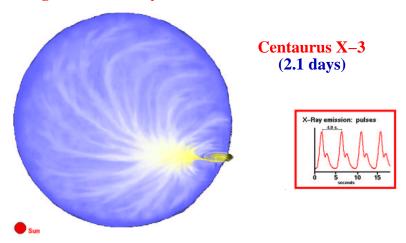
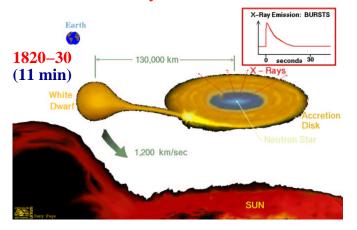
X-Ray Binaries

Literature:

- An Introduction to Modern Astronomy, Carroll & Ostlie, Chapter 17 (good basic source)
- Black Holes, White Dwarfs and Neutron Stars, Shapiro & Teukolsky (more advanced, but good source)
- "The Formation and Evolution of Compact X-Ray Sources", Tauris & van den Heuvel, Online review (google astro-ph/0303456), almost up-to-date
- I. Types and Basic Properties
- II. Formation Channels
- III. Mass Transfer and Accretion
- IV. Variability, X-Ray Bursts
- V. Do Black Holes Exist?
- VI. Ultraluminous X-Ray Sources


Basic Properties

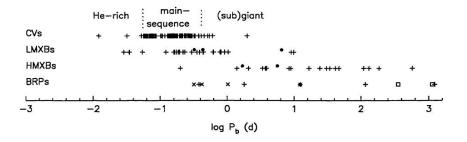
- generic system: a Roche-lobe filling star (low-mass, massive, white dwarf) transfers matter to a compact companion (neutron star, black hole, [white dwarf])
- traditionally two main classes: high-mass X-ray binaries (HMXBs; $M_2 \gtrsim 10\,M_\odot$) and low-mass X-ray binaries (LMXBs; $M_2 \lesssim 1.5\,M_\odot$)
 - ▶ missing intermediate-mass systems?
 - \triangleright probably not: most systems classified as LMXBs almost certainly originate from intermediate-mass X-ray binaries (IMXBs, $1.5\,\mathrm{M}_\odot \lesssim \mathrm{M}_2 \lesssim 5\,\mathrm{M}_\odot$), but have already lost most/transferred most of their mass


High-Mass X-Ray Binaries

- relatively hard X-ray spectra: $kT \gtrsim 15 \, \text{keV}$
- type of variability: regular X-ray pulsations; no X-ray bursts
- concentrated towards the Galactic plane, young age $\lesssim 10^7\,\mathrm{yr}$
- optical counterparts: O, B stars with $L_{opt}/L_X > 1$

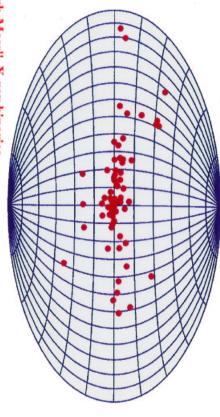
High-Mass X-Ray Binaries

Low-Mass X-Ray Binaries

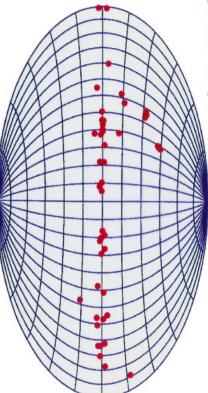


Low-Mass X-Ray Binaries

- softer X-ray spectra: $(kT \lesssim 15 \text{ keV})$
- type of variability: often X-ray bursts, sometimes pulsations (recent: ms pulsations!)
- not so concentrated to the Galactic plane; older?
- \bullet faint optical counterparts: $L_{opt}/L_X < 0.1$ (usually undetectable!)


Orbital Period Distributions

• known periods only! Selection effects!



