PART 1: INTRODUCTION TO TENSOR CALCULUS

A scalar field describes a one-to-one correspondence between a single scalar number and a point. An n-
dimensional vector field is described by a one-to-one correspondence between n-numbers and a point. Let us
generalize these concepts by assigning n-squared numbers to a single point or n-cubed numbers to a single
point. When these numbers obey certain transformation laws they become examples of tensor fields. In
general, scalar fields are referred to as tensor fields of rank or order zero whereas vector fields are called
tensor fields of rank or order one.

Closely associated with tensor calculus is the indicial or index notation. In section 1 the indicial
notation is defined and illustrated. We also define and investigate scalar, vector and tensor fields when they
are subjected to various coordinate transformations. It turns out that tensors have certain properties which
are independent of the coordinate system used to describe the tensor. Because of these useful properties,
we can use tensors to represent various fundamental laws occurring in physics, engineering, science and
mathematics. These representations are extremely useful as they are independent of the coordinate systems

considered.

§1.1 INDEX NOTATION

Two vectors A and B can be expressed in the component form
A= A6 + Ayé, + Asgés and B = B1 6, + By &, + B3 63,

where €1, € and €3 are orthogonal unit basis vectors. Often when no confusion arises, the vectors A and

B are expressed for brevity sake as number triples. For example, we can write

—

/TZ (Al, A27 Ag) and B = (Bl, BQ7 Bg)

where it is understood that only the components of the vectors A and B are given. The unit vectors would
be represented
61 :(15070)5 62:(05170)5 63:(07051)

A still shorter notation, depicting the vectors A and B is the index or indicial notation. In the index notation,
the quantities
A, i=1,2,3 and B, p=123

represent the components of the vectors A and B. This notation focuses attention only on the components of
the vectors and employs a dummy subscript whose range over the integers is specified. The symbol A; refers
to all of the components of the vector A simultaneously. The dummy subscript ¢ can have any of the integer
values 1,2 or 3. For ¢ = 1 we focus attention on the A; component of the vector A. Setting i = 2 focuses
attention on the second component As of the vector A and similarly when ¢ = 3 we can focus attention on
the third component of A. The subscript ¢ is a dummy subscript and may be replaced by another letter, say

p, so long as one specifies the integer values that this dummy subscript can have.



It is also convenient at this time to mention that higher dimensional vectors may be defined as ordered
n—tuples. For example, the vector
X =(X1,Xo,...,XnN)
with components X;, i =1,2,..., N is called a N—dimensional vector. Another notation used to represent
this vector is

X=X18 +Xo8 +-- + Xnéy

where

€1, €2,..., €en

are linearly independent unit base vectors. Note that many of the operations that occur in the use of the
index notation apply not only for three dimensional vectors, but also for N—dimensional vectors.

In future sections it is necessary to define quantities which can be represented by a letter with subscripts
or superscripts attached. Such quantities are referred to as systems. When these quantities obey certain
transformation laws they are referred to as tensor systems. For example, quantities like

k " , .
Aij 6” (Sij (53 A Bj Q-
The subscripts or superscripts are referred to as indices or suffixes. When such quantities arise, the indices
must conform to the following rules:
1. They are lower case Latin or Greek letters.

2. The letters at the end of the alphabet (u,v,w,x,y, z) are never employed as indices.

The number of subscripts and superscripts determines the order of the system. A system with one index
is a first order system. A system with two indices is called a second order system. In general, a system with
N indices is called a Nth order system. A system with no indices is called a scalar or zeroth order system.

The type of system depends upon the number of subscripts or superscripts occurring in an expression.

m

™, (all indices range 1 to N), are of the same type because they have the same

For example, Aék and B
number of subscripts and superscripts. In contrast, the systems A;-k and C'" are not of the same type
because one system has two superscripts and the other system has only one superscript. For certain systems
the number of subscripts and superscripts is important. In other systems it is not of importance. The
meaning and importance attached to sub- and superscripts will be addressed later in this section.

In the use of superscripts one must not confuse “powers "of a quantity with the superscripts. For
example, if we replace the independent variables (z,,z) by the symbols (z!, 22, z%), then we are letting
y = 2% where z? is a variable and not x raised to a power. Similarly, the substitution z = 2® is the
replacement of z by the variable 2® and this should not be confused with z raised to a power. In order to
write a superscript quantity to a power, use parentheses. For example, (m2)3 is the variable 2 cubed. One
of the reasons for introducing the superscript variables is that many equations of mathematics and physics
can be made to take on a concise and compact form.

There is a range convention associated with the indices. This convention states that whenever there
is an expression where the indices occur unrepeated it is to be understood that each of the subscripts or

superscripts can take on any of the integer values 1,2,..., N where NV is a specified integer. For example,



the Kronecker delta symbol d;;, defined by d;; = 1 if ¢ = j and d;; = 0 for ¢ # j, with ¢, j ranging over the

values 1,2,3, represents the 9 quantities

=1 d12=0 013 =10

021 =0 do2 =1 023 =0

031 =0 632 =0 033 = 1.
The symbol d;; refers to all of the components of the system simultaneously. As another example, consider
the equation

€ €, = Omn m,n=1,2,3 (1.1.1)
the subscripts m, n occur unrepeated on the left side of the equation and hence must also occur on the right
hand side of the equation. These indices are called “free ”indices and can take on any of the values 1,2 or 3

as specified by the range. Since there are three choices for the value for m and three choices for a value of

n we find that equation (1.1.1) represents nine equations simultaneously. These nine equations are

e;-e =1 e;-ex=0 e;-e3=0
/ég 61—0 /ég~/ég—]. /ég 63—0
63 61—0 8362—0 63 63—1

Symmetric and Skew-Symmetric Systems

A system defined by subscripts and superscripts ranging over a set of values is said to be symmetric
in two of its indices if the components are unchanged when the indices are interchanged. For example, the

third order system Tjj;, is symmetric in the indices ¢ and k if
Tiji = Ty  for all values of 4, j and k.

A system defined by subscripts and superscripts is said to be skew-symmetric in two of its indices if the
components change sign when the indices are interchanged. For example, the fourth order system Tjjx; is

skew-symmetric in the indices 7 and [ if
Tiji = =Ty for all values of 75k and [.

As another example, consider the third order system aups, p,7,5 = 1,2,3 which is completely skew-

symmetric in all of its indices. We would then have
Qprs = —Qpsr = Aspr = —Agsrp = Qrsp = —Qrps-

It is left as an exercise to show this completely skew- symmetric systems has 27 elements, 21 of which are
zero. The 6 nonzero elements are all related to one another thru the above equations when (p, r, s) = (1,2, 3).

This is expressed as saying that the above system has only one independent component.



Summation Convention

The summation convention states that whenever there arises an expression where there is an index which
occurs twice on the same side of any equation, or term within an equation, it is understood to represent a
summation on these repeated indices. The summation being over the integer values specified by the range. A
repeated index is called a summation index, while an unrepeated index is called a free index. The summation
convention requires that one must never allow a summation index to appear more than twice in any given
expression. Because of this rule it is sometimes necessary to replace one dummy summation symbol by
some other dummy symbol in order to avoid having three or more indices occurring on the same side of
the equation. The index notation is a very powerful notation and can be used to concisely represent many
complex equations. For the remainder of this section there is presented additional definitions and examples
to illustrated the power of the indicial notation. This notation is then employed to define tensor components

and associated operations with tensors.

EXAMPLE 1.1-1 The two equations

Y1 = 1121 + a12%2
Y2 = Q21%1 + 2272

can be represented as one equation by introducing a dummy index, say k, and expressing the above equations
as

Yk = Qp1T1 + QK2T2, k=1,2.

The range convention states that k is free to have any one of the values 1 or 2, (k is a free index). This
equation can now be written in the form

2
Yk = E 0ki%; = Ak1T1 + Ak2T2
i=1
where 7 is the dummy summation index. When the summation sign is removed and the summation convention
is adopted we have

Y = QkiTq ka =1,2.

