Disk accretion

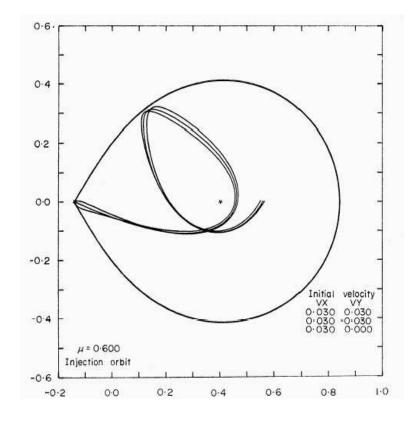
For Roche lobe overflow, specific angular momentum of gas at the L_1 point is,

$$l_{L_1} = X_1^2 \Omega_B$$

where X_1 is the distance of the L_1 point from the accreting star. X_1 is given approximately by,

$$X_1 \simeq (0.5 - 0.227 \log q)a.$$

Sound speed in the stellar atmosphere near the L_1 point is normally \ll orbital velocity of the binary. Gas leaving L_1 thus follows approximately ballistic trajectories.



Particle orbits are self-intersecting \rightarrow collision of the gas stream with itself, dissipation, and formation of a disk.

Define the *circularization radius* R_c as the radius where gas in Keplerian orbit has the same specific angular momentum as the gas leaving L_1 ,

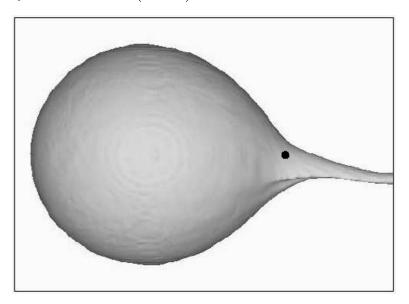
$$\sqrt{GM_{acc}R_c} = X_1^2\Omega_B$$

which gives,

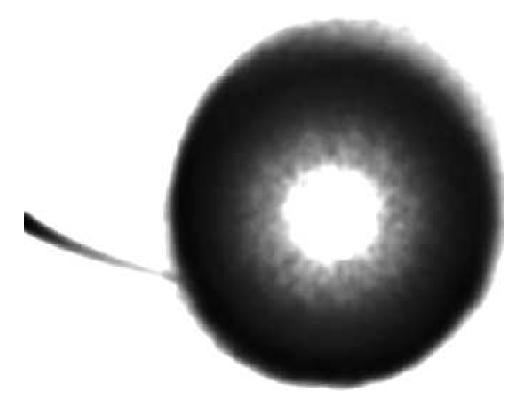
$$R_c \simeq (1+q)(0.5-0.227\log q)^4 a.$$

e.g. for q = 0.5 find $R_c/a \approx 0.16a$. Normally smaller than the Roche lobe of the accretor by a substantial margin, but larger than the radius of any compact accretor (white dwarf, neutron star, black hole).

Detailed discussion of flow through L_1 by Lubow & Shu (1975). Simulations by Oka et al. (2002):

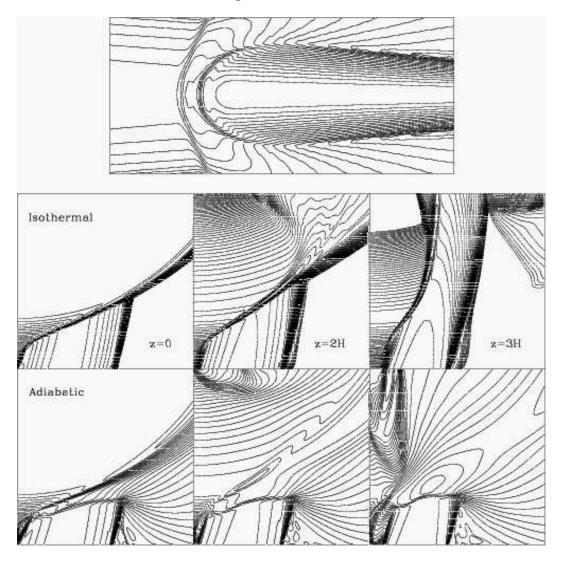


Structure of a disk accreting system:



- Gas stream from the L_1 point.
- A hotspot where the stream collides hypersonically with the edge of the disk.
- Disk distorted in the tidal potential of the binary. For q < 0.25, disk develops an eccentric instability and precesses (Lubow 1991).