Galactic Distribution of X-ray binaries

"Low-Mass" X-ray binaries

"High-Mass" X-ray binaries

96 VERBUNT

96 VERBUNT

Table 1 Properties of some X-ray binarics and all currently known radio binary pulsars†

			Х-га	X-ray binaries			
		P	$\log L_{\rm x}$	P_{b}			
Name	Position	(s)	(erg/s)	(d)	e	Spectral	Reference
			high-mass	high-mass X-ray binaries	uries		
LMC X4	0532 - 66	13.5	38.6	1.4	0.011	07III	
LMC X-3	0538 - 64	1	38.5	1.7	~0	BIII-IV	2
Cen X-3	09 - 6111	4.8	37.9	2.1	0.0007	06.511	w
SMC X-1	0115 - 74	0.7	38.8	3.9	< 0.0008	BOI	4
Cyg X-1	1956 + 35	1	37.3	5.6	~0	09.71	i.a
Vela X-1	0900 - 40	283	36.8	9.0	0.092	B0.51	6
LMC tran	0535 - 67	0.069	T39.0	16.7	~ 0.7	B2IV	7
I	0115 + 63	3.6	T36.9	24.3	0.34	Ве	æ
V725 Tau	0535 + 26	104	T37.3	111.0	0.3-0.4	Ве	9
			low-mass	low-mass X-ray binaries	iries		
KZ TrA	1627 - 67	7.7	36.8	0.029			10
V1405 Aq1	1916 - 05		36.9	0.035			==
UY Vol	0748 - 68		T37.0	0.159			12
V4134 Sgr	1755 - 34		36.8	0.186			ü
V616 Mon	0620 - 00		T38.3	0.323			<u>-</u> 4
Cen X-4	1455 - 31		T38.0	0.629			
Sco X-1	1617 - 16		37.5	0.787			16
Cyg X-2	2142 + 38		38.0	9.843			17

Low-Mass X-Ray Binaries

- neutron-star (black-hole) binaries with orbital periods of typically hours to less than a few days (for those $\sim 30\%$ with known periods)
- the companion stars are "believed" to be low-mass objects:

 $m P < 1\,hr:~degenerate~stars~(M_2 \lesssim 0.1\,M_\odot)$

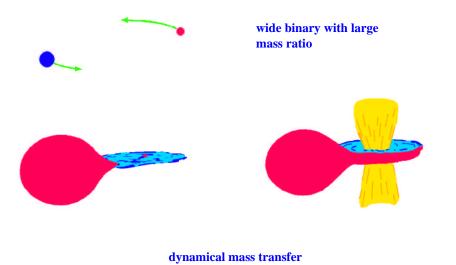
 $3 \, hr < P \lesssim 10 \, hr$: main-sequence stars

 $P \gtrsim 10 \, hr$: subgiants, giants (?)

• they are concentrated in the direction of the Galactic center ("Bulge Sources") and in globular clusters (old population?)

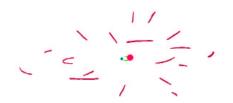
BUT: neutron stars receive a kick at birth (median: $200-250 \,\mathrm{km/s}$)

- \rightarrow LMXBs receive a kick of 180 \pm 80 km s⁻¹ (Brandt and Podsiadlowski 1994/95)
- → the LMXB distribution is consistent with a young progenitor population