Since the subscript ¢ repeats itself, the summation convention requires that a summation be performed by
letting the summation subscript take on the values specified by the range and then summing the results.
The index k which appears only once on the left and only once on the right hand side of the equation is
called a free index. It should be noted that both k& and 7 are dummy subscripts and can be replaced by other
letters. For example, we can write

Yn = AnmTm n,m=1,2

where m is the summation index and n is the free index. Summing on m produces
Yn = Gn1%1 + Ap2T2

and letting the free index n take on the values of 1 and 2 we produce the original two equations.



EXAMPLE 1.1-2. For y; = asxj, ¢,5 = 1,2,3 and z; = byj2;, 9,5 = 1,2,3 solve for the y variables in
terms of the z variables.

Solution: In matrix form the given equations can be expressed:

Y1 ail1 a2 ais 1 T bir b2 bi3 21
y2 | = | a21 a2 a3 T and T2 | = | bar b2z b3 29
Y3 a1 asz ass T3 z3 b31 b3z b33 23

Now solve for the y variables in terms of the z variables and obtain

Y1 ail a2 ais bii b2 b3 21
Yo | = | az1 a2 ao3 ba1  baa  bas 29
Y3 az1 azz as3 b31 b3z bs3 23

The index notation employs indices that are dummy indices and so we can write
Yn = OpmTm, n,m=1,2,3 and =z, =bp;z;, m,j=12,3.

Here we have purposely changed the indices so that when we substitute for x,,, from one equation into the
other, a summation index does not repeat itself more than twice. Substituting we find the indicial form of
the above matrix equation as

Yn = anmbmjzj; mvnaj = 1a273

where n is the free index and m,j are the dummy summation indices. It is left as an exercise to expand
both the matrix equation and the indicial equation and verify that they are different ways of representing

the same thing.

EXAMPLE 1.1-3. The dot product of two vectors A,, ¢ =1,2,3 and By, j = 1,2,3 can be represented
with the index notation by the product A4;B; = ABcosf i = 1,2,3, A = |14T|, B = |§| Since the
subscript 4 is repeated it is understood to represent a summation index. Summing on i over the range
specified, there results

A1By + Ay By + A3Bs = ABcosé.

Observe that the index notation employs dummy indices. At times these indices are altered in order to
conform to the above summation rules, without attention being brought to the change. As in this example,
the indices ¢ and j are dummy indices and can be changed to other letters if one desires. Also, in the future,

if the range of the indices is not stated it is assumed that the range is over the integer values 1,2 and 3.

To systems containing subscripts and superscripts one can apply certain algebraic operations. We

present in an informal way the operations of addition, multiplication and contraction.



Addition, Multiplication and Contraction

The algebraic operation of addition or subtraction applies to systems of the same type and order. That
is we can add or subtract like components in systems. For example, the sum of A;k and B;»k is again a
system of the same type and is denoted by C’;k = A; e+ B;k, where like components are added.

The product of two systems is obtained by multiplying each component of the first system with each
component of the second system. Such a product is called an outer product. The order of the resulting
product system is the sum of the orders of the two systems involved in forming the product. For example,
if A;- is a second order system and B™™ is a third order system, with all indices having the range 1 to N,
then the product system is fifth order and is denoted C’;m"l = A;Bm"l. The product system represents N°
terms constructed from all possible products of the components from A; with the components from B™™.

The operation of contraction occurs when a lower index is set equal to an upper index and the summation
convention is invoked. For example, if we have a fifth order system C;m"l and we set ¢ = j and sum, then

we form the system

omnl — ijmnl _ C«llmnl + CQanl 4ot C]]\\/[mnl

Here the symbol C™ is used to represent the third order system that results when the contraction is
performed. Whenever a contraction is performed, the resulting system is always of order 2 less than the
original system. Under certain special conditions it is permissible to perform a contraction on two lower case
indices. These special conditions will be considered later in the section.

The above operations will be more formally defined after we have explained what tensors are.

The e-permutation symbol and Kronecker delta

Two symbols that are used quite frequently with the indicial notation are the e-permutation symbol
and the Kronecker delta. The e-permutation symbol is sometimes referred to as the alternating tensor. The
e-permutation symbol, as the name suggests, deals with permutations. A permutation is an arrangement of
things. When the order of the arrangement is changed, a new permutation results. A transposition is an
interchange of two consecutive terms in an arrangement. As an example, let us change the digits 123 to
321 by making a sequence of transpositions. Starting with the digits in the order 123 we interchange 2 and
3 (first transposition) to obtain 13 2. Next, interchange the digits 1 and 3 ( second transposition) to obtain
312. Finally, interchange the digits 1 and 2 (third transposition) to achieve 32 1. Here the total number
of transpositions of 123 to 321 is three, an odd number. Other transpositions of 123 to 321 can also be

written. However, these are also an odd number of transpositions.



EXAMPLE 1.1-4. The total number of possible ways of arranging the digits 123 is six. We have
three choices for the first digit. Having chosen the first digit, there are only two choices left for the second
digit. Hence the remaining number is for the last digit. The product (3)(2)(1) = 3! = 6 is the number of
permutations of the digits 1,2 and 3. These six permutations are

123 even permutation

132 odd permutation

312 even permutation

321 odd permutation

231 even permutation

213 odd permutation.
Here a permutation of 123 is called even or odd depending upon whether there is an even or odd number
of transpositions of the digits. A mnemonic device to remember the even and odd permutations of 123
is illustrated in the figure 1.1-1. Note that even permutations of 123 are obtained by selecting any three

consecutive numbers from the sequence 123123 and the odd permutations result by selecting any three

consecutive numbers from the sequence 321321.

1 1
+ —
3 2
L 2 3 =
123123 321321

Figure 1.1-1. Permutations of 123.

In general, the number of permutations of n things taken m at a time is given by the relation
Pn,m)=nn—-1)(n—-2)---(n—m+1).

By selecting a subset of m objects from a collection of n objects, m < n, without regard to the ordering is
called a combination of n objects taken m at a time. For example, combinations of 3 numbers taken from
the set {1,2,3,4} are (123), (124), (134), (234). Note that ordering of a combination is not considered. That

is, the permutations (123),(132), (231), (213), (312), (321) are considered equal. In general, the number of
n!

n
combinations of n objects taken m at a time is given by C(n,m) = ( ) = ————— where () are the
m m!(n —m)! m

binomial coefficients which occur in the expansion

e =3 (")



The definition of permutations can be used to define the e-permutation symbol.

Definition: (e-Permutation symbol or alternating tensor)

The e-permutation symbol is defined

1 if ¢jk...1 is an even permutation of the integers 123...n
ekl — €ijk.g =14 —1 if ijk...1 is an odd permutation of the integers 123...n
0 in all other cases

EXAMPLE 1.1-5. Find €612453-
Solution: To determine whether 612453 is an even or odd permutation of 123456 we write down the given

numbers and below them we write the integers 1 through 6. Like numbers are then connected by a line and

we obtain figure 1.1-2.

/><\

1 2 3 4 5 6

Figure 1.1-2. Permutations of 123456.

In figure 1.1-2, there are seven intersections of the lines connecting like numbers. The number of

intersections is an odd number and shows that an odd number of transpositions must be performed. These

results imply eg12453 = —1.
| |

Another definition used quite frequently in the representation of mathematical and engineering quantities

is the Kronecker delta which we now define in terms of both subscripts and superscripts.

Definition: (Kronecker delta) The Kronecker delta is defined:

5 5 { 1 if 7 equals j

0 if 7 is different from j




EXAMPLE 1.1-6. Some examples of the e—permutation symbol and Kronecker delta are:

€123 = el?3 = +1 (5% =1 612 =0
€213 = 6213 =-1 5% =0 (522 =1
€112 = 6112 =0 5; =0 (532 =0.

