Star Formation (I)

Orion Nebula

STAR FORMATION (ZG: 15.3; CO: 12)

Star-Forming Regions

- a) Massive stars
- born in OB associations in warm molecular clouds
- produce brilliant HII regions
- shape their environment
 - ▷ photoionization
 - \triangleright stellar winds
 - ▷ supernovae
 - \rightarrow induce further (low-mass) star formation?
- b) Low-mass stars
- born in cold, dark molecular clouds $(T \simeq 10 \text{ K})$
- Bok globules
- near massive stars?
- recent: most low-mass stars appear to be born in cluster-like environments
- but: most low-mass stars are not found in clusters \rightarrow embedded clusters do not survive

Relationship between massive and low-mass star formation?

massive stars trigger low-mass star formation?massive stars terminate low-mass star formation?

Star Formation (II)

massive star + cluster of low-mas stars

Bok globules

The Trapezium Cluster

Dusty Disks in Orion (seen as dark silhouettes)

HST

The Jeans Mass

 \bullet cool, molecular cores $({\rm H}_2)$ can collapse when their mass exceeds the Jeans Mass

$$\label{eq:product} \begin{array}{l} \triangleright \mbox{ no thermal pressure support if} \\ \mathbf{P_c} = \rho/(\mu m_H) \mathbf{kT} < \mathbf{GM}^2/(4\pi \mathbf{R}^4) \\ \\ \triangleright \mbox{ or } \mathbf{M} > \mathbf{M_J} \simeq 6 \ \mathbf{M}_\odot \ \left(\frac{\mathbf{T}}{\mathbf{10} \ \mathbf{K}}\right)^{3/2} \ \left(\frac{\mathbf{n_{H_2}}}{\mathbf{10}^{10} \ \mathbf{m}^{-3}}\right)^{-1/2} \end{array}$$

What triggers star formation?

- \bullet observed molecular clouds often have masses \gg Jeans mass
- but: no evidence for large-scale collapse
- \rightarrow support required
 - \triangleright cannot be thermal (Jeans mass! $v_{th} \ll v_{virial})$
 - > supersonic turbulence: possible, but: rapid shock dissipation
 - $ho \ {f magnetic} \ \ {f fields:} \ \ \ {f requires} \ \
 ho v_{virial}^2 \sim B^2/2\mu_0 \
 ightarrow B \sim 1-10 \ nT \ (o.k. \ \ consistent \ \ with \ \ observations)$
 - stars can form in regions that lose magnetic support
 - collisions of cores (compression reduces Jeans mass)
 - compression by nearby supernovae

Stellar Collapse

- inside-out isothermal collapse (i.e. efficient radiation of energy) from $\sim 10^6\,{
 m R}_\odot$ to $\sim 5\,{
 m R}_\odot$ (note this decreases the Jeans mass and possibly allows further fragmentation of the core)
- timescale: $t_{dyn} \sim 1/\sqrt{4 \, G \rho} \sim 10^5 10^6 \, yr$
- collapse stops when material becomes optically thick and can no longer remain isothermal (protostar)
- central accretion rate: M
 - ▷ hydrostatic equilibrium of an isothermal sphere: $\mathbf{c}_{s}^{2}=\frac{\mathbf{k}\mathbf{T}}{\mu\mathbf{m}_{H}}=\frac{\mathbf{G}\mathbf{M}(\mathbf{r})}{\mathbf{r}},$

where c_s is the sound speed of the material, M(r)the mass enclosed in radius r.

- $\triangleright \mathbf{c_s} = \mathbf{constant} \text{ implies } \mathbf{M}(\mathbf{r}) \propto \mathbf{r}$
- $ightarrow ~~{
 m for~the~density}~
 ho({
 m r})=rac{{
 m M}_0}{4\pi {
 m r}^2{
 m R}_0}=rac{{
 m c}_{
 m s}^2}{4\pi {
 m r}^2{
 m G}_{
 m c}}$ where M_0 and R_0 are the total mass and total radius of the collapsing core.
 - \triangleright at radius r: mass-inflow rate \dot{M} is given by $\dot{M} = 4\pi r^2 \rho c_s$ (inflow velocity = sound speed)
 - ▷ combining these equations, one obtains for the central accretion rate

$$\dot{M} = rac{c_{
m s}^3}{G} = 2 imes 10^{-6} \, M_\odot \, yr^{-1} \left(rac{T}{10 \, {
m K}}
ight)^{3/2},$$

where $\mu = 2$ (molecular hydrogen) and

$$c_s = 0.2\,km\,s^{-1}\,\left(\frac{T}{10\,K}\right)^{1/2}$$

 \triangleright note: \dot{M} depends strongly on T, which in turn depends on the cooling mechanisms (CO molecules, dust, H_2 , etc.) and is dependent on the environment and metallicity.