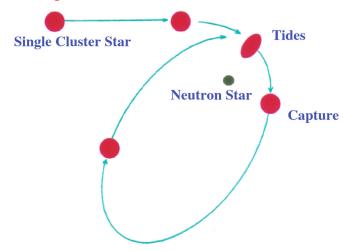

Formation Scenarios

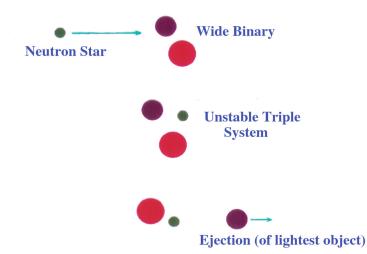
- the present size of many XRB's $(\sim 0.1-10\,R_\odot)$ is much smaller than the size of a blue/red supergiant, the progenitor of the compact object
 - → require drastic shrinkage of orbit
- common-envelope evolution
 - \triangleright mass transfer for supergiant is often unstable (star expands when losing mass rapidly; Roche lobe shrinks) \rightarrow companion star cannot accrete all the transferred matter and is engulfed \rightarrow formation of a common envelope (CE) \rightarrow friction \rightarrow spiral-in
 - $\begin{array}{c} {\sf CE} \text{ is ejected when } \alpha_{CE} \, \Delta E_{orb} > E_{bind}, \, where \, \Delta E_{orb} \\ \text{ is the orbital energy released, } E_{bind} \, \text{ the binding energy of the envelope and } \alpha_{CE} \, \text{ a generally poorly determined efficiency factor} \\ \end{array}$
 - (Note: the modelling of CE evolution is one of the major uncertainties in binary stellar evolution)
- LMXBs are more frequent in globular clusters (GCs)
 - \triangleright Galaxy: ~ 100 ; GCs: ~ 10 LMXBs

but: globular clusters only contain $0.05\,\%$ of the mass of the Galaxy


- \rightarrow 20 times more frequent
- \rightarrow different formation mechanisms
- ▶ tidal capture, three-body interactions in GCs

Formation of Low-Mass X-Ray Binaries (I)


common-envelope and spiral-in phase


ejection of common envelope and subsequent supernova

Formation of Low-Mass X-ray Binaries (in globular clusters)

Tidal Capture

Three-Body Scattering

- LMXBs are the progenitors of the majority of millisecond pulsars
 - > recycling scenario: spin-up of the neutron-star due to accretion (requires "magnetic field decay")

Problems with the standard Model for LMXBs (supplementary)

- the formation of LMXBs requires a very contrived evolution:

 - > ejection of a massive common envelope by a lowmass star
 - \triangleright survival as a bound system after the supernova (eject < 1/2 of the total mass or supernova kick)
- LMXBs are very <u>rare objects</u> (1 in 10⁶ stars)
- standard theory cannot explain
 - ▷ orbital period distribution: different from CV distribution
 - ▶ luminosity distribution: too many luminous systems
- the problem of the missing intermediate-mass X-ray binaries (should be the most common)

• LMXB/ms-pulsar statistics (e.g. in globular clusters [Fruchter])

$$\frac{\text{\# of LMXBs}}{\text{\# of ms pulsars}} \simeq \frac{\text{lifetime of LMXBs}}{\text{lifetime of ms pulsars}} \\ \sim 5 \times 10^9 \text{ yr}$$

 $N_{
m LMXB}pprox 10$

$$N_{
m PSR}pprox 1500 rac{\overbrace{(1+eta)}^{
m binary\ correction}}{rac{
m f}{
m beaming\ factor}} \simeq 10^4 \
ightarrow egin{equation} egin{eq$$

b implied LMXB lifetime too short by a factor of 10 to 100 both in globular clusters and in the Galaxy

Possible solutions

- X-ray irradiation
 - ▷ irradiation-driven wind (Ruderman et al. 1988)
 - ▷ irradiation-driven expansion (Podsiadlowski 1991)
- different channel for the formation of ms pulsars
 - $\quad \triangleright \ accretion\text{-}induced \ collapse$

The Eddington Limit

• Definition: the maximum luminosity for which the gravitational force on a fluid element exceeds the radiation pressure force (i.e. the maximum luminosity at which matter can be accreted)

- $\label{eq:delta-R} \begin{array}{l} \triangleright \text{ fluid element with cross section } \Delta A \text{ and} \\ \text{ height } \Delta R \text{ at a distance } R \text{ from the centre of gravity of mass } M, \end{array}$
- the (inward) gravitational force on the element is

the (inward) gravitational
$$F_{grav} = \underbrace{-\frac{GM}{R^2}}_{gravity} \underbrace{\rho \Delta A \Delta R}_{mass}$$