EXAMPLE 1.1-7. When an index of the Kronecker delta ¢;; is involved in the summation convention,

the effect is that of replacing one index with a different index. For example, let a;; denote the elements of an

N x N matrix. Here 7 and j are allowed to range over the integer values 1,2,..., N. Consider the product
@i; 05k
where the range of 4, j, kis 1,2,..., N. The index ¢ is repeated and therefore it is understood to represent

a summation over the range. The index 7 is called a summation index. The other indices j and k are free
indices. They are free to be assigned any values from the range of the indices. They are not involved in any
summations and their values, whatever you choose to assign them, are fixed. Let us assign a value of j and
k to the values of j and k. The underscore is to remind you that these values for j and k are fixed an;l not
t_o be summed. When we perform the summation over the summation index i we assign values to ¢ from the

range and then sum over these values. Performing the indicated summation we obtain

aij0ik = 101k + 202k + -+ + agjopk + - + an;ONk-

In this summation the Kronecker delta is zero everywhere the subscripts are different and equals one where
the subscripts are the same. There is only one term in this summation which is nonzero. It is that term

where the summation index ¢ was equal to the fixed value k This gives the result

arjOke =

where the underscore is to remind you that the quantities have fixed values and are not to be summed.
Dropping the underscores we write

aijik = g
Here we have substituted the index 7 by k and so when the Kronecker delta is used in a summation process
it is known as a substitution operator. This substitution property of the Kronecker delta can be used to
simplify a variety of expressions involving the index notation. Some examples are:
B;jdjs = Bis
5jk5km = 5jm
eijk(sim(sjnékp = €mnp-
Some texts adopt the notation that if indices are capital letters, then no summation is to be performed.

For example,

agjOKK = QK]
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as 0x i represents a single term because of the capital letters. Another notation which is used to denote no

summation of the indices is to put parenthesis about the indices which are not to be summed. For example,

(k) O (k) (k) = Qg

since d(x)(r) represents a single term and the parentheses indicate that no summation is to be performed.
At any time we may employ either the underscore notation, the capital letter notation or the parenthesis
notation to denote that no summation of the indices is to be performed. To avoid confusion altogether, one

can write out parenthetical expressions such as “(no summation on k)”.
|
EXAMPLE 1.1-8. In the Kronecker delta symbol 6; we set 7 equal to ¢ and perform a summation. This

operation is called a contraction. There results 6¢, which is to be summed over the range of the index i.

Utilizing the range 1,2,..., N we have

0L =01 +02 440N

Si=1+1+4-+1
5t = N.

In three dimension we have 5;-, 1,7 =1,2,3 and
8p =01 + 05 + 05 = 3.
In certain circumstances the Kronecker delta can be written with only subscripts. For example,

5ij7

indices so that d;; = 3.

1,7 = 1,2,3. We shall find that these circumstances allow us to perform a contraction on the lower

EXAMPLE 1.1-9. The determinant of a matrix A = (a;;) can be represented in the indicial notation.

Employing the e-permutation symbol the determinant of an N x N matrix is expressed
|A| = eij.. kaiiaz; -+ an
where e;;.. 1 is an Nth order system. In the special case of a 2 x 2 matrix we write
Al = eijariaz;

where the summation is over the range 1,2 and the e-permutation symbol is of order 2. In the special case
of a 3 x 3 matrix we have

ail a2 a3

|A| =|0a21 Q22 G23| = €ijkA;1A520k3 = €4;kA1;02;A3k
aszr azz2 as3

where 1, j, k are the summation indices and the summation is over the range 1,2,3. Here e;j; denotes the

e-permutation symbol of order 3. Note that by interchanging the rows of the 3 x 3 matrix we can obtain



more general results. Consider (p,q,r) as some permutation of the integers (1,2,3), and observe that the
determinant can be expressed
ap1  Gp2  Qp3
A=|agq Gg2 ag3|=€ijkapiQq;Grk-
ar1  Qr2  Gr3
If (p,q,r) 1is an even permutation of (1,2,3) then A = |A]
If (p,q,r) 1isan odd permutation of (1,2,3) then A =—|A]
If (p,q,r) isnot a permutation of (1,2,3) then A=0.
We can then write
€ijkpitqjark = Epgr|Al.
Each of the above results can be verified by performing the indicated summations. A more formal proof of
the above result is given in EXAMPLE 1.1-25, later in this section.
|
EXAMPLE 1.1-10. The expression e;j,B;;C; is meaningless since the index ¢ repeats itself more than
twice and the summation convention does not allow this. If you really did want to sum over an index which
occurs mgre than twice, then one must use a summation sign. For example the above expression would be
written Z ek Bi; C;.

i=1

EXAMPLE 1.1-11.

The cross product of the unit vectors €;, €,, €3 can be represented in the index notation by

e if (4, j, k) is an even permutation of (1,2, 3)
€, X € =< —¢€ if (4, j, k) is an odd permutation of (1,2, 3)
0 in all other cases

This result can be written in the form €; x € = ekij €j,. This later result can be verified by summing on the

index k£ and writing out all 9 possible combinations for ¢ and j.

EXAMPLE 1.1-12.  Given the vectors A4,, p =1,2,3 and B,, p = 1,2, 3 the cross product of these two

vectors is a vector Cp, p = 1,2,3 with components
Ci = eijrAjB, 1,j,k=1,2,3. (1.1.2)
The quantities C; represent the components of the cross product vector
C=AxB=0C18 +Cy8 +C383.

The equation (1.1.2), which defines the components of C , is to be summed over each of the indices which

repeats itself. We have summing on the index k

C/L' = eilejBl + eijQAjBQ + 6ij3AjB3. (113)

11
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We next sum on the index j which repeats itself in each term of equation (1.1.3). This gives
Ci = ei11A1B1 + ei21 A2 By + €31 A3 By
+ 1241 Ba + €j20A42Bo + €30 A3 B (1.1.4)
+ei13A1 B3 + €23 A2 B3 + €33 A3 B3.

Now we are left with ¢ being a free index which can have any of the values of 1,2 or 3. Letting ¢ = 1, then

letting 7 = 2, and finally letting 4 = 3 produces the cross product components

C1 = AyBs — A3By
Cy = A3By — A1 B3
C3 = A1By — A3B;y.

The cross product can also be expressed in the form Ax B = eijiAj By €;. This result can be verified by

summing over the indices 7,5 and k.

EXAMPLE 1.1-13. Show
eijk = —eikj = ejki for i,j, k= ]., 2, 3

Solution: The array ¢ k j represents an odd number of transpositions of the indices ¢ j k& and to each
transposition there is a sign change of the e-permutation symbol. Similarly, j k£ i is an even transposition
of i j k and so there is no sign change of the e-permutation symbol. The above holds regardless of the

numerical values assigned to the indices i, j, k.

The e-§ Identity

An identity relating the e-permutation symbol and the Kronecker delta, which is useful in the simpli-
fication of tensor expressions, is the e-¢ identity. This identity can be expressed in different forms. The

subscript form for this identity is
€ijk€imn = 6jm5kn _5]n6kmv i7j7k7m,n: 1a273

where 7 is the summation index and j, k, m,n are free indices. A device used to remember the positions of
the subscripts is given in the figure 1.1-3.
The subscripts on the four Kronecker delta’s on the right-hand side of the e-§ identity then are read

(first) (second)-(outer)(inner).

This refers to the positions following the summation index. Thus, j,m are the first indices after the sum-
mation index and k,n are the second indices after the summation index. The indices j,n are outer indices
when compared to the inner indices k, m as the indices are viewed as written on the left-hand side of the

identity.
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outer

inner

s
~
=
=

first

second

Figure 1.1-3. Mnemonic device for position of subscripts.

Another form of this identity employs both subscripts and superscripts and has the form

IR eimn = 63 6% — 51 5k (1.1.5)

m-n n-m:*

One way of proving this identity is to observe the equation (1.1.5) has the free indices j, k, m,n. Each
of these indices can have any of the values of 1,2 or 3. There are 3 choices we can assign to each of j, k,m
or n and this gives a total of 3* = 81 possible equations represented by the identity from equation (1.1.5).
By writing out all 81 of these equations we can verify that the identity is true for all possible combinations
that can be assigned to the free indices.

