QUANTUM MECHANICS B PHY-413 Note Set No. 3

SYMMETRY IN QUANTUM MECHANICS - PARITY.

All the examples of quantum wells you have met so far have energy eigenfunctions (station-
ary states with definite energy) which have a definite symmetry under the transformation
x — —xz: they are either symmetric or antisymmetric:

SYMMETRIC (or Parity +1):  ¢Yr(—z) = +9¢Ygr(x) (1)
ANTISYMMETRIC (or Parity —1):  ¢p(—2) = —p(x) 2)

Thus for the infinite square well the symmetric states are ¢g(x) = cosnmz/L,n = 1,3,5...
for —L/2 <z < L/2 and 9g(z) = 0 for —L/2 < z < L/2; the antisymmetric ones g (zr) =
sinnmz/L,n = 2,4,6... for —L/2 < 2 < L/2 and ¢g(z) = 0 for —L/2 < < L/2. Similarly
for the finite square well and, as we shall see later, for the harmonic oscillator potential V(x) =
kx2 /2. Inspection of these potentials (Figures 1 and 2) reveals that they are all symmetric about
the chosen origin of coordinates,

V(—2) = V() 3)

We now proceed to show that this is the key ingredient:

For all potentials which are symmetrical under reflections about some point the en-
ergy eigenfuntions have definite parity: they are either symmetric or antisymmetric
under reflection of the axes about the symmetry point of the potential.’

This is the simplest example of one of the most important concepts in physics: symmetry
under some transformation - here a mirror reflection about a suitably chosen origin - leads to a
conservation law - here the conservation of the symmetry (or parity) of energy eigenstates. The
following proofs establish these important results for this special case:

(1) First we show that for V(—z) = V(x), energy eigenstates have definite symmetry under
T — —x.

The key step is to note that the symmetry of the potential implies the corresponding symmetry
for the Hamiltonian because the kinetic energy term —h?/2m 9%/0z? is symmetric under z —
—a:

V(-z) =V(z) implies H(—z)= H(x) (4)

Now consider an eigenstate of the Hamiltonian, a solution of the TISE

H(2)yp(z) = Byp () (5)

where E is a number, the energy eigenvalue. Now replace z by —z in this eigenvalue equation:

H(-x)$p(—z) = Byp(-) (6)

-~

and then use the symmetry of the Hamiltonian to replace H(—z) by H(z),

H(@)pi(—) = Bp(—)| (7)

!The symmetry of the wave functions is only obvious when we choose the origin to be the point about which
the potential is symmetrical. If we were to choose the origin of the infinite square well problem to be at the
left wall of the potential the eigenfuntions would be ¢ g (z) = sinnwz/L,n =1,2,3,4,5,6... for 0 <z < L and
YE(r) =0 for z < 0 and £ > L . This is clearly neither symmetric nor antisymmetric about z = 0 (draw the first
two and see!l), but is about x = L/2, the mid-point or symmetry point of the potential.



Figure 2: Some examples of non-symmetric potentials.



showing that 15 (—x) is also an eigenstate of the Hamiltonian H (z) with the same eigenvalue as
Yp(xz). We have therefore found two solutions of the TISE with the same energy eigenvalue E.
But the solutions of the TISE are unique, at least for the cases we have studied so far, where
for each eigenstate there is a unique energy, eg. E, = n’n2h? /2mL? for the infinite square well.
2 Thus the two eigenfunctions are not independent and can therefore only differ by a numerical
factor, say A,

Yu(-z) = Mr(z) (8)

Now replace z by —z in this equation, and then use this equation again to get rid of ¢ (—x) in
favour of g (x):

Ye(z)

APr(—1)
N (x) (9)

Comparison of the first and last items immediately yields,
A =1 which immediately implies X = %1 (10)

thereby establishing the result promised:

Yis(—) = £ s (o) (11)

viz. that the energy eigenstates are either symmetric or antisymmetric under mirror reflection
about the symmetry point of the potential.

(2) We now establish a result which we shall see repeatedly in general form when we deal
with the angular momentum operators and with the hydrogen atom. First we must introduce
the parity operator P which carries out the mirror reflection on the wave functions; it is defined

by:

Pi(z) L p(—) (12)

First we see that our result above implies that the eigenvalues of P are +1: equation (11) can
be rewritten using the definition of the parity operator to yield

Pyr(z) = £ dp(w) (13)

This is just the statement that the eigenvalue of the parity operator is +1 for symmetric wave
functions and —1 for antisymmetric wave functions; we say that the energy eigenstates are also
parity eigenstates and have parity £1. Thus we see that the energy eigenstates in a
symmetric potential are simultaneously eigenstates of both the Hamiltonian and
the parity operator.