- the angular-momentum problem
 - ▷ each molecular core has a small amount of angular momentum (due to the velocity shear caused by the Galactic rotation)
 - \triangleright characteristic $\Delta v / \Delta R \sim 0.3 \text{km/s/ly}$
 - \rightarrow characteristic, specific angular momentum $j \sim (\Delta v / \Delta R \, R_{cloud}) \, R_{cloud} \sim 3 imes 10^{16} \, m^2 \, s^{-1}$
 - ▷ cores cannot collapse directly
 - \rightarrow formation of an accretion disk
 - > characteristic disk size from angular-momentum conservation $\mathbf{j} = \mathbf{r} \mathbf{v}_{\perp} = \mathbf{r} \mathbf{v}_{\mathrm{Kepler}} = \sqrt{\mathrm{GMr}}$

 $ightarrow r_{min} = j^2/GM \sim 10^4\,R_\odot \simeq 50 AU$

- Solution: Formation of binary systems and planetary systems which store the angular momentum (Jupiter: 99% of angular momentum in solar system)
 - \rightarrow most stars should have planetary systems and/or stellar companions
 - \rightarrow stars are initially rotating rapidly (spin-down for stars like the Sun by magnetic braking)
- inflow/outflow: $\sim 1/3$ of material accreted is ejected from the accreting protostar \rightarrow bipolar jets
- the magnetic field problem
 - ▷ using magnetic flux conservation
 - $B(star) = B(cloud) (R_{cloud}/R_{star})^2 \sim 10^3 10^4 T$ (!), many order larger than observed
 - ▷ efficient loss of magnetic field, perhaps related to bipolar jets

Pre-Main-Sequence Evolution

Pre-main-sequence evolution

- Old picture: stars are born with large radii ($\sim 100\,R_\odot$) and slowly contract to the main sequence
 - > energy source: gravitational energy
 - \triangleright contraction stops when the central temperature reaches $10^7\,{\rm K}$ and H-burning starts (main sequence)
 - \triangleright note: D already burns at $T_c \sim 10^6\, K \rightarrow$ temporarily halts contraction
- Modern picture: stars are born with small radii $(\sim 5\,R_\odot)$ and small masses
 - \rightarrow first appearance in the H-R diagram on the stellar birthline (where accretion timescale is comparable to Kelvin-Helmholtz timescale: $t_{\dot{M}} \equiv M/\dot{M} \sim t_{KH} = GM^2/(2RL))$
 - continued accretion as embedded protostars/T Tauri stars until the mass is exhausted or accretion stops because of dynamical interactions with other cores/stars

Dynamical Star Formation

- stars generally do not seem to form in isolation, but in dense clusters
- \bullet simulation (Bonnell): $10^3\,M_\odot$ cloud with radius $0.5\,pc$
 - $\label{eq:constraint} \begin{array}{l} \rightarrow \ \mbox{collapse and fragmentation lead to the formation of} \\ \sim 400 \ \mbox{stars in} \sim 0.5 \times 10^6 \ \mbox{yr with broad mass spectrum (but no magnetic fields considered in setting the initial conditions!)} \end{array}$

- protostars form in collapsing cores $(R\sim 10^6\,R_\odot)$ and accrete from their cores at $\dot{M}\sim 2\times 10^{-6}\,M_\odot\,yr^{-1}$ till the envelopes are disturbed by a collision with another core/star
 - $hightarrow {
 m collision time: t_{coll}} \simeq 1/\sigma {
 m nv}$
 - \triangleright where the collision cross section is given by the size of the core: $\sigma = \pi * (10^6 \, R_\odot)^2$,
 - \triangleright the number density of colliding objects by $n\sim 10^3/[(4\pi/3)\times(0.5\,pc)^3]~and$
 - \triangleright the characteristic velocity by the dynamics of the cloud $v\sim \sqrt{GM/R}\simeq 3\,km\,s^{-1}.$
 - $\rightarrow \ t_{coll} \simeq 10^5 \, yr \rightarrow M_{star} \sim \dot{M} \times t_{coll} \sim 10 \, M_{\odot}$
- $\rightarrow~$ a collisional origin of the initial mass function?

The First Stars

- differences at zero metallicity:
 - \triangleright no dust, no CO \rightarrow higher T of star-forming cloud
 - $\rightarrow~$ larger Jeans mass \rightarrow form very massive stars only?
- at Z = 0: very different stellar evolution (no CNO cycle) \rightarrow different supernovae? Claim: pair-instability supernova: complete disruption of star in an energetic supernova (sometimes, also referred to as hypernova, not to be confused with GRB-related hypernova)
- but: observed nucleosynthesis from Pop III stars is not consistent with pair-instability supernovae
- formation of intermediate-mass black holes?
- Problem: it is not clear whether Pop III stars really should have existed as a significant population