An alternate proof of the e — § identity is to consider the determinant

st sl sl |1 0 o0
&2 & 62|=l0 1 o|=1
& & 6 |00 1

By performing a permutation of the rows of this matrix we can use the permutation symbol and write

o % O
8 & 8| =eit
o0f 0F of

By performing a permutation of the columns, we can write

5. 0y 0 )
6 0 8| =eey.
oy oF of

Now perform a contraction on the indices ¢ and r to obtain

o oL o B
67 61 8| =eFey.
of 0% oF

Summing on i we have §! = 61 + 63 + 03 = 3 and expand the determinant to obtain the desired result

616k — 5168 = ke,
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Generalized Kronecker delta

The generalized Kronecker delta is defined by the (n x n) determinant

i i i
§m 57_’ R 61?
K Y AR B ¥ |
(5”]6 _ m n P
mn...p
k k k
L O L
For example, in three dimensions we can write
i iosi
O On  Op
" ! ! , "
Spnip = | Ot 6% 0p | = €7 ey
k ko sk
Om  On Op

Performing a contraction on the indices & and p we obtain the fourth order system
rs __ TS __.rs _ TS __ ST S V]
oy = (5mﬁp =e"Pennp = e’ P epmn = 0,0, — 6,65,

As an exercise one can verify that the definition of the e-permutation symbol can also be defined in terms

of the generalized Kronecker delta as
123N
€12z in = 5j1j2j3"'jN'
Additional definitions and results employing the generalized Kronecker delta are found in the exercises.
In section 1.3 we shall show that the Kronecker delta and epsilon permutation symbol are numerical tensors

which have fixed components in every coordinate system.

Additional Applications of the Indicial Notation

The indicial notation, together with the e — ¢ identity, can be used to prove various vector identities.

EXAMPLE 1.1-14. Show, using the index notation, that AxB=-Bx A

Solution: Let . L
C=AxB=C1e +Csey+ Cse3z=C;¢e; and let

BZEXE: D181+D262+D3€3:Di/éi.

We have shown that the components of the cross products can be represented in the index notation by
Ci = eijkAjBk and .Dz = eijkBjAk.

We desire to show that D; = —C; for all values of i. Consider the following manipulations: Let B; = Bd,;
and A = A, and write

Di = eijkBjAk = eijkBsésjAmémk (116)

where all indices have the range 1,2,3. In the expression (1.1.6) note that no summation index appears
more than twice because if an index appeared more than twice the summation convention would become

meaningless. By rearranging terms in equation (1.1.6) we have

D; = eijkésjékasAm = €ismBsAm.



In this expression the indices s and m are dummy summation indices and can be replaced by any other

letters. We replace s by k and m by j to obtain
Di = eiijjBk = —eijkAjBk = —Ci.

Consequently, we find that D=-CorBxA=—AxB. Thatis, D=D,; ¢, = —C;& =—C.
Note 1. The expressions
Ci = eijkAjBk and Cm = emnpAan

with all indices having the range 1,2, 3, appear to be different because different letters are used as sub-
scripts. It must be remembered that certain indices are summed according to the summation convention
and the other indices are free indices and can take on any values from the assigned range. Thus, after
summation, when numerical values are substituted for the indices involved, none of the dummy letters
used to represent the components appear in the answer.

Note 2. A second important point is that when one is working with expressions involving the index notation,
the indices can be changed directly. For example, in the above expression for D; we could have replaced

j by k and k by j simultaneously (so that no index repeats itself more than twice) to obtain
Di = eijkBjAk = eiijkAj = —eijkAjBk = —Ci.

Note 3. Be careful in switching back and forth between the vector notation and index notation. Observe that a
vector A can be represented
A= Ai 61-

or its components can be represented
A& =4;, i=1,23.

Do not set a vector equal to a scalar. That is, do not make the mistake of writing A = A; as this is a
misuse of the equal sign. It is not possible for a vector to equal a scalar because they are two entirely

different quantities. A vector has both magnitude and direction while a scalar has only magnitude.

EXAMPLE 1.1-15.  Verify the vector identity

— —

A.-(BxC)=B-(CxA)

Solution: Let

—

BxC=D=D,ég; where D; = e;j1B;Cy, and let
CxA=F=Fg where F; =e€;;C; Ay
where all indices have the range 1,2, 3. To prove the above identity, we have
A (BxC)=A-D=A;D; = Ajeijx B;Cy,
= Bj(e;js AiCk)
= Bj(ejriCrAi)

15
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since e;j1 = €;1;. We also observe from the expression
Fy = e C Ay

that we may obtain, by permuting the symbols, the equivalent expression
F; = ejriCrA;.

This allows us to write

which was to be shown.

The quantity A (é x C ) is called a triple scalar product. The above index representation of the triple

scalar product implies that it can be represented as a determinant (See example 1.1-9). We can write

L A1 Ay A
A- (B X C) = Bl B2 B3 = eijkAiBjCk
Ci Cy Cj

A physical interpretation that can be assigned to this triple scalar product is that its absolute value represents
the volume of the parallelepiped formed by the three noncoplaner vectors /_1',33 , C. The absolute value is
needed because sometimes the triple scalar product is negative. This physical interpretation can be obtained

from an analysis of the figure 1.1-4.

e A

€n

b\

\

\
a

~
=l
-

Figure 1.1-4. Triple scalar product and volume



In figure 1.1-4 observe that: (i) |B x C| is the area of the parallelogram PQRS. (ii) the unit vector

)
&
Q

X

e, =

sol
Q

X
is normal to the plane containing the vectors Band C. (iii) The dot product

A&, = |4 B2
|B x C|

equals the projection of Aon €, which represents the height of the parallelepiped. These results demonstrate
that

—

‘A- (B x C_")‘ = |B x C| h = (area of base)(height) = volume.

EXAMPLE 1.1-16.  Verify the vector identity
(Ax B)x (CxD)=C(D-AxB)—D(C-Ax B)

Solution: Let F = A x B = F;e; and E=CxD= E;e;. These vectors have the components

F; = eijiAj By and En = emnpCnDp
where all indices have the range 1,2, 3. The vector G=FxE-= G;€; has the components

Gq = eqimFiEm = eqim€ijkemnpA; BrCpnDp.
From the identity egim = emqi this can be expressed

Gq = (emqi€mnp)eijkA; BrCpnDp
which is now in a form where we can use the e — § identity applied to the term in parentheses to produce
Gq = (0gnbip — dgplin)eijnAj BiCp Dp.

Simplifying this expression we have:

Gq = eiji [(Dpdip) (Cndgn) Aj Bk — (Dpdp)(Cndin) A; Bi]
= eijk [chquBk — DinAjBk]
= Cq[DieijuAjB] — Dy [CieijrA; Bi]

which are the vector components of the vector

C(D-Ax B)—D(C-Ax B).

17
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Transformation Equations

Consider two sets of IV independent variables which are denoted by the barred and unbarred symbols
7' and 2° with 4 = 1,..., N. The independent variables z*,i = 1,..., N can be thought of as defining
the coordinates of a point in a N —dimensional space. Similarly, the independent barred variables define a
point in some other N—dimensional space. These coordinates are assumed to be real quantities and are not

complex quantities. Further, we assume that these variables are related by a set of transformation equations.
=24z, 72,...,7Y)  i=1,...,N. (1.1.7)

It is assumed that these transformation equations are independent. A necessary and sufficient condition that
these transformation equations be independent is that the Jacobian determinant be different from zero, that

is

dz! Azt . dz!

ozt 0z? ozN

T Ot Bch 8%2 ... 02

— — =N

J(:) =|—= o o oT 750

T oxJ . . .

oz 9z 9z

T o o

This assumption allows us to obtain a set of inverse relations
T =7 (2,22, ... 2N) i=1,...,N, (1.1.8)

where the T's are determined in terms of the x’s. Throughout our discussions it is to be understood that the
given transformation equations are real and continuous. Further all derivatives that appear in our discussions

are assumed to exist and be continuous in the domain of the variables considered.

EXAMPLE 1.1-17. The following is an example of a set of transformation equations of the form
defined by equations (1.1.7) and (1.1.8) in the case N = 3. Consider the transformation from cylindrical
coordinates (7, o, z) to spherical coordinates (p, 5, ). From the geometry of the figure 1.1-5 we can find the

transformation equations
r=psinf

o=« O<a<2r

z=pcosf 0<pg<m

p=Vr2+ 22

a =«

with inverse transformation

8= arctan(g)

Now make the substitutions

(¢',2%,2%) = (rna,z)  and  (@,7%,7%) = (p, 6, 0).



Figure 1.1-5. Cylindrical and Spherical Coordinates

The resulting transformations then have the forms of the equations (1.1.7) and (1.1.8).