- the (outward) radiative force on the element (due to the deposition of momentum by photons absorbed or scattered): $F_{rad} = \underbrace{\frac{L}{4\pi R^2 \, c}}_{momentum} \underline{\Delta A}_{momentum} \underbrace{\kappa \rho \, \Delta R}_{momentum}$ "deposited"
- maximum luminosity: $F_{grav}+F_{rad}=0$ and solving for $L~then~yields \boxed{L_{edd}=\frac{4\pi GMc}{\kappa}}$
- $\begin{array}{lll} \bullet \ for & Thomson & scattering & in & a \ solar-type & plasma \\ (\kappa=0.034\,m^2\,kg^{-1}), & L_{edd} \simeq 3.8 \times 10^4\,L_{\odot} \ (M/\,M_{\odot}) \,. \end{array}$

Eddington accretion rate (maximum accretion rate)

• if the luminosity is due to accretion luminosity (i.e. gravitational energy release) $L_{\rm grav} = GM\dot{M}/R$, where R is the inner edge of the accretion flow, equating

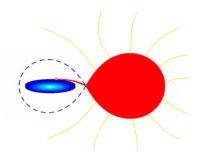
$$extbf{L}_{ ext{edd}} = extbf{L}_{ ext{grav}} ext{:} \quad \dot{ extbf{M}}_{ ext{edd}} = rac{4\pi ext{cR}}{\kappa}$$

ullet For a neutron star, $\dot{M} \simeq 1.8 \times 10^{-8}\,M_{\odot}\,yr^{-1}$

Mass-Transfer Driving Mechanisms

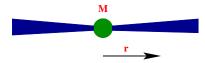
- mass transfer is driven either by the expansion of the mass donor or because the binary orbit shrinks due to angular momentum loss from the system
- expansion of the donor:
 - \triangleright due to nuclear evolution ("evolutionary driven mass transfer"; then $\dot{M} \sim M/t_{nuclear}$) or
 - ho non-thermal-equilibrium evolution ("thermal timescale mass transfer"; then $\dot{M} \sim M/t_{KH}$) conservative mass transfer:
 - ▶ total angular momentum of binary:

$$J = \frac{M_1 M_2}{M_1 + M_2} \underbrace{\sqrt{G(M_1 + M_2) \, A}}_{\substack{\text{specific angular momentum}}}$$
 (A: orbital separation)


- $\mbox{$\triangleright$ if J, M_1+M_2 conserved} \mbox{\rightarrow $(M_1M_2)^2$ $A=constant} \\ \mbox{(implies minimum separation if $M_1=M_2$)}$
- angular momentum loss from the system:

gravitational radiation:

 \triangleright effective for $P_{orb} \lesssim 12 \, hr$


magnetic braking

- > red dwarf loses angular momentum in magnetic wind
- ▶ tidal locking of secondary
- > extracts angular momentum from orbit

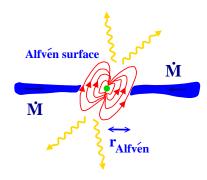
Accretion discs

• an accretion disc forms when the stream of material flowing from the secondary intersects with its own trajectory before hitting the surface of the accreting star (typically if $R_{\rm acc} \lesssim 0.1\,A)$

• in a Keplerian accretion disc: inflow of matter requires a source of viscosity so that angular momentum can diffuse outwards and matter inwards (not well understood, magnetorotational instability?)

the disc temperature structure: T(r)

▷ energy per unit mass in disc at radius r

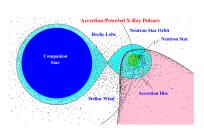

$$E = \frac{1}{2}v^2 - \frac{GM}{r} = -\frac{GM}{2r}$$
 (virial theorem)

- $\rightarrow \ \frac{dE}{dt} = \frac{GM}{2r^2} \, u, \ where \ u \ is the \ radial \ drift \ velocity;$
 - \triangleright energy radiated by unit area ($\Sigma(\mathbf{r})$: surface density [mass/area]), assumed to be blackbody (the disc has two sides!): $\frac{GM}{2\mathbf{r}^2}u\,\Sigma(\mathbf{r})=2\sigma T^4$
 - ho and using mass conservation $\dot{ ext{M}} = 2\pi ext{ru} \Sigma(ext{r})
 ightarrow ext{T}^4 = GM\dot{ ext{M}}/8\pi ext{r}^3 \sigma$
 - ▶ with proper viscous energy transport

$$\mathbf{T}^4 = rac{3 \mathbf{G} \mathbf{M} \dot{\mathbf{M}}}{8 \pi \mathbf{r}^3 oldsymbol{\sigma}}$$

