treat both 
ases in this 
ourseso you may 
on�rm expli
itly that the energy eigenfun
tions we obtain do indeed have de�niteparity�1, ie. they are simultaneously eigenfun
tions of the Hamiltonian and the parity operator.Generalisation: The above dis
ussion presented the simplest example of the 
onsequen
esof invarian
e or symmetry in QM. The entire dis
ussion 
an be generalised to any operatorwhi
h 
ommutes with the Hamiltonian: eigenstates of energy will also be eigenstates of su
han operator. Indeed, the result 
an be generalised even further: any two 
ommuting operatorshave 
ommon eigenstates.4 We shall meet an example of ea
h of these 
ases in this 
ourse:the squared orbital angular momentum, bL2 
ommutes with its z�
omponent, bLz, so they have
ommon eigenstates; and for a 
entral potential bL2 also 
ommutes with the Hamiltonian: soeigenstates of bL2 are also eigenstates of energy. Thus we will dis
over that in a 
entral potential,the energy eigenstates are also eigenstates of bL2 and bLz.Observables whi
h 
ommute are known as 
ompatible observables, and their eigenvaluesprovide a way of labelling quantum states. A 
omplete set of 
ompatible observables all
ommute with ea
h other; their eigenvalues provide a 
omplete set of labels for the quantumstates of the system. For the hydrogen atom (ignoring hyper�ne magneti
 intera
tions) the
omplete set is f bH; bL2; bLz; bSzg with eigenvalues fEn; �h2`(`+ 1); �hm`; �hmsg; the wave fun
tionsare labelled with the quantum numbers 
orresponding to these eigenvalues, fn; `;m`;msg. Weshall establish all these results later in the 
ourse.3A mathemati
al point: the eigenstates make up a 
omplete set of fun
tions. This is the expansion theoremand means that any fun
tion may be expanded as a linear 
ombination of energy eigenstates. So the equationholds for any fun
tion, and hen
e must be a property of the operators alone.4In fa
t it is easy to prove that (a) two operators with 
ommon a eigenfun
tion 
ommute; and (b) if twooperators 
ommute they have 
ommon eigenfun
tions. See Bransden/Joa
hain p.206 for proofs.4



APPENDIX: The 
ase of Degenera
y.We have degenera
y when distin
t quantum states have the same energy. Examples are (a)the energy eigenstates of the 3-dimensional es
ape-proof box (parallelepiped) with two or moreequal fa
es and (b) the spin up and spin down spin states of an ele
tron in the absen
e of amagneti
 �eld. In these 
ases the solutions to the TISE are not unique. The proof is easilymodi�ed to take a

ount of this as follows. Re
all that we have found that both  E(x) and E(�x) are solutions of the same TISE; but if there is degenera
y these wave fun
tions may bedi�erent. In that 
ase all we do is 
onstru
t the following two states: s(x) �  E(x) +  E(�x) (18) a(x) �  E(x)�  E(�x) (19)These states(a) are eigenstates of bH(x) with energy E be
ause they are just linear 
ombinations of eigenstateswith the same eigenvalue - we are using the superposition prin
iple here, a 
onsequen
e of thelinearity and homogeneity of the TISE;(b) are states of de�nite parity, +1 for  s; �1 for  a.This therefore proves the result: in the 
ase of degenera
y we 
an always 
onstru
t energyeigenstates of de�nite parity.5

5Noti
e that the assumption required to obtain this result is that the Hamiltonian is invariant under x! �x.It is this assumption whi
h shows that  E(�x) is also a solution of the TISE with the same energy. This will nothappen with a non-symmetri
 potential for whi
h  E(�x) will not be a solution to the TISE. In that 
ase  s and a will not be solutions to the TISE. 5