Calculation of Derivatives

We now consider the chain rule applied to the differentiation of a function of the bar variables. We
represent this differentiation in the indicial notation. Let ® = ®(Z',Z?2,...,7") be a scalar function of the
variables T, i =1,..., N and let these variables be related to the set of variables z*, with i =1,..., N by
the transformation equations (1.1.7) and (1.1.8). The partial derivatives of ® with respect to the variables
x* can be expressed in the indicial notation as

00 _ovor _ovor  ovor | ov ox¥
ozt ox Ort ozt Ort  0x? Ot oz Ozt

for any fixed value of i satisfying 1 <7 < N.

(1.1.9)

The second partial derivatives of ® can also be expressed in the index notation. Differentiation of

m

equation (1.1.9) partially with respect to ™ produces

’e e 0T o [0®] ox
dridx™ 9z Oxidx™ = dx™ |07 | Ozt

This result is nothing more than an application of the general rule for differentiating a product of two

(1.1.10)

quantities. To evaluate the derivative of the bracketed term in equation (1.1.10) it must be remembered that

the quantity inside the brackets is a function of the bar variables. Let

P
G= % =G 72,...,7Y)

to emphasize this dependence upon the bar variables, then the derivative of G is

oG oG Oz 82e  ozF
Tom = 5 B~ TToeF D (1.1.11)

This is just an application of the basic rule from equation (1.1.9) with ® replaced by G. Hence the derivative

from equation (1.1.10) can be expressed
e 09 0w 9’® oz’ oz*
Oxidz™ 9z’ Ox'dx™ = §TI 9T Ozt O™

where i, m are free indices and j, k are dummy summation indices.

(1.1.12)

19
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EXAMPLE 1.1-18.  Let ® = ®(r, 0) where r, § are polar coordinates related to the Cartesian coordinates
0?®

x Ox?
Solution: The partial derivative of ® with respect to x is found from the relation (1.1.9) and can be written

0P
(z,y) by the transformation equations = r cos 6 y = rsin 6. Find the partial derivatives —  and

ob 9P or 0P 00
— =t ——. 1.1.1

9x _ Or oz | 90 0z (1.1.13)
The second partial derivative is obtained by differentiating the first partial derivative. From the product

rule for differentiation we can write

2 2 2
e 9P O 87"8{8_@} 0 6°6 898[8_@]. (1114)

022~ 0r0a® 0z dx |or] " 90 0x° " 0w oz |06
To further simplify (1.1.14) it must be remembered that the terms inside the brackets are to be treated as

functions of the variables r and 8 and that the derivative of these terms can be evaluated by reapplying the

basic rule from equation (1.1.13) with ® replaced by %—f and then ® replaced by %—3- This gives

2o _op i or [P0or 0 0
dx2  Or 8xz2  Ox | Or2 Bz Ordl Ox

1.1.15
0v 0% 00 [ 0% 0r 0% 00 e
00 9z2  Ox |000r 0z = 062 Oz |’
From the transformation equations we obtain the relations 72 = z2 41> and tan® = 2 and from

x
these relations we can calculate all the necessary derivatives needed for the simplification of the equations
(1.1.13) and (1.1.15). These derivatives are:

27‘%:2% or %:_:COSH
secQ@@——i or 99y _ _sinf
or a2 or 2 r
& — —sin@ﬁ — sin” 0 @ _ —rcosf22 +sinHo” _ 2sinfcosd
Ox? ox r o2 r2 2 .

Therefore, the derivatives from equations (1.1.13) and (1.1.15) can be expressed in the form

oP 0 0P sin 0
ax or YT e
2 9Psin?0 0P sinfcoshd 92 9

5 o o lag 2 g eesiT?

92® cosfsinb N 82_<I> sin? 0
orof r 002 2

By letting ! = r, 2 = 0, ' = x, 2% = y and performing the indicated summations in the equations (1.1.9)

and (1.1.12) there is produced the same results as above.

Vector Identities in Cartesian Coordinates

1 3

Employing the substitutions 2! = z, 22 = y, 2> = 2, where superscript variables are employed and
denoting the unit vectors in Cartesian coordinates by €1, €2, €3, we illustrated how various vector operations

are written by using the index notation.



Gradient. [y Cartesian coordinates the gradient of a scalar field is

The index notation focuses attention only on the components of the gradient. In Cartesian coordinates these

components are represented using a comma subscript to denote the derivative

9¢

e;j-gradg = ¢ ; = Pk

j=1,2,3.

The comma notation will be discussed in section 4. For now we use it to denote derivatives. For example
¢ 0%
i = 5=

0x3’ 0.k = 0xI0xk’ ete.

Divergence. [n Cartesian coordinates the divergence of a vector field A is a scalar field and can be

represented A oA oA
1 — gin A=221 Z72 983
V- A=divA= 8x+8y+8z'

Employing the summation convention and index notation, the divergence in Cartesian coordinates can be

represented 84; 0A; 0A, 0OA
A=divA=4A;,; == ="14+22 :
V-A div A , Oz Ozl o2 o3

where 7 is the dummy summation index.

Curl. Ty represent the vector B = cwl A = V x A in Cartesian coordinates, we note that the index
notation focuses attention only on the components of this vector. The components B;, i = 1,2,3 of B can
be represented

~

B;=¢;-curl A= €ijk Ak j, for 1,7, k=1,2,3

where e;;1, is the permutation symbol introduced earlier and Ay, ; = %‘;‘f . To verify this representation of the

curl A we need only perform the summations indicated by the repeated indices. We have summing on j that
B; = €15 Ak1 + €2k Ak,2 + €z Ak 3.
Now summing each term on the repeated index k gives us
B; = eji2A21 +e13A431 + €21 412+ eia3 Az o + €iz1 A1 3 + €i3242 3

Here i is a free index which can take on any of the values 1,2 or 3. Consequently, we have

) 0A 0A
For i=1, BlZAs,z—Aw:%s_W;
. 0A 0A:
For i=2  Bo=Aig—Ayi= 55— 5+
. 0A 0A
For i=3, By=Au-Aip=5+- 5

which verifies the index notation representation of curl A in Cartesian coordinates.

21
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Other Operations. The following examples illustrate how the index notation can be used to represent

additional vector operators in Cartesian coordinates.

1. In index notation the components of the vector (E . V)/Y are
{(EV)E} ep = ApqB, P,q=12,3

This can be verified by performing the indicated summations. We have by summing on the repeated

index ¢

ApqBg = Ap1B1+ Ap2Ba + Ap 3Bs.
The index p is now a free index which can have any of the values 1,2 or 3. We have:

for p=1, A1,gBg = A11B1 + A12B2 + A1 3B3
0A; 0A; 0A;

= o D1 g Bt g B

for p=2, AQ’qu = A2’1B1 + AQ 2B5 + A2 383
0A, 0A, 0Ay

= o D1 g Bt g B

for p=3, AquBq = A3 1B1 + A?,’QBQ + A3 383
0A3 81433 0A3

=Bt 02 8 23 3

ox!

2. The scalar (B - V)¢ has the following form when expressed in the index notation:

(B-V)¢ = Bibi = Bip1 + Bag 2 + B3 3

0(15 ¢> ¢

3. The components of the vector (é x V)¢ is expressed in the index notation by
é\z . {(B’ X V)¢:| = eijkngZS’k.

This can be verified by performing the indicated summations and is left as an exercise.

4. The scalar (B x V) - A may be expressed in the index notation. It has the form

—

(B X V) gz eijkBin7k.

This can also be verified by performing the indicated summations and is left as an exercise.

5. The vector components of V24 in the index notation are represented

—

e, VA=A,

The proof of this is left as an exercise.



EXAMPLE 1.1-19. In Cartesian coordinates prove the vector identity
curl (fA) =V x (fA) = (Vf) x A+ f(V x A).