- \triangleright examples: accretion onto a neutron star (no magnetic fields) with $\dot{M}\simeq 2\times 10^{-8}\,M_{\odot}\,yr^{-1},~M=1.4\,M_{\odot},~R=10\,km$
- ightarrow R = 10 km: $T \simeq 1.5 \times 10^7 \, K \simeq 1.4 \, keV \, (X-rays)$
 - \triangleright for a massive black hole ($\dot{M}\sim 1\,M_{\odot}\,yr^{-1},~M=10^8\,M_{\odot},~R=3R_s=9\times 10^8\,km)$
- $\rightarrow \ T \simeq 2.2 \times 10^5 \, K \simeq 20 \, eV \ (UV)$

Neutron Star Spin up by Accretion

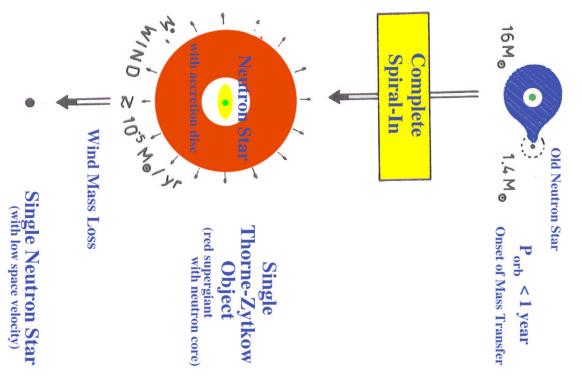


- when magnetic fields are important, the accretion flow near the neutron star becomes dominant and channels the mass towards the poles, making the object a X-ray pulsar
- Alfvén radius: where kinetic energy \sim magnetic energy density,i.e. $\frac{1}{2} \rho \, v^2 \simeq \frac{B(r)^2}{2\mu_0}$
- approximating the flow velocity v by the free-fall velocity, i.e. $v \simeq v_{\rm ff} = \left(\frac{2GM_{NS}}{R_{\rm Alf}}\right)^{1/2}$,
- obtaining the density ho from mass conservation (quasi-spherical flow) $ho \simeq \frac{\dot{M}}{4\pi R_{Alf}^2 v_{ff}}$
- and assuming a dipole magnetic field $(B \propto r^{-3})$ $B(r) \sim \frac{B_0 R_{\rm NS}^3}{R_{\rm Alf}^3} \mbox{ (where B_0 is the surface field strength)}$
- $ightarrow \;
 m R_{Alf} \simeq 2.9 imes 10^4 \, m \, \left(rac{
 m B}{10^5 \, T}
 ight)^{4/7} \left(rac{
 m \dot{M}}{2 imes 10^{-8} \,
 m M_{\odot} \, yr^{-1}}
 ight)^{-2/7}$
 - ullet equilibrium spin period (spin-up line!): ${
 m P_{spin}} \sim {
 m orbital} \; {
 m period} \; {
 m at} {
 m R_{Alf}^3/GM_{NS}}$
- $ightarrow \;
 m P_{eq} \simeq 2.3 \, ms \left(rac{B}{10^5 \, T}
 ight)^{6/7} \left(rac{\dot{M}}{2 imes 10^{-8} \,
 m M_{\odot} \, yr^{-1}}
 ight)^{-3/7}$