Close-up of the hotspot region:



Observations of absorption in nearly edge-on X-ray binaries provide evidence of the flow in this region.

Disk evolution

Adopt cylindrical polar co-ordinates (R, ϕ, z) . Gas in the disk at radius R has azimuthal velocity $v_{\phi} = R\Omega(R)$, where Ω is the angular velocity. Rate of shearing of the flow,

$$A \equiv R \frac{d\Omega}{dR}$$

is generally nonzero – ie disk rotates differentially. Any dissipation in the flow will act to damp shearing motions, converting them into heat (\rightarrow radiation). Energy must come from the potential energy \rightarrow accretion.

To derive equation for the evolution of the disk surface density Σ , consider an annulus with inner radius R and width ΔR . Conservation of mass gives,

$$\frac{\partial}{\partial t} (2\pi R \cdot \Delta R \cdot \Sigma) = v_R(R, t) \cdot 2\pi R \cdot \Sigma(R, t) - v_R(R + \Delta R, t) \cdot 2\pi (R + \Delta R) \cdot \Sigma(R + \Delta R, t).$$

where v_R is the radial velocity. Taking the limit,

$$R\frac{\partial\Sigma}{\partial t} + \frac{\partial}{\partial R}(R\Sigma v_R) = 0.$$

Identical procedure for the angular momentum gives,

$$R\frac{\partial}{\partial t}(\Sigma R^2\Omega) + \frac{\partial}{\partial R}(R\Sigma v_R \cdot R^2\Omega) = \mathcal{G}$$

where \mathcal{G} is the *net* effect of the viscous torques from interior and exterior annuli. If the torque of an outer annulus acting on a neighboring inner one at radius R is G(r, t), then,

$$\mathcal{G} = \frac{1}{2\pi} \frac{\partial G}{\partial R}.$$

(note 2π from definition of \mathcal{G}). From the definition of the kinematic viscosity ν , the viscous force per unit length along the boundary between two annuli is $\nu \Sigma A$. Hence,

$$G(R,t) = 2\pi R \cdot \nu \Sigma A \cdot R.$$

Substituting this expression for G back into the angular momentum equation, and then eliminating v_R using the continuity equation, gives an equation for disk evolution,

$$\frac{\partial}{\partial t}(\Sigma R^2 \Omega) + \frac{1}{R} \frac{\partial}{\partial R}(\Sigma R^3 \Omega v_R) = \frac{1}{R} \frac{\partial}{\partial R}(\nu \Sigma R^3 \Omega')$$

where $\Omega' \equiv d\Omega/dR$.

Specializing to the case of a point mass potential,

$$\Omega = \left(\frac{GM_{acc}}{R^3}\right)^{1/2}$$

obtain,

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} (\nu \Sigma R^{1/2}) \right].$$

If ν is a general function of the local conditions in the disk (ie, R, Σ , possibly t), then this is a nonlinear diffusion equation for the surface density. In the special case where ν is a power law in R only, it is a linear diffusion equation for which analytic solutions are known.

e.g. for constant ν , solution for the evolution of a ring of mass m at initial radius R_0 is,

$$\Sigma(x,\tau) = \frac{m}{\pi R_0^2 \tau x^{1/4}} e^{-(1+x^2)/\tau} I_{1/4}(2x/\tau)$$

where,

- $x \equiv R/R_0$
- $\tau \equiv 12\nu t R_0^{-2}$
- $I_{1/4}$ is a modified Bessel function of order 1/4.

Solution for constant viscosity,

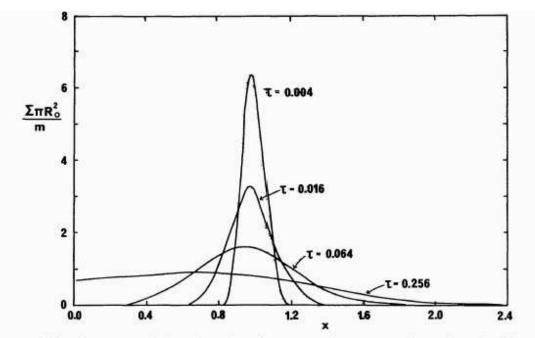


Figure 1 The viscous evolution of a ring of matter of mass m. The surface density Σ is shown as a function of dimensionless radius $x = R/R_0$, where R_0 is the initial radius of the ring, and of dimensionless time $\tau = 12vt/R_0^2$ where v is the viscosity.