Solution: Let B = curl (fA) and write the components as

Bi = eiji(f Ak)
= €ijk [f Arj + f.5AK]
= feijr Ak + eijif j Ar-
This index form can now be expressed in the vector form

— -, -,

B=cul (fA) = f(VxA)+ (Vf) x A

EXAMPLE 1.1-20. Prove the vector identity V- (A+ B)=V-A+ V- B
Solution: Let A+ B = C and write this vector equation in the index notation as A; + B; = C;. We then

have

—

V'C:Ciﬂ':(A7;+Bi)7i=Ai7i+Bi7iZV'A‘—FV-B}.

|
EXAMPLE 1.1-21. In Cartesian coordinates prove the vector identity (/T V)f= A Vf
Solution: In the index notation we write
(A-V)f=Aifi=Aif1+Asfo+ Asfs
of of of _ z
=A==+ A== +A3——==A-V/.
19T * *0a? * °0d v/
|

EXAMPLE 1.1-22. In Cartesian coordinates prove the vector identity

— -, — —

Vx(AxB)=A(V -B)—B(V-A) +(B-V)A-(A-V)B
Solution: The pth component of the vector V x (/T X é) is
€ - [V x (A x B)] = epgilersiAjBil q
= epgkrjid;j Big + epgrerjidj o Bi
By applying the e — § identity, the above expression simplifies to the desired result. That is,
ep- [V x (/T x é)] = (0pj0qi — 0pi0qj)A;j Big + (0pjdqi — Opida;) Ajiq B
=ApBii = AqBp g+ ApgBy — AgqBp

In vector form this is expressed

— — — —

Vx(AxB)=A(V-B)—(A-V)B+ (B-V)A—B(V-A)

23
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EXAMPLE 1.1-23. In Cartesian coordinates prove the vector identity V x (V x A) = V(V - 4) — V24
Solution: We have for the ith component of V x Ais given by €; - [V x A’] = ;5 Ax,; and consequently the
pth component of V x (V x A) is

e, [V x (Vx A’)] = epgrlerjrAr.jlq
= epgrerjkA,jq-
The e — § identity produces
e, [V x(Vx A’)] = (0pjOqk — Opqj) Ak,jq

- Akmk - Amq-

—

Expressing this result in vector form we have V x (V x A) = V(V - 4) — V2A.

Indicial Form of Integral Theorems

The divergence theorem, in both vector and indicial notation, can be written

// div-ﬁdr://ﬁ-ﬁda /Fde:/Fmida i=1,2,3 (1.1.16)
\%4 S |4 S

where n; are the direction cosines of the unit exterior normal to the surface, dr is a volume element and do
is an element of surface area. Note that in using the indicial notation the volume and surface integrals are
to be extended over the range specified by the indices. This suggests that the divergence theorem can be
applied to vectors in n—dimensional spaces.

The vector form and indicial notation for the Stokes theorem are

//(V X ﬁ)ﬁdo’z / ﬁd’F /eiijk,jnida = / Edﬂ?z i,j,k‘: 1,2,3 (1.1.17)
S C S C

and the Green’s theorem in the plane, which is a special case of the Stoke’s theorem, can be expressed

F: F )
// <Q—@> dxdy:/ Py de + Fydy /esijk,jw:/Fidx’ ijk=12 (L11s)
C S C

Other forms of the above integral theorems are

//VqudT:/quﬁda

obtained from the divergence theorem by letting F= qu_" where C is a constant vector. By replacing F by

F x C in the divergence theorem one can derive

JJ[ (% F)ar == [[ Fxiige

In the divergence theorem make the substitution F = ¢V to obtain

//V [(6V2% + (V) - (V)] dr :/S(Ww),ﬁda
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The Green’s identity

/ / /V (pV2p — V) dr = / /S OV — V) - fdo

is obtained by first letting F = ¢V in the divergence theorem and then letting F = YV ¢ in the divergence

theorem and then subtracting the results.

Determinants, Cofactors

For A = (a;j),4,j=1,...,n an n x n matrix, the determinant of A can be written as
det A = |A| = €irinig...in A1l 0235 A3i5 + + + A, -

This gives a summation of the n! permutations of products formed from the elements of the matrix A. The

result is a single number called the determinant of A.
EXAMPLE 1.1-24. In the case n = 2 we have

|A| _ (a1 aiz2| Crm 1m0
- - nm n m
a21 a22

= €1ma1102m + €2ma1202m
= €12a11022 + €21Q12021

= a11G22 — @120G21

EXAMPLE 1.1-25. In the case n = 3 we can use either of the notations

11 1
a1 aiz2 a3 ay az as

_ _ 2 2 3
A= | a2 a2 a3 or A= aé ag ag
a3l a3z a3s3 ay ay as

and represent the determinant of A in any of the forms

det A = e;jraisa25a3k

det A = e;jra;1a52ak3

det A = @ijkaiagag

det A = eijka%a?a‘z.

These represent row and column expansions of the determinant.

An important identity results if we examine the quantity B¢ = eijkafnagaf. It is an easy exercise to

change the dummy summation indices and rearrange terms in this expression. For example,
_ i § ok _ k j i _ i gk _ i gk _
Brst = eijrayalay = epjiarala; = epjiaiala, = —eijraiala; = — By,

and by considering other permutations of the indices, one can establish that B, is completely skew-
symmetric. In the exercises it is shown that any third order completely skew-symmetric system satisfies

B,st = Bioserst. But Bioz = det A and so we arrive at the identity

i j k
Brst = eijpayalai = |Alerst.



Other forms of this identity are

e”karasak = |Ale"™" and €ijkQirQ;sAit = |Alerst. (1.1.19)

Consider the representation of the determinant

ap ay as
|A| = ai aé a§
ay az; as

by use of the indicial notation. By column expansions, this determinant can be represented
|A| = e,sialasal (1.1.20)
and if one uses row expansions the determinant can be expressed as

|A| = eika} tajaj. (1.1.21)

Define A%, as the cofactor of the element a!™ in the determinant |A|. From the equation (1.1.20) the cofactor
of af is obtained by deleting this element and we find
A} = erqadal. (1.1.22)
The result (1.1.20) can then be expressed in the form
|A| = aj AL = al A7 +al AL + al AL (1.1.23)

That is, the determinant |A| is obtained by multiplying each element in the first column by its corresponding
cofactor and summing the result. Observe also that from the equation (1.1.20) we find the additional

cofactors

Ai = epsralal and A? = epstajay. (1.1.24)
Hence, the equation (1.1.20) can also be expressed in one of the forms
|A| = a5A? = alA? + a2 A2 + a3 A2
Al = a3A§ = ajA} + a3 A} + a3 A3

The results from equations (1.1.22) and (1.1.24) can be written in a slightly different form with the indicial

notation. From the notation for a generalized Kronecker delta defined by

el‘jkelmn - 6%5”;
the above cofactors can be written in the form
Al = e'Pe,qasal = %eljkerstaja’,; = 7(52? ajaj,
A% = e'Be,pajal = %erke,«sta;a’,; = 5fgfaga};
AP = e'Pegalal = %ewkemta;a’,; = '5%? saj,.
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These cofactors are then combined into the single equation

Al = géﬁﬁa at (1.1.25)

which represents the cofactor of af. When the elements from any row (or column) are multiplied by their
corresponding cofactors, and the results summed, we obtain the value of the determinant. Whenever the
elements from any row (or column) are multiplied by the cofactor elements from a different row (or column),

and the results summed, we get zero. This can be illustrated by considering the summation

a"Al = 2|5fi§ta?a2a;’b = —2'e”kemstafqa‘;a’;€
1 . 1
- ijke =4
- 2'6 eTJk|A| 2| rjk|A| 0 |A|

Here we have used the e — § identity to obtain
5”k =e' kerjk = ej““ej,,k =06k — 6Lk =367 — 5t = 25¢

which was used to simplify the above result.
As an exercise one can show that an alternate form of the above summation of elements by its cofactors
is
a,, A" = [A]6].