High-Mass X-Ray Binaries

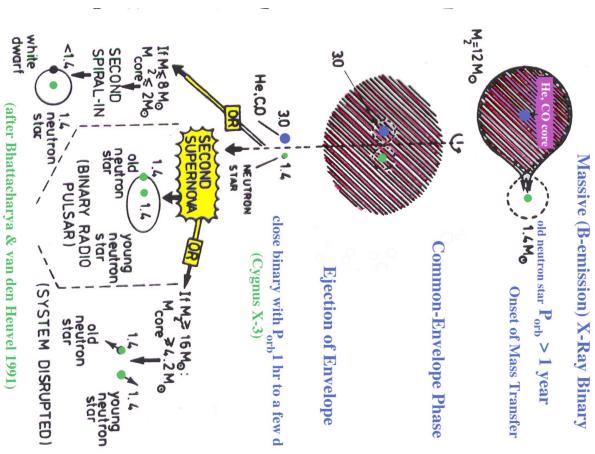
- because of the large mass ratio, mass transfer generally becomes unstable, leading to a common-envelope and spiral-in phase
- mass transfer is either due to atmospheric Roche-lobe overflow (short-lived) or wind accretion (relatively low luminosity)

Bondi-Hoyle wind accretion



$$ightarrow \
m R_{BH} \simeq rac{2GM_{acc}}{v_{wind}^2}$$

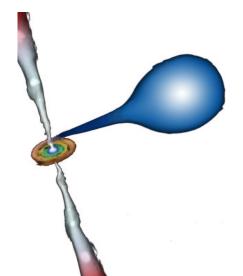
 $(\text{for } v_{\text{orb}} << v_{\text{wind}})$


- ho accretion rate: $\dot{M}_{acc} = \pi R_{BH}^2 v_{wind} \rho(A)$,
- riangle where the wind mass density ho at orbital separation A follows from mass conservation: $ho(A) \simeq rac{\dot{M}_{wind}}{4\pi A^2 \, v_{wind}},$
- $\begin{array}{l} \triangleright \ using \ v_{orb}^2 = G(M_{acc} + M_{donor})/A, \ one \ obtains \\ \\ \frac{\dot{M}_{acc}}{\dot{M}_{wind}} = \left(\frac{v_{orb}}{v_{wind}}\right)^4 \left(\frac{M_{acc}}{M_{acc} + M_{donor}}\right)^2 << 1 \end{array}$

a) Final Evolution of a Close **Massive X-Ray Binary**

(after Bhattacharya & van den Heuvel 1991)

Final Evolution of a Wide



Final Fate of HMXBs

- depends on orbital period
- short orbital period ($P_{orb} \lesssim 1\,\mathrm{yr}$): \rightarrow complete spiral-in \rightarrow singe red supergiant with a neutron core ("Thorne-Żytkow object") \rightarrow after envelope loss in stellar wind: single neutron star
- long orbital period $(P_{orb} \gtrsim 1\, yr)$: common-envelope ejection \rightarrow second supernova \rightarrow double neutron-star binary (if binary is not disrupted in the supernova)

Double neutron star (DNS) binaries

- PSR 1913+16 (with $P_{orb} \simeq 8 \, hr$, $P_{spin} = 59 \, ms$) discovered by Taylor & Hulse (1975)
- about half a dozen are now known
- orbital evolution is driven by gravitational radiation
 → one of the best tests of general relativity
- ullet DNSs with orbital periods $\lesssim 10\,\mathrm{hr}$ will ultimately merge to
 - ▷ produce a short-duration gamma-ray burst (?)
 - ▶ major source of gravitational waves directly detectable by modern gravitational wave detectors (e.g. Advanced LIGO)
 - produce neutron-rich elements (r-process, e.g. gold)

Mass Loss from XRBs

- ▶ relativistic jets from the accreting object
- ▶ e.g. SS 433
- b disc winds driven by X-ray irradiation

X-Ray Variability

- X-ray binaries are variable on many timescale in different ways
 - > X-ray pulsations: periodic with spin period, due to magnetically funnelled accretion onto the poles
 - ⊳ flickering, quasi-periodic oscillations: caused by instabilities in the disc (noise)
 - b transient accretion events: alternation between phases of high and low accretion dates due to thermal transitions in the accretion disc (in particular for black holes accreting at low rates; also cataclysmic variables)

X-Ray Bursts

Fig. 3. The discovery of X-ray bursts. Detection of an X-ray burst from a source located in the globula

- thermonuclear explosions, once enough H/He fuel has been accreted
- Eddington-limited, thermal (blackbody) X-ray spectrum
- can potentially be used to determine the radius of neutron stars and potentially constrain the neutron-star equation of state