Find (eg Pringle 1981, ARA&A, 19, 137),

- Viscosity tends to spread the ring out.
- Bulk of the mass moves to small radius.
- Tail moves to large radius to conserve total angular momentum.

In most (all?) cases the source of ν is probably turbulence driven by magnetohydrodynamic instabilities (Balbus & Hawley 1991).

Steady disks

The disk in a mass transfer binary is continuously replenished by mass flow from L_1 . In the absence of global instabilities, useful to consider the structure of a steady disk.

Defining \dot{M} as the steady inward mass flux, continuity gives,

$$M = 2\pi R\Sigma(-v_R).$$

Integrating the angular momentum equation,

$$\nu\Sigma(-\Omega') = \Sigma(-v_R)\Omega - \frac{C}{2\pi R^3}$$

where C is a constant of integration. At a point in the flow where the shear vanishes (ie $\Omega' = 0$),

$$C = \dot{M}R^2\Omega.$$

ie C is the **flux of angular momentum** through the disk. Normally, for a slowly rotating star, the location where the shear in a thin disk vanishes is close to the surface of the accreting star at $R = R_*$ (marginally stable circular orbit for a black hole). Thus,

$$C \simeq \dot{M} \sqrt{GM_{acc}R_*}.$$

Using this boundary condition, obtain the basic relation for steady disks,

$$\nu\Sigma = \frac{\dot{M}}{3\pi} \left[1 - \sqrt{\frac{R_*}{R}} \right]$$

A kinematic viscosity ν generates dissipation in the disk at a rate D(R) per unit area per unit time, where

$$D(R) = \frac{1}{2}\nu\Sigma(R\Omega')^2.$$

Substituting for $\nu\Sigma$,

$$D(R) = \frac{3GM_{acc}\dot{M}}{4\pi R^3} \left[1 - \sqrt{\frac{R_*}{R}}\right].$$

If the disk is optically thick to its own thermal radiation, then in a steady state,

$$D = 2\sigma T_{eff}^4$$

which implies,

$$T_{eff} = \left(\frac{3GM_{acc}\dot{M}}{8\pi R^3\sigma} \left[1 - \sqrt{\frac{R_*}{R}}\right]\right)^{1/4}.$$

Note,

- The effective temperature (more generally the dissipation) **does not depend on the viscosity** in a steady state.
- $T_{eff} \propto R^{-3/4}$ at large radius $(R \gg R_*)$.

Order of magnitude disk temperatures. For $R \gg R_*$,

$$T = T_* \left(\frac{R}{R_*}\right)^{-3/4}$$

.

White dwarfs

$$T_* = 4.1 \times 10^4 \left(\frac{\dot{M}}{10^{16} \text{ gs}^{-1}}\right)^{1/4} \left(\frac{M_{acc}}{M_{\odot}}\right)^{1/4} \left(\frac{R}{10^9 \text{ cm}}\right)^{-3/4} \text{ K.}$$

 \rightarrow inner disk should be bright in the UV.

Neutron stars

$$T_* = 1.3 \times 10^7 \left(\frac{\dot{M}}{10^{17} \text{ gs}^{-1}}\right)^{1/4} \left(\frac{M_{acc}}{M_{\odot}}\right)^{1/4} \left(\frac{R}{10^6 \text{ cm}}\right)^{-3/4} \text{ K.}$$

 \rightarrow inner disk should be bright in X-rays.

Black holes

At the Eddington limit, $\dot{M} \propto M_{acc}$. The radius of the innermost stable orbit also scales linearly with M_{acc} . Thus,

$$T_* \propto M_{acc}^{-1/4}$$

More massive black holes should have cooler thermal X-ray spectra. But note that nonthermal emission is also often present.