EXAMPLE 1.1-26. In N-dimensions the quantity (5J ”2 “I’V is called a generalized Kronecker delta. It

can be defined in terms of permutation symbols as
eIz IN g by = 5%113152 léVN (1.1.26)

Observe that

5%11?2 sz\lfv k1k2 kN —(N') 63112 JN

kikz.kn g skew-symmetric in all pairs of its superscripts. The left-hand side denotes

This follows because e
a summation of N! terms. The first term in the summation has superscripts jijs ... jn and all other terms
have superscripts which are some permutation of this ordering with minus signs associated with those terms
having an odd permutation. Because e/172-9¥ is completely skew-symmetric we find that all terms in the

summation have the value 4+e7172"9N  We thus obtain N! of these terms.
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EXERCISE 1.1

» 1. Simplify each of the following by employing the summation property of the Kronecker delta. Perform

sums on the summation indices only if your are unsure of the result.
(a)  €ijkdkn (€)  €ijk0is0jmOrn (e) 0i0jn
(b)  €ijkbisOjm (d)  aijdin (f)  0ij0jndni

» 2. Simplify and perform the indicated summations over the range 1,2, 3
(a) 51‘1‘ (C) eijkAiAjAk (e) eijkéjk
(b)  0ij04 (d)  eijheijn (f)  AiBjdji = BmAndmn

» 3. Express each of the following in index notation. Be careful of the notation you use. Note that A= A;
is an incorrect notation because a vector can not equal a scalar. The notation A. e; = A; should be used to

express the ith component of a vector.

)
x C) (d) B(A-C)—C(A-B)
» 4. Show the e permutation symbol satisfies: (a) eijx = €jki = €rij ()  €ijk = —€jik = —€ikj = —€kji
» 5. Use index notation to verify the vector identity A x (B x ¢') = B(A-C) — C(A - B)
» 6. Lety; =a;;2; and T, = asm2; wWhere the range of the indices is 1,2
(a) Solve for y; in terms of z; using the indicial notation and check your result
to be sure that no index repeats itself more than twice.
(b) Perform the indicated summations and write out expressions
for y1,y2 in terms of z1, 2o

(¢) Express the above equations in matrix form. Expand the matrix

equations and check the solution obtained in part (b).

» 7. Use the e — ¢ identity to simplify (a) ejjrejix (b)  eijrejri

» 8. Prove the following vector identities:

» 9. Prove the following vector identities:
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» 10. For A= (1,—1,0) and B= (4,—3,2) find using the index notation,

(a) Ci=eijxAjBy, 1=1,2,3
(b) A;B;
(¢) What do the results in (a) and (b) represent?

d d
» 11. Represent the differential equations % = a11y1 + a12y2 and % = a21Y1 + A22y2

using the index notation.

> 12,
Let ® = ®(r,0) where 1,0 are polar coordinates related to Cartesian coordinates (z,y) by the transfor-
mation equations x = rcosf and y =rsin.
. . o 0d 0%
(a) Find the partial derivatives —, and —
Oy Oy
(b) Combine the result in part (a) with the result from EXAMPLE 1.1-18 to calculate the Laplacian
2P 2P
V3 = 8_ 8_
0x2  Oy?

in polar coordinates.

» 13. (Index notation) Let a;1 =3, a12=4, a2 =05, a =6.

Calculate the quantity C = a;;a45, ¢,7 =1, 2.

» 14. Show the moments of inertia I;; defined by

I = ///(y2 + 2%)p(x,y, 2) dr Ioz = I35 = —///yzp(x,y,z) dr
R R

Iy = /}Z/(xQ + zQ)p(x,y,z) dr Ly =15 = — /}Z/ zyp(z,y, z) dr

33 = 22 4+ 9y p(x,y, 2) dr =133 = — zzp(x,y, 2) dr,

I33 /}Z/( +y )p(x,y,2)d Lz =I5 /}Z/ p(z,y,2)d

can be represented in the index notation as [;; = /// (xmxméij - xixj) pdr, where p is the density,
R

2t =z, 22 =y, 2® = z and dr = dxdydz is an element of volume.

» 15. Determine if the following relation is true or false. Justify your answer.
Ei-(éjx 6k)=(€i>< Ej)-ék:eijk, i,j,k=1,2,3.
Hint: Let €, = (01m, 02m, I3m,)-

» 16. Without substituting values for i, = 1,2, 3 calculate all nine terms of the given quantities

(a) B" = (85A,+6,A;)e™ (b) Ay = (0"B* + 6FB™)eun

» 17. Let A,,z™y" = 0 for arbitrary % and y?, i =1,2,3, and show that A;; = 0 for all values of i, j.
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» 18.
(a) For apy,, m,n = 1,2,3 skew-symmetric, show that a,,,x™z" = 0.
(b) Let apmpr™a™ = 0, m,n = 1,2,3 for all values of z°,i = 1,2,3 and show that a,,, must be skew-

symmetric.

» 19. Let A and B denote 3 x 3 matrices with elements a;; and b;; respectively. Show that if C' = AB is a
matrix product, then det(C) = det(A) - det(B).
Hint: Use the result from example 1.1-9.

» 20.
(a) Let u', u?, u® be functions of the variables s, s2, s®. Further, assume that s!, s, s* are in turn each
) . ou™ O(ut, u?, u? . .
functions of the variables z!, 22, 23. Let 9 | = aE — 3§ denote the Jacobian of the u's with
x xl, x? x

respect to the x’s. Show that
out B out 0s’ B out 0s’
dxm | | 0si Qx| |0si| |Qxm|

ozt Oz’ ort i - j . . .
(b) Note that 557 B~ Do = 0y, and show that J(£)-J(Z) = 1, where J(£) is the Jacobian determinant

of the transformation (1.1.7).

» 21. A third order system agy,, with £,m,n = 1,2, 3 is said to be symmetric in two of its subscripts if the
components are unaltered when these subscripts are interchanged. When ag;y,, is completely symmetric then
Apmn = Gmen = Qppm = Qmnt = Qpme = Gnem. Whenever this third order system is completely symmetric,
then: (i) How many components are there? (ii) How many of these components are distinct?

Hint: Consider the three cases )¢ =m=n (i) L=m #n (iii) £ #m # n.

» 22. A third order system by, with ¢, m,n =1,2,3 is said to be skew-symmetric in two of its subscripts
if the components change sign when the subscripts are interchanged. A completely skew-symmetric third
order system satisfies bemn = —bmen = bmne = —bnme = bnem = —benm. (1) How many components does
a completely skew-symmetric system have? (ii) How many of these components are zero? (iii) How many
components can be different from zero? (iv) Show that there is one distinct component b1a3 and that
bemn = €tmnb123.

Hint: Consider the three cases )¢ =m=n (ii) =m #n (iii) £ #m # n.

» 23. Let i,j,k =1,2,3 and assume that e;j;0;; = 0 for all values of i. What does this equation tell you

about the values o;;, 4,57 =1,2,37

» 24. Assume that A,,, and B,,, are symmetric for m,n = 1,2, 3. Let A,,,p,2™ 2" = Bpn,x™a" for arbitrary

values of z%,i = 1,2, 3, and show that A;; = B;; for all values of i and j.

» 25. Assume B, is symmetric and B,,,z™z" = 0 for arbitrary values of z*,i = 1,2, 3, show that B;; = 0.
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» 26. (Generalized Kronecker delta) Define the generalized Kronecker delta as the n x n determinant
5f.n 5;1 . (5;
3 &, & - 8
Smin =1 . where § is the Kronecker delta.
Sk ok .. 55
(a) Show €ijk = 53325
(b) Show ek = gk
(¢) Show 69 = eYemn
(d) Define 0,5, = 4,7k  (summation on p)
and show ors =10,.05 — 0,0,
Note that by combining the above result with the result from part (c)
we obtain the two dimensional form of the e — § identity e e = 6,65 — 6,05,
(e) Define 67, = £6/"  (summation on n) and show b3t = 26,
(f) Show oret = 31
| aj ay a3
» 27. Let A’ denote the cofactor of a? in the determinant |a? a2 a3 | as given by equation (1.1.25).
ai a3 aj
(a) Show €Al = eijkajafc (b) Show e, AT = ejjpalal
» 28. (a) Show that if A;jr = Ajix,?, 7,k = 1,2,3 there is a total of 27 elements, but only 18 are distinct.

(b) Show that for 4,5,k =1,2,..

., N there are N? elements, but only N?(N + 1)/2 are distinct.

» 29. Let a;; = B;Bj for i,j =1,2,3 where By, By, Bs are arbitrary constants. Calculate det(a;;) = |A|.
» 30.

(a) For A= (ai;), 1,7 =123, show [A|=ejraiia2ars.

