
QUANTUM MECHANICS B PHY-413 Note Set No. 2

(1) Quantum Mechanics in 3–dimensions: Introduction.

In 3–D quantum mechanics the position and momentum vectors are:

r = (x;y;z) = fxi; i = 1;2;3g (1)bp = (bpx; bpy; bpz) = fbpi; i = 1;2;3g (2)
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The Hamiltonian is the operator

bH(r ;bp) =
bp2
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The 3–D wave function isΨ(r ; t) which obeys the TDSE,

bH(r ;p; t)Ψ(r ; t) = ih̄
∂Ψ(r ; t)

∂t
(8)
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Ψ(r ; t)+V (r ; t)Ψ(r ; t) = ih̄

∂Ψ(r ; t)
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The Born Postulate in 3–D is that

jΨ(r ; t)j2d3x, where d3x � dxdydz � dV ,
is theprobability that ameasurementof the particle’s position
at timet will yield a value lying in the volume elementdV = d3x
at positionr ,

and is therefore normalised to 1, Z
jΨ(r ; t)j2d3x = 1 (11)

i.e.
Z
+∞

�∞

Z
+∞

�∞

Z
+∞

�∞
jΨ(r ; t)j2dxdydz = 1 in cartesian coordinates, (12)

i.e.
Z
+∞

r=0

Z 2π

ϕ=0

Z π

θ=0
jΨ(r ; t)j2r2dr sinθdθdϕ = 1 in spherical polar coordinates, (13)

The canonical commutation relations between position and momentum follow the same rules as in 1D,
with xi not commuting with its ‘fellow’ momentumbpi becausebpi =�ih̄∂=∂xi differentiatesxi; however
xi does commute with any ‘alien’bpj; j 6= i because herexi just acts like a constant:

[x; bpx] = ih̄ (14)

[y; bpy] = ih̄ (15)

[z; bpz] = ih̄ (16)

with all other commutators = 0 (17)
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We can put this succinctly using the kronecker delta symbol,1

[xi; bpj] = ih̄δi j (18)

A consequence of non-commutation are the Heisenberg uncertainty relations:

∆x;∆px �
h̄
2

(19)

∆y;∆py �
h̄
2

(20)

∆z;∆pz �
h̄
2

(21)

(2) The parallelepiped or 3–dimensional escape–proof rectangular box.

Figure 1. The parallelepiped or 3–D
escape–proof rectangular box.
The origin of coordinates is located
at the lower vertex shown with a 0.
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The 3–D version of the 1–D infinite square well is the escape–proof parallelepiped illustrated here with
sides of lengthL1;L2;L3. The corresponding potential is

V (r) = 0 inside, i.e. for 0< (x;y;z) < (L1;L2;L3) (22)

= ∞ on the faces, i.e. for(x;y;z) = 0 and(x;y;z) = (L1;L2;L3) (23)

Since a particle inside the box cannot escape, the probability of finding it outside is zero, hence the wave
function vanishes there

ψ(r) = 0 outside the box. (24)

Inside the box the potential vanishes, with the wave function given by the TISE:

�
h̄2

2m
∇ 2ψ(r) = Eψ(r)

i.e. ∇ 2ψ(r) = �k2ψ(r) (25)

where the real constantk depends on the energy eigenvalue,

k =

r
2mE

h̄2 (26)

1Note that ‘alien’ components of position and momentum may both be measured with 100% precision,provided their
respective momentum and position are not measured at all, i.e. remain 100% uncertain. Thus we can in principle measurex
andpy with 100% accuracy,∆x= 0 and∆py = 0, provided we avoid measuringpx and y.
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A cartesian coordinate system is clearly the most convenient one for applying the boundary conditions.
In cartesians we can separate this TISE into three independent infinite square well problems by looking
for solutions of separable form:

ψ(r) = X(x)Y (y)Z(z); (27)

where each factor is a function of only one of the indicated independent coordinates. Substituting into
the TISE and dividing the equation by�X(x)Y (y)Z(z), yields a suggestive form of the equation:

