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IX. BLACK HOLES

Limit of stationarity IX A

Event horizon IX B

Schwarzschild black holes IX C

Kerr Black Holes IX D

”Ergosphere” and Penrose process IX E

A. Limit of stationarity

Let us consider ds for the test particle in rest, i.e. put dr = dθ = dφ = 0, in this case

ds2 = g00dx02
, (IX.1)

If g00 = 0 then ds2 = 0, which means that the world line of the particle at rest is the world line of light, hence at
the surface g00 = 0 no particle with finite rest mass can be at rest. Thus the surface g00 = 0 is called the limit of
stationarity.

B. Event horizon

Let us consider a surface

F (r) = const (IX.2)

and let

ni = F,i (IX.3)

is its normal. If g11 = 0 then

giknink = g11n1n1 = 0, (IX.4)

which means that ni is the null vector and any particle with finite rest mass can not move outward the surface g11 = 0,
thus this surface is the event horizon.
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C. Schwarzschild black holes

Schwarzschild Black holes are described by the following metric

ds2 =
(
1− rg

r

)
c2dt2 − dr2(

1− rg

r

) − r2
(
sin2 θdφ2 + dθ2

)
, (IX.5)

obtained in the previous lecture.One can see that both the limit of stationarity and the event horizon are located at
r = rg.
Let us consider the structure of light cone in the Schwarzschild metric using the new coordinates cτ and R introduced
in Lecture 8. Putting ds = 0, we have

c
dτ

dR
= ± 1(

3
2rg

(R− cτ)
)1/3

= ±
√

rg

r
. (IX.6)

Thus we can see that if r > rg

|c dτ

dR
| < 1 (IX.7)

and the surface r = const is inside the light cone, while for r < rg

|c dτ

dR
| > 1 (IX.8)

and the surface r = const is outside the light cone, which means that all particles and even photons should propagate
inward. In order words we can see that the surface r = rg is the event horizon.

D. Kerr Black Holes

The Kerr metric describing the gravitational field of rotating black holes has the following form

ds2 = (1− rgr

ρ2
)c2dt2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2 +

rgra
2

ρ2
sin2 θ) sin2 θdφ2+

+
2rgra

ρ2
sin2 θcdφdt, (IX.9)

where

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − rgr + a2 and a =
J

mc
(IX.10)

and J is the specific angular momentum of the black hole.

1. Limit of stationarity

The location of the limit of stationarity, rst, corresponding to g00 = 0, in the Kerr metric is determined from the
equation

1− rgr

ρ2
= 0, thus r2 − rgr + a2 cos2 θ = 0. (IX.11)

Solving this equation we obtain that

rst =
1
2
(rg ±

√
r2
g − 4a2 cos2 θ) =

rg

2
±
√

(
rg

2
)2 − a2 cos2 θ. (IX.12)
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2. Event horizon

The location of the event horizon, rhor is determined by g11 = 0. In the Kerr metric this corresponds to g11 = ∞, i.e.
corresponds to

∆ = r2 − rgr + a2 = 0, (IX.13)

and

r =
1
2
(rg ±

√
r2
g − 4a2 cos2 θ) =

rg

2
±
√

(
rg

2
)2 − a2 cos2 θ, (IX.14)

hence

rhor =
rg

2
±
√(rg

2

)2

− a2. (IX.15)

E. ”Ergosphere” and Penrose process

1. Ergosphere

The region between the limit of stationarity and the event horizon is called the ”ergosphere”. By the Penrose process
it is possible to extract the rotational energy of the Kerr black hole.

2. Penrose process

The Penrose process is a process wherein energy can be extracted from a rotating black hole. That extraction is
made possible because the rotational energy of the black hole is located not inside the event horizon, but outside in
a curl gravitational field. Such field is also called gravi-magnetic field. All objects in the ergosphere are unavoidably
dragged by the rotating spacetime. Imagine that some body enters into the black hole and then it is split there into
two pieces. The momentum of the two pieces of matter can be arranged so that one piece escapes to infinity, whilst
the other falls past the outer event horizon into the black hole. The escaping piece of matter can have a greater
mass-energy than the original infalling piece of matter. In other words, the captured piece has negative mass-energy.
The Penrose process results in a decrease in the angular momentum of the black hole, and that reduction corresponds
to a transference of energy whereby the momentum lost is converted to energy extracted. As a result of the Penrose
process a rotating black hole can eventually lose all of its angular momentum, becoming a non-rotating (i.e. the
Schwarzschild) black hole.
————————————————————————————————————————————-
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