In addition we will now show that the symmetry of the potential implies that P
commutes with the Hamiltonian.
We saw above that ¢ g(—z) is an eigenstate of the Hamiltonian,

(@) pr(—2) = Bp(-a)
ie. H(z)Pygr(x) = FEv¢g(—x) (14)

When there is more than one wave function for a given energy we have degeneracy - the TISE does not have
a unique solution. The result we prove here still holds true, but the proof is a little trickier; see the Appendix to
these notes.




where we used the definition of the parity operator on the left. Now let us operate with P on
both sides of the TISE for ¢ (z),

PH(x)¢Yr(r) = EPyp(x)
= Eyp(—z) (15)
where we used the definition of the parity operator to rewrite the right hand side, which is now

equal to that of the previous equation. We therefore discover that the order of H and P does
not matter:

PH(z)yp(z) = H(@)Pyr(z)
ie. [P,H(z)|Yr(z) = 0 (16)
Since the result holds for any eigenstate, it must hold for the operators alone:
[P, H(x)] =0 (17)
Summary: For a symmetric potential, V(—z) = V(z), and therefore symmetric Hamilto-

nian, H(—z) = H(z),
(a) eigenfunctions of H are simultaneously eigenfunctions of P with eigenvalues +1;
(b) the parity operator P commutes with the Hamiltonian, [P, H(z)] = 0;

Of course these results also hold in 3-dimensions, where the reflection entails reversing all
three components of the coordinate vector r = (z,y,2) = —r = (—z, —y, —2). Two examples
of 3-dimensional symmetric potentials are the escape-proof parallelepiped and central poten-
tials including the coulomb potential for the hydrogen atom; we treat both cases in this course
so you may confirm explicitly that the energy eigenfunctions we obtain do indeed have definite
parity =1, ie. they are simultaneously eigenfunctions of the Hamiltonian and the parity operator.

Generalisation: The above discussion presented the simplest example of the consequences
of invariance or symmetry in QM. The entire discussion can be generalised to any operator
which commutes with the Hamiltonian: eigenstates of energy will also be eigenstates of such
an operator. Indeed, the result can be generalised even further: any two commuting operators
4 We shall meet an example of each of these cases in this course:
the squared orbital angular momentum, L2 commutes with its z—component, EZ, so they have
common eigenstates; and for a central potential L? also commutes with the Hamiltonian: so
eigenstates of L2 are also eigenstates of energy. Thus we will discover that in a central potential,
the energy eigenstates are also eigenstates of L2 and L,.

Observables which commute are known as compatible observables, and their eigenvalues
provide a way of labelling quantum states. A complete set of compatible observables all
commute with each other; their eigenvalues provide a complete set of labels for the quantum
states of the system. For the hydrogen atom (ignoring hyperfine magnetic interactions) the
complete set is {ﬁ, fﬂ, Ez, §z} with eigenvalues { F,,, h?£(£ 4 1), h my, hmy}; the wave functions
are labelled with the quantum numbers corresponding to these eigenvalues, {n, ¢, ms,ms}. We
shall establish all these results later in the course.

have common eigenstates.

*A mathematical point: the eigenstates make up a complete set of functions. This is the expansion theorem
and means that any function may be expanded as a linear combination of energy eigenstates. So the equation
holds for any function, and hence must be a property of the operators alone.

“In fact it is easy to prove that (a) two operators with common a eigenfunction commute; and (b) if two
operators commute they have common eigenfunctions. See Bransden/Joachain p.206 for proofs.



APPENDIX: The case of Degeneracy.

We have degeneracy when distinct quantum states have the same energy. Examples are (a)
the energy eigenstates of the 3-dimensional escape-proof box (parallelepiped) with two or more
equal faces and (b) the spin up and spin down spin states of an electron in the absence of a
magnetic field. In these cases the solutions to the TISE are not unique. The proof is easily
modified to take account of this as follows. Recall that we have found that both g (z) and
g (—1x) are solutions of the same TISE; but if there is degeneracy these wave functions may be
different. In that case all we do is construct the following two states:

Ys(x) = Ye(x)+yYp(—) (18)
Ya(z) = Yr(z) — Pr(-2) (19)

These states
(a) are eigenstates of H () with energy E because they are just linear combinations of eigenstates
with the same eigenvalue - we are using the superposition principle here, a consequence of the
linearity and homogeneity of the TISE;
(b) are states of definite parity, +1 for 15; —1 for 1,.

This therefore proves the result: in the case of degeneracy we can always construct energy
eigenstates of definite parity.®

5Notice that the assumption required to obtain this result is that the Hamiltonian is invariant under z — —z.
It is this assumption which shows that ¢ g(—z) is also a solution of the TISE with the same energy. This will not
happen with a non-symmetric potential for which g (—z) will not be a solution to the TISE. In that case ¢s and
1, will not be solutions to the TISE.