�
1
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d2X(x)

dx2 �
1

Y (y)
d2Y (y)

dy2 �
1

Z(z)
d2Z(z)

dz2 = k2 (28)

Since each term on the left can be changed independently of the others by varying only its independent
variable, they can only conspire to sum up to the constantk2 if they are each constant:

�
1
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1 (29)

�
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with k2
1+ k2

2+ k2
3 = k2 =

2mE

h̄2 (32)

Each of these equations is identical to that for a 1–D infinite square well. Imposing boundary conditions
yields independent energy quantization in each dimension:

X(x) = N1sin

�
n1π
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x

�
; n1 = 1;2;3: : : and k1 =

n1π
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(33)
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�
; n2 = 1;2;3: : : and k2 =
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z

�
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(35)

Since our solution vanishes outside the box the normalization condition,
R
+∞
�∞ jψ(r)j2 d3x = 1 translates

into
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yielding the neat result,

(N1N2N3) =

r
8

L1L2L3
=

r
8
V

where V = Volume of the box (36)

The normalised energy eigenstates are labelled by the three quantum numbers

ψn1n2n3(r) =

r
8

L1L2L3
sin

�
n1π
L1

x

�
sin

�
n2π
L2

y

�
sin

�
n3π
L3

z

�
(37)

with their energy eigenvalues given by the sum of threeindependent terms,

En1n2n3 =
h̄2π2

2m

�
n2

1

L2
1
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n2

2

L2
2
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3
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3

�
(38)
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Corresponding wavenumbers, expressed in momentum units for later use, are

pi =h̄ki =
h̄π
Li

ni (39)

(3) Energy Levels, Symmetry and Degeneracy.

When all the dimensions of the box are different the energy levels are usually all distinct; this is de-
picted in Figure 2 (with the choiceL1 < L2 < L3 and with energies expressed in units of ¯h2π2=2m). When
there is no coincidence of different energy levels corresponding to different quantum numbers, we say
that the energy levels arenon-degenerate. The lowest energy level always has(n1;n2;n3) = (1;1;1)
denotedE111 – recall that non can be zero, otherwise the wave function would be identically zero. Given
our chosen ordering ofL–values, the next highest energy is obtained by incrementingn3 by one because
the third term in the energy is the smallest: hence the next level corresponds to(n1;n2;n3) = (1;1;2) de-
notedE112. The next highest level depends on how different theL–values are. Assume they don’t differ
very much. In that case the next highest level comes from increasingn2 by one unit, giving a slightly
higher increment from the ground state than would increasingn3; thus the next highest level corresponds
to (n1;n2;n3) = (1;2;1) denotedE121. The next level corresponds to(n1;n2;n3) = (2;1;1) denotedE211.
These are illustrated in Figure 2. The ordering of subsequent levels depends somewhat more on the de-
tails of theL–values; indeed there can be so–calledaccidental degeneracieswhen the squared lengths
are in certain rational ratios. For example, when the ratio(L2=L3)

2 = 8=9, thenEn115 = En134 for all n1.
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Figure 2.

Energy–level diagram (not drawn to scale)

for a particle in an escape-proof 3–D box.

Shown on the right is the dependence on

theni andLi for L1 < L2 < L3.