(b) For A= (aé-), i,7=1,2,3, show |A|= eijkaiagalg.

(i _ ijk 1,23

(¢) For A= (aj),i,j=1,2,3, show [A]=e""a;ajaj.

(d) For I= ((5;-), i,7=1,2,3, show |[I|=1.
» 31. Let |A] = ejjrainajoars and define A;,, as the cofactor of a;n,. Show the determinant can be

expressed in any of the forms:
(a) |Al=Anan
(b) |A| = Aj2aj2
(c) |A| = Axzags

where

where

where Ail = €ijkQ;j20k3
Aix = €jikaj1ak3

Aiz = €ejriajiak
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» 32. Show the results in problem 31 can be written in the forms:

1 1 1 1

Ajl = e15€ijkjsOkt, Az = €251Cijk0jsOkt,  Aiz = €351€ik A sOkt, OF  Aim = —€mstCijkjslit

2! 2! 2! 2!

» 33. Use the results in problems 31 and 32 to prove that apm Aim = |Aldip.

1 2 1
> 34. Let (a;;)=11 0 3| and calculate C = a;;a45, 4,5 = 1,2,3.
2 3 2
» 35. Let
ajnn =—1, an2=3, a21 =4, aj2=2
ag11 =1, agi2 =95, a1 =2, azp=-2

and calculate the quantity C = a;jraijk, ¢, 7,k =1,2.

» 36. Let
ai111 =2, ainz2=1, a1 =3, ajee=1
aiz11 =95, aizi2=—2, a1 =4, aize=-2
as111 =1, a2112 =0, agi21 =—2, agie=-1
a1 = —2, a2 =1, age01 =2, ag =2

and calculate the quantity C' = asjriaiju, 4, j, k, 0 =1,2.

» 37. Simplify the expressions:

oxt
(@)  (Aijrr + Ajrti + Artij + Asiji) 22252 (c) 97
(b) (Pijk + P + Pkij)xixjxk (d) B 0%zt % 9™ Oxt

Qij s a—r  9mi 5o o—r
T oztoTs O 0z 0Tt 0"

» 38. Let g denote the determinant of the matrix having the components g;5, ¢,7 = 1,2, 3. Show that

9gir 9Gis git Gir  Gis  Git

(@) gerst = |9g2r Gos Got (b) gersteijx = |gjr  Gjs Gt

93r 93s g3t 9kr YGks Gkt
5t 8 5;’,
> 39. Show that e’ epny = 0, = |03, & 6]
5k ok 55

» 40. Show that e¥¥e,,,,A™"P = ATF — AtkT 4 ARG _ g7tk ATk ARdE
Hint: Use the results from problem 39.
> 41. Show that
(a) eijeij =2! (C) eijkleijkl = 4!

(b) e e = 3 (d) Guess at the result ehizing, o



» 42. Determine if the following statement is true or false. Justify your answer. e;j;,A; BjC = e;j1 A BrC;.

» 43. Let a;j, 4,5 = 1,2 denote the components of a 2 x 2 matrix A, which are functions of time ¢.

air a2
a22

(b) Verify the equivalence of the derivative relations

(a) Expand both |A| = e;jai1aj2 and |A| = to verify that these representations are the same.

da11 dalz

d|A| dai1 dajz d| A ain a
— =eji——Qi0 + €] —— and —— = dt dt +
e~ g T TIT Tgy dt a1 ax; doa  doz

¢) Let a;;, 7,7 = 1,2, 3 denote the components of a 3 x 3 matrix A, which are functions of time ¢. Develop
L j» %, = 1,2,3 denote th ts of a 3 x 3 matrix A, which functi f time ¢. Devel
appropriate relations, expand them and verify, similar to parts (a) and (b) above, the representation of

a determinant and its derivative.

> 44. For f = f(z!, 2%, 23) and ¢ = ¢(f) differentiable scalar functions, use the indicial notation to find a

formula to calculate grad ¢ .

» 45. Use the indicial notation to prove (a) V x V¢ =0 (b) V-VxA=0

» 46. If A;; is symmetric and B;; is skew-symmetric, ¢,j = 1,2, 3, then calculate C' = A;; B;;.

> 47. Assume A;; = A (7", 7%,7%) and A;; = A;j(at, 2%, 2%) for i,j = 1,2,3 are related by the expression

_ i O
Apn = Aijafxaé. Calculate the derivative aAm".
ox™ oT" oT"

> 48.  Prove that if any two rows (or two columns) of a matrix are interchanged, then the value of the

determinant of the matrix is multiplied by minus one. Construct your proof using 3 x 3 matrices.

» 49. Prove that if two rows (or columns) of a matrix are proportional, then the value of the determinant

of the matrix is zero. Construct your proof using 3 X 3 matrices.

» 50. Prove that if a row (or column) of a matrix is altered by adding some constant multiple of some other
row (or column), then the value of the determinant of the matrix remains unchanged. Construct your proof

using 3 X 3 matrices.
» 51. Simplify the expression ¢ = e;jreemnAicAjmAkn.

» 52. Let A;;; denote a third order system where ¢, j, k = 1,2. (a) How many components does this system
have? (b) Let A;;i be skew-symmetric in the last pair of indices, how many independent components does

the system have?

> 53. Let A;jr denote a third order system where 4,5,k = 1,2,3. (a) How many components does this
system have? (b) In addition let A;;x = Ajix and Ajx; = —A;j, and determine the number of distinct

nonzero components for A;j.

33
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» 54. Show that every second order system 7Tj; can be expressed as the sum of a symmetric system A;; and

skew-symmetric system B;;. Find A;; and B;; in terms of the components of T5;.

» 55. Consider the system A, ¢,7,k=1,2,3,4.
(a) How many components does this system have?
(b) Assume A; ;i is skew-symmetric in the last pair of indices, how many independent components does this
system have?
(c) Assume that in addition to being skew-symmetric in the last pair of indices, Aijx + Ajri + Agij = 0 is

satisfied for all values of ¢, j, and k, then how many independent components does the system have?

» 56. (a) Write the equation of a line 7 = 7% + ¢ A in indicial form. (b) Write the equation of the plane
i - (F— 7) = 0 in indicial form. (c) Write the equation of a general line in scalar form. (d) Write the
equation of a plane in scalar form. (e) Find the equation of the line defined by the intersection of the
planes 2z 4+ 3y + 6z = 12 and 62 + 3y + z = 6. (f) Find the equation of the plane through the points
(5,3,2),(3,1,5),(1,3,3). Find also the normal to this plane.

» 57. The angle 0 < 6 < 7 between two skew lines in space is defined as the angle between their direction
vectors when these vectors are placed at the origin. Show that for two lines with direction numbers a; and

b; i =1,2,3, the cosine of the angle between these lines satisfies

cosf = o b

» 58. Let a;; = —ay; for i, =1,2,..., N and prove that for N odd det(a;;) = 0.
> 59. Let A= A;jx;x; where A;; = Aj; and calculate  (a) ﬂ b ﬂ
0T, 0T, 0xp

» 60. Given an arbitrary nonzero vector Uy, k = 1,2, 3, define the matrix elements a;; = e, U, where e

is the e-permutation symbol. Determine if a;; is symmetric or skew-symmetric. Suppose Uj, is defined by

the above equation for arbitrary nonzero a;;, then solve for Uy in terms of the a;;.

» 61. If A'L'j = AiBj 7& 0 for all i, values and A'L'j = Aj’i for i, =1,2,...,N, show that Aij = AB,L'B]‘

where )\ is a constant. State what A is.

» 62. Assume that A;jem, withi,j,k,m = 1,2,3, is completely skew-symmetric. How many independent

components does this quantity have?

> 63. Consider R;jkm, 1,7, k,m = 1,2,3,4. (a) How many components does this quantity have? (b) If
Rijkm = —Rijmk = —Rjikm then how many independent components does Rjjim have? (c) If in addition

Rijkm = Rimi; determine the number of independent components.

» 64. Let z; = a;7;, 4,7 =1,2,3 denote a change of variables from a barred system of coordinates to an
unbarred system of coordinates and assume that A; = a;;A; where a;; are constants, A, is a function of the
i

T

Z; variables and A; is a function of the x; variables. Calculate



