
QUANTUM MECHANICS B PHY-413 Note Set No. 3SYMMETRY IN QUANTUM MECHANICS - PARITY.All the examples of quantum wells you have met so far have energy eigenfuntions (station-ary states with de�nite energy) whih have a de�nite symmetry under the transformationx! �x: they are either symmetri or antisymmetri:SYMMETRIC (or Parity +1):  E(�x) = + E(x) (1)ANTISYMMETRIC (or Parity �1):  E(�x) = � E(x) (2)Thus for the in�nite square well the symmetri states are  E(x) = osn�x=L; n = 1; 3; 5 : : :for �L=2 � x � L=2 and  E(x) = 0 for �L=2 < x < L=2; the antisymmetri ones  E(x) =sinn�x=L; n = 2; 4; 6 : : : for �L=2 � x � L=2 and  E(x) = 0 for �L=2 < x < L=2. Similarlyfor the �nite square well and, as we shall see later, for the harmoni osillator potential V (x) =kx2=2. Inspetion of these potentials (Figures 1 and 2) reveals that they are all symmetri aboutthe hosen origin of oordinates, V (�x) = V (x) (3)We now proeed to show that this is the key ingredient:For all potentials whih are symmetrial under reetions about some point the en-ergy eigenfuntions have de�nite parity: they are either symmetri or antisymmetriunder reetion of the axes about the symmetry point of the potential.1This is the simplest example of one of the most important onepts in physis: symmetryunder some transformation - here a mirror reetion about a suitably hosen origin - leads to aonservation law - here the onservation of the symmetry (or parity) of energy eigenstates. Thefollowing proofs establish these important results for this speial ase:(1) First we show that for V (�x) = V (x), energy eigenstates have de�nite symmetry underx! �x.The key step is to note that the symmetry of the potential implies the orresponding symmetryfor the Hamiltonian beause the kineti energy term ��h2=2m�2=�x2 is symmetri under x !�x: V (�x) = V (x) implies bH(�x) = bH(x) (4)Now onsider an eigenstate of the Hamiltonian, a solution of the TISEbH(x) E(x) = E E(x) (5)where E is a number, the energy eigenvalue. Now replae x by �x in this eigenvalue equation:bH(�x) E(�x) = E E(�x) (6)and then use the symmetry of the Hamiltonian to replae bH(�x) by bH(x),bH(x) E(�x) = E E(�x) (7)1The symmetry of the wave funtions is only obvious when we hoose the origin to be the point about whihthe potential is symmetrial. If we were to hoose the origin of the in�nite square well problem to be at theleft wall of the potential the eigenfuntions would be  E(x) = sinn�x=L; n = 1; 2; 3; 4; 5; 6 : : : for 0 � x � L and E(x) = 0 for x < 0 and x > L . This is learly neither symmetri nor antisymmetri about x = 0 (draw the �rsttwo and see!), but is about x = L=2, the mid-point or symmetry point of the potential.1
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showing that  E(�x) is also an eigenstate of the Hamiltonian bH(x) with the same eigenvalue as E(x). We have therefore found two solutions of the TISE with the same energy eigenvalue E.But the solutions of the TISE are unique, at least for the ases we have studied so far, wherefor eah eigenstate there is a unique energy, eg. En = n2�2�h2=2mL2 for the in�nite square well.2 Thus the two eigenfuntions are not independent and an therefore only di�er by a numerialfator, say �,  E(�x) = � E(x) (8)Now replae x by �x in this equation, and then use this equation again to get rid of  E(�x) infavour of  E(x):  E(x) = � E(�x)= �2 E(x) (9)Comparison of the �rst and last items immediately yields,�2 = 1 whih immediately implies � = �1 (10)thereby establishing the result promised: E(�x) = � E(x) (11)viz. that the energy eigenstates are either symmetri or antisymmetri under mirror reetionabout the symmetry point of the potential.(2) We now establish a result whih we shall see repeatedly in general form when we dealwith the angular momentum operators and with the hydrogen atom. First we must introduethe parity operator bP whih arries out the mirror reetion on the wave funtions; it is de�nedby: bP E(x) df=  E(�x) (12)First we see that our result above implies that the eigenvalues of bP are �1: equation (11) anbe rewritten using the de�nition of the parity operator to yieldbP E(x) = � E(x) (13)This is just the statement that the eigenvalue of the parity operator is +1 for symmetri wavefuntions and �1 for antisymmetri wave funtions; we say that the energy eigenstates are alsoparity eigenstates and have parity �1. Thus we see that the energy eigenstates in asymmetri potential are simultaneously eigenstates of both the Hamiltonian andthe parity operator.In addition we will now show that the symmetry of the potential implies that bPommutes with the Hamiltonian.We saw above that  E(�x) is an eigenstate of the Hamiltonian,bH(x) E(�x) = E  E(�x)ie. bH(x) bP  E(x) = E  E(�x) (14)2When there is more than one wave funtion for a given energy we have degeneray - the TISE does not havea unique solution. The result we prove here still holds true, but the proof is a little trikier; see the Appendix tothese notes. 3