So far we have discussed the case of a box with different width, breadth and height, i.e. different dimen-
sionsLi. Here the box has the least possiblesymmetry where we find no degeneracies, i.e. no coinciding
energy levels, as illustrated in Figure 2. What happens as we allow the box to become more and more
symmetrical?
Suppose the faces parallel to thex� y plane go from rectangular to square,L1 = L2 < L3. The result is
a symmetry between the quantum numbersn1 andn2: interchanging them does not change the energy.
Of the four lowest levels two become degenerate:E121 = E211. Quantum states aredegeneratewhen
their energies are equal, but their quantum numbers are different. We notice that introduction of greater
symmetry in the geometry of the system or potential – a square base of the box rather than a rectangular
base – gives rise to degeneracy. Conversely, when we go the other way and break the square symmetry of
the base, turning it into a rectangle, welift the degeneracyof the energy levels and they separate. These
phenomena are widespread in nature and the concept is used throughout quantum physics, especially
in the theory of elementary particles. We shall see several important examples in this course including
the two-well model for the H+2 molecular ion, the maser and atoms and molecules in magnetic fields
(Zeeman effect, etc.).
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If we increase the symmetry even further by turning our parallelepiped into a cube with all 6 square
faces identical,L1 = L2 = L3, then the symmetry between the quantum numbersn1 andn2 extends to
n3 also: interchanging any pair leaves the energy unchanged, with three energy levels now degenerate,
E121= E211= E112. These properties are illustrated in the following Figure.
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Figure 3. Lifting degeneracy by symmetry breaking.
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Here we have depicted the process ofdegeneracy lifting by symmetry breaking: starting with a cube,
the parallelepiped with maximum symmetry and the system with the largest amount of degeneracy, we
remove the degeneracy bybreaking the symmetry of the cube by creating more unequal faces. In the
Zeeman effect degeneracy is lifted by applying a magnetic field; this breaks the symmetry of space, mak-
ing one direction of space distinguishable from any other.

(3) Counting Quantum States in a 3–D Box: the Density of States.

In many applications of quantum mechanics to fields as diverse as Statistical Mechanics, Solid State
Physics, Nuclear and Elementary Particle Physics, Astrophysics and Astronomy, it is important to know
thenumber of distinct quantum states, dN(p) in the momentum intervalp! p+dp. From eq. (39),
usingh̄π= h=2, the only allowed quantum states in a cube of sideL have momenta,

px =
h

2L
n1; n1 = 1;2;3; : : : (40)

py =
h

2L
n2; n2 = 1;2;3; : : : (41)

pz =
h

2L
n3; n3 = 1;2;3; : : : (42)

(43)

Each state can be depicted as discrete points in 3–Dmomentum sapcewith coordinates,

p =
h

2L
(n1;n2;n3) (44)

These mark out a cubic lattice of points with tiny lattice spacing,h=2L as depicted in Figure 4a.
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Figure 4a: Allowed quantum states
are points at the vertices of a
cubic lattice in momentum space.
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Figure 4b: Spherical shell in
momentum space with radiusp
and thicknessd p.
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For a macroscopic container a typical size might beL� 10�1m, so that points in momentum space rep-
resenting the allowed quantum states are separated byh=2L � 10�33Jsm�1. This is extremely small on
any relevant scale of momenta: a H atom at 300K has an average momentum around 10�24Jsm�1.We
conclude that the points are so close together that we may treat them as very nearly continuously dis-
tributed in the positive quadrant of momentum space.2

From Figure 4a we observe that each point at the vertex of a cube is shared between 8 cubes, but each

2Positive because the quantum numbersni are positive numbers.
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cube has 8 vertices; therefore there is 1 state per cube, or 1 quantum state in volume(h=2L)3 of momen-
tum space. Thus,there are (2L=h)3 states per unit volume of momentum space.
Now consider the thin spherical shell in Figure 4b occupying the positive quadrant. With thicknessd p
and radiusd p, its total volume is 4πp2d p=8, and so it contains a number of states,

dN(p) =
1
8

4πp2
�

2L
h

�3

(45)

where the last factor is the number of states per unit volume of momentum space. RecognizingL3 = V
as the volume of the box containing the particle, we obtain the final result:

Number of quantum states available to
a particle with momentum in the range
p! p+d p in a box of volumeV is

dN(p) =
V4πp2d p

h3 (46)

This very fundamental result has a simple interpretation: if we call‘phase space’the 6–dimensional
space made up of‘configuration space’(ordinary space), with coordinates(x;y;z), and ‘momentum
space’, with coordinates(px; py; pz), then

V = configuration space volume

4πp2d p = momentum space volume

and dN(p) =
(Phase Space Volume)

h3

i.e. there is one allowed quantum state for every volumeh3 of 6–D phase space.
Notice that in the classical limith ! 0, there are infinitely many allowed states in any finite volume of
phase space: in this case the energy levels are continuous and not quantized.
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