
Disk accretionFor Roche lobe overow, speci�c angular momentum of gas at theL1 point is, lL1 = X21
Bwhere X1 is the distance of the L1 point from the accreting star.X1 is given approximately by,X1 ' (0:5� 0:227 log q)a:Sound speed in the stellar atmosphere near the L1 point is nor-mally � orbital velocity of the binary. Gas leaving L1 thus followsapproximately ballistic trajectories.

1



Particle orbits are self-intersecting ! collision of the gas streamwith itself, dissipation, and formation of a disk.De�ne the circularization radius Rc as the radius where gas inKeplerian orbit has the same speci�c angular momentum as the gasleaving L1, pGMaccRc = X21
Bwhich gives, Rc ' (1 + q)(0:5� 0:227 log q)4a:e.g. for q = 0:5 �nd Rc=a � 0:16a. Normally smaller than theRoche lobe of the accretor by a substantial margin, but larger thanthe radius of any compact accretor (white dwarf, neutron star, blackhole).Detailed discussion of ow through L1 by Lubow & Shu (1975).Simulations by Oka et al. (2002):
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Structure of a disk accreting system:

� Gas stream from the L1 point.� A hotspot where the stream collides hypersonically with the edgeof the disk.� Disk distorted in the tidal potential of the binary. For q <0:25, disk develops an eccentric instability and precesses (Lubow1991).
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Close-up of the hotspot region:

Observations of absorption in nearly edge-on X-ray binaries pro-vide evidence of the ow in this region.
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Disk evolutionAdopt cylindrical polar co-ordinates (R; �; z). Gas in the disk atradius R has azimuthal velocity v� = R
(R), where 
 is the angularvelocity. Rate of shearing of the ow,A � Rd
dRis generally nonzero { ie disk rotates di�erentially. Any dissipationin the ow will act to damp shearing motions, converting them intoheat (! radiation). Energy must come from the potential energy!accretion.To derive equation for the evolution of the disk surface density �,consider an annulus with inner radius R and width �R. Conserva-tion of mass gives,@@t(2�R ��R � �) = vR(R; t) � 2�R � �(R; t)� vR(R + �R; t) � 2�(R +�R) � �(R +�R; t):where vR is the radial velocity. Taking the limit,R@�@t + @@R(R�vR) = 0:
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Identical procedure for the angular momentum gives,R @@t(�R2
) + @@R(R�vR �R2
) = Gwhere G is the net e�ect of the viscous torques from interior andexterior annuli. If the torque of an outer annulus acting on a neigh-boring inner one at radius R is G(r; t), then,G = 12� @G@R:(note 2� from de�nition of G). From the de�nition of the kinematicviscosity �, the viscous force per unit length along the boundarybetween two annuli is ��A. Hence,G(R; t) = 2�R � ��A �R:Substituting this expression for G back into the angular momen-tum equation, and then eliminating vR using the continuity equation,gives an equation for disk evolution,@@t(�R2
) + 1R @@R(�R3
vR) = 1R @@R(��R3
0)where 
0 � d
=dR.Specializing to the case of a point mass potential,
 = 0@GMaccR3 1A1=2obtain, @�@t = 3R @@R 24R1=2 @@R(��R1=2)35 :6



If � is a general function of the local conditions in the disk (ie,R, �, possibly t), then this is a nonlinear di�usion equation for thesurface density. In the special case where � is a power law in Ronly, it is a linear di�usion equation for which analytic solutions areknown.e.g. for constant �, solution for the evolution of a ring of mass mat initial radius R0 is,�(x; � ) = m�R20�x1=4e�(1+x2)=�I1=4(2x=� )where,� x � R=R0� � � 12�tR�20� I1=4 is a modi�ed Bessel function of order 1/4.
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Solution for constant viscosity,

Find (eg Pringle 1981, ARA&A, 19, 137),� Viscosity tends to spread the ring out.� Bulk of the mass moves to small radius.� Tail moves to large radius to conserve total angular momentum.In most (all?) cases the source of � is probably turbulence drivenby magnetohydrodynamic instabilities (Balbus & Hawley 1991).
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Steady disksThe disk in a mass transfer binary is continuously replenished bymass ow from L1. In the absence of global instabilities, useful toconsider the structure of a steady disk.De�ning _M as the steady inward mass ux, continuity gives,_M = 2�R�(�vR):Integrating the angular momentum equation,��(�
0) = �(�vR)
� C2�R3where C is a constant of integration. At a point in the ow wherethe shear vanishes (ie 
0 = 0),C = _MR2
:ie C is the ux of angular momentum through the disk.Normally, for a slowly rotating star, the location where the shear ina thin disk vanishes is close to the surface of the accreting star atR = R� (marginally stable circular orbit for a black hole). Thus,C ' _MpGMaccR�:Using this boundary condition, obtain the basic relation for steadydisks, �� = _M3� 26641� vuuutR�R 3775 :9



A kinematic viscosity � generates dissipation in the disk at a rateD(R) per unit area per unit time, whereD(R) = 12��(R
0)2:Substituting for ��,D(R) = 3GMacc _M4�R3 26641� vuuutR�R 3775 :If the disk is optically thick to its own thermal radiation, then ina steady state, D = 2�T 4effwhich implies,Teff = 0BB@3GMacc _M8�R3� 26641� vuuutR�R 37751CCA1=4 :Note,� The e�ective temperature (more generally the dissipation) doesnot depend on the viscosity in a steady state.� Teff / R�3=4 at large radius (R� R�).
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Order of magnitude disk temperatures. For R� R�,T = T� 0@ RR�1A�3=4 :White dwarfs
T� = 4:1� 104 0B@ _M1016 gs�11CA1=4 0@MaccM� 1A1=4 0@ R109 cm1A�3=4 K:! inner disk should be bright in the UV.Neutron stars
T� = 1:3� 107 0B@ _M1017 gs�11CA1=4 0@MaccM� 1A1=4 0@ R106 cm1A�3=4 K:! inner disk should be bright in X-rays.Black holesAt the Eddington limit, _M / Macc. The radius of the innermoststable orbit also scales linearly with Macc. Thus,T� /M�1=4accMore massive black holes should have cooler thermal X-ray spec-tra. But note that nonthermal emission is also often present.11