where we used the de�nition of the parity operator on the left. Now let us operate with bP onboth sides of the TISE for  E(x),bP bH(x) E(x) = E bP E(x)= E  E(�x) (15)where we used the de�nition of the parity operator to rewrite the right hand side, whih is nowequal to that of the previous equation. We therefore disover that the order of bH and bP doesnot matter: bP bH(x) E(x) = bH(x) bP  E(x)ie. [ bP ; bH(x)℄ E(x) = 0 (16)Sine the result holds for any eigenstate, 3 it must hold for the operators alone:[ bP; bH(x)℄ = 0 (17)Summary: For a symmetri potential, V (�x) = V (x), and therefore symmetri Hamilto-nian, bH(�x) = bH(x),(a) eigenfuntions of bH are simultaneously eigenfuntions of bP with eigenvalues �1;(b) the parity operator bP ommutes with the Hamiltonian, [ bP ; bH(x)℄ = 0;Of ourse these results also hold in 3-dimensions, where the reetion entails reversing allthree omponents of the oordinate vetor r = (x; y; z) ! �r = (�x;�y;�z). Two examplesof 3-dimensional symmetri potentials are the esape-proof parallelepiped and entral poten-tials inluding the oulomb potential for the hydrogen atom; we treat both ases in this ourseso you may on�rm expliitly that the energy eigenfuntions we obtain do indeed have de�niteparity�1, ie. they are simultaneously eigenfuntions of the Hamiltonian and the parity operator.Generalisation: The above disussion presented the simplest example of the onsequenesof invariane or symmetry in QM. The entire disussion an be generalised to any operatorwhih ommutes with the Hamiltonian: eigenstates of energy will also be eigenstates of suhan operator. Indeed, the result an be generalised even further: any two ommuting operatorshave ommon eigenstates.4 We shall meet an example of eah of these ases in this ourse:the squared orbital angular momentum, bL2 ommutes with its z�omponent, bLz, so they haveommon eigenstates; and for a entral potential bL2 also ommutes with the Hamiltonian: soeigenstates of bL2 are also eigenstates of energy. Thus we will disover that in a entral potential,the energy eigenstates are also eigenstates of bL2 and bLz.Observables whih ommute are known as ompatible observables, and their eigenvaluesprovide a way of labelling quantum states. A omplete set of ompatible observables allommute with eah other; their eigenvalues provide a omplete set of labels for the quantumstates of the system. For the hydrogen atom (ignoring hyper�ne magneti interations) theomplete set is f bH; bL2; bLz; bSzg with eigenvalues fEn; �h2`(`+ 1); �hm`; �hmsg; the wave funtionsare labelled with the quantum numbers orresponding to these eigenvalues, fn; `;m`;msg. Weshall establish all these results later in the ourse.3A mathematial point: the eigenstates make up a omplete set of funtions. This is the expansion theoremand means that any funtion may be expanded as a linear ombination of energy eigenstates. So the equationholds for any funtion, and hene must be a property of the operators alone.4In fat it is easy to prove that (a) two operators with ommon a eigenfuntion ommute; and (b) if twooperators ommute they have ommon eigenfuntions. See Bransden/Joahain p.206 for proofs.4



APPENDIX: The ase of Degeneray.We have degeneray when distint quantum states have the same energy. Examples are (a)the energy eigenstates of the 3-dimensional esape-proof box (parallelepiped) with two or moreequal faes and (b) the spin up and spin down spin states of an eletron in the absene of amagneti �eld. In these ases the solutions to the TISE are not unique. The proof is easilymodi�ed to take aount of this as follows. Reall that we have found that both  E(x) and E(�x) are solutions of the same TISE; but if there is degeneray these wave funtions may bedi�erent. In that ase all we do is onstrut the following two states: s(x) �  E(x) +  E(�x) (18) a(x) �  E(x)�  E(�x) (19)These states(a) are eigenstates of bH(x) with energy E beause they are just linear ombinations of eigenstateswith the same eigenvalue - we are using the superposition priniple here, a onsequene of thelinearity and homogeneity of the TISE;(b) are states of de�nite parity, +1 for  s; �1 for  a.This therefore proves the result: in the ase of degeneray we an always onstrut energyeigenstates of de�nite parity.5

5Notie that the assumption required to obtain this result is that the Hamiltonian is invariant under x! �x.It is this assumption whih shows that  E(�x) is also a solution of the TISE with the same energy. This will nothappen with a non-symmetri potential for whih  E(�x) will not be a solution to the TISE. In that ase  s and a will not be solutions to the TISE. 5