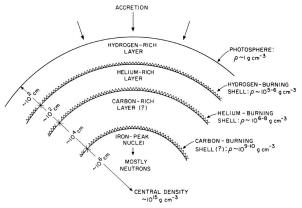
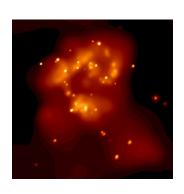


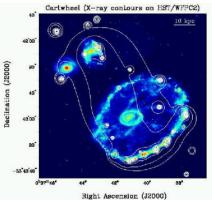
Fig. 37. Schematic sketch of the surface layers of an accreting neutron star. This figure is from Joss [143].

Do Black Holes Exist?

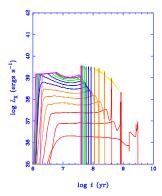
- present methods are indirect
 - $\begin{array}{l} \text{$\triangleright$ using the binary mass function of the secondary} \\ f_2(M_1) = \frac{M_1^3 \sin^3 i}{(M_1 + M_2)^2} = \frac{P \, (v_2 \sin i)^3}{2 \pi G} \end{array}$
 - ▷ determined from observables P and v₂ sin i
 - ho for $M_2 \ll M_1 \rightarrow f_2(M_1) \simeq M_1 \sin^3 i$
 - riangle largest mass of a compact object to-date: $\gtrsim 10\,{
 m M}_{\odot}$ (GRS 1915+105)
 - \triangleright much larger than the maximum possible mass of a neutron star $(2-3\,\mathrm{M}_\odot)$
 - but: NS structure is not well understood; postulates of strange matter star, Q-balls, etc. that do not have a maximum mass limit
- spectral properties
 - ▷ accreting black holes emit a softer X-ray spectrum since the inner edge of the accretion disc is larger for a more massive black hole
 - $\label{eq:Rinner} \begin{array}{l} \triangleright \ R_{inner} \ is \ determined \ by \ the \ last \ stable \ orbit \ for \ particles: \ R_{stable} = 3R_{Schwarzschild} = 9 \ km \ (M_{BH}/\ M_{\odot}) \end{array}$
- need to prove the existence of an event horizon
 - ▷ e.g. by observing an inflow of mass-energy that disappears without observable trace
 - Note: for an object with a hard surface, material has to hit the surface, which produces photons
 - > possible in principle, but has not been demonstrated convincingly to date

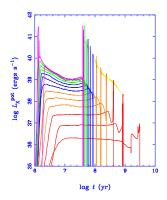
Ultraluminous X-Ray Sources (ULXs)


- discovered by EINSTEIN (Fabbiano 1989), confirmed by ROSAT, ASCA, $L_X > 10^{32}\,\mathrm{W}$ (i.e. above the Eddington limit for a $\sim 10\,\mathrm{M}_\odot$ object)
- stellar-mass black holes $(10^2-10^5\,M_\odot)$? (Colbert & Mushotzky 1999) (i.e. the missing link between stellar-mass $[\sim 10\,M_\odot]$ and super-massive black holes $[\gtrsim 10^6\,M_\odot]$)
- possibly important


 - > as seeds for star formation (triggering the collapse of gas clouds)

 - ▶ forming the cores of globular clusters
- argument in support: soft X-ray spectrum
- association with starburst galaxies, interacting galaxies (e.g. Antennae)


but: GRS 1915+105 is a Galactic counterpart containing a $\sim 14\,M_{\odot}$ black hole


Do ULX contain intermediate mass black holes or do they form the luminous tail of the known black-hole binary population?

• association with star formation (e.g. the clustering in the star-formation wave seen in the Cartwheel galaxy) connects them with massive stars

- modelling of intermediate-mass BH binaries consistent with observed luminosities, luminosity function
- require moderate amount of super-Eddington luminosities for the most luminous ULXs (+ beaming?)
 - ▷ as observed in many neutron-star (NS) X-ray binaries (magnetic accretion?)
 - ⊳ see e.g. Begelman (2002): photon-bubble instabilities in magnetic disc
- probably most ULXs are BH binaries