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VI. CURVATURE OF SPACE-TIME

The Riemann curvature tensor VI A

Symmetry properties of the Riemann tensor VI B

Bianchi Identity VI C

The Ricci tensor and the scalar curvature VI D

Geodesic deviation equation VI E

Stress-Energy Tensor VI F

Heuristic ”Derivation” of EFEs VI G

A. The Riemann curvature tensor

We know that Ai,k,l−Ai,l,k = 0. What can we say about the following commutator Ai; k; l−Ai; l; k? Straightforward
calculations will show that this is not equal to zero in the presence of gravitational field and can be presented as

Ai; k; l −Ai; l; k = AmRm
ikl, (VI.1)

where the object Ri
klm is obviously a tensor and called the curvature Riemann tensor.

We know that if at least one component of a tensor is not equal to zero in at least one frame of reference, the same
is true for any other frame of reference. In other words, tensors (in contrast to the Christoffel symbols) can not be
eliminated by transformations of coordinates.
The Riemann tensor describes an actual tidal gravitational field, which is not local and, hence, can not be eliminated
even in the locally inertial frame of reference. Let us calculate the curvature Riemann tensor directly:

Ai;k;l −Ai;l;k = Ai;k,l −Ai;l,k − Γm
il Am;k − Γm

klAi;m + Γm
ikAm;l + Γm

lkAi;m =

= (Ai,k − Γm
ikAm),l − (Ai,l − Γm

il Am),k − Γm
il (Am,k − Γp

mkAp) + Γm
ik (Am,l − Γp

mlAp) =

= Ai,k,l − Γm
ikAm,l − Γm

ik,lAm −Ai,l,k + Γm
il Am,k + Γm

il,kAm − Γm
il Am,k + Γm

il Γp
mkAp + Γm

ikAm,l − Γm
ikΓp

mlAp =

= −Γm
ik,lAm + Γm

il,kAm + Γm
il Γp

mkAp − Γm
ikΓp

mlAp = −Γm
ik,lAm + Γm

il,kAm + Γp
ilΓ

m
pkAm − Γp

ikΓm
plAm =

=
(
−Γm

ik,l + Γm
il,k + Γp

ilΓ
m
pk − Γp

ikΓm
pl

)
Am = Rm

iklAm. (VI.2)

Finally

Rm
ikl = Γm

il,k − Γm
ik,l + Γp

ilΓ
m
pk − Γp

ikΓm
pl . (VI.3)

Similar equations can be written for tensors of higher ranks, for example

Aik; l; m −Aik; m; l = AinRn
klm + AnkRn

ilm. (VI.4)
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Let us introduce the covariant presentation of the Riemann tensor:

Riklm = ginRn
klm. (VI.5)

By straightforward calculations one can show that

Riklm =
1
2

(gim,k,l + gkl,i,m − gil,k,m − gkm,i,l) + gnp(Γn
klΓ

p
im − Γn

kmΓp
il). (VI.6)

B. Symmetry properties of the Riemann tensor

There are several symmetry properties of the curvature tensor:
1) The Riemann tensor is antisymmetric with respect to permutations of indices within each pair

Riklm = −Rkilm = −Rikml. (VI.7)

2) The Riemann tensor is symmetric with respect to permutations of pairs of indices

Riklm = Rlmik. (VI.8)

3) The cyclic sum formed by permutation of any three indices is equal to zero

Riklm + Rimkl + Rilmk = 0. (VI.9)

C. Bianchi Identity

The most important property of the Riemann tensor is so called the Bianchi identity:

Rn
ikl; m + Rn

imk; l + Rn
ilm; k = 0. (VI.10)

It is easy to verify this identity in a locally inertial frame of reference, where

Γi
kl = 0, (VI.11)

hence

Rn
ikl; m + Rn

imk; l + Rn
ilm; k = Rn

ikl,m + Rn
imk,l + Rn

ilm,k = (VI.12)

Γn
il,m,k − Γn

ik,m,l + Γn
ik,l,m − Γn

im,l,k + Γn
im,k,l − Γn

il,k,m = 0. (VI.13)

Taking into account that the Bianchi identity is of a tensor character, we can conclude that it valid in any other frame
of reference.

D. The Ricci tensor and the scalar curvature

Now we can introduce a second rank curvature tensor, called the Ricci tensor, as follows

Rik = glmRlimk = Rl
ilk. (VI.14)

We can also introduce a zero rank curvature tensor, i.e. a scalar, called the scalar curvature:

R = gikRik. (VI.15)
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1. The important consequence of Bianchi identity

After contracting the Biancci identity

Ri
klm;n + Ri

knl;m + Ri
kmn;l = 0 (VI.16)

over indices i and n (taking summation i = n) we obtain

Ri
klm;i + Ri

kil;m + Ri
kmi;l = 0. (VI.17)

According to the definition of Ricci tensor (VI.14), the second term can be rewritten as

Ri
kil;m = Rkl;m. (VI.18)

Taking into account that the Riemann tensor is antisymmetric with respect to permutations of indices within the
same pair

Ri
kmi = −Ri

kim = −Rkm, (VI.19)

the third term can be rewritten as

Ri
kmi;l = −Rkm;l. (VI.20)

The first term can be rewritten as

Ri
klm;i = gipRpklm;i, (VI.21)

then taking mentioned above permutation twice we can rewrite the first term as

Ri
klm;i = gipRpklm;i = −gipRkplm;i = gipRkpml;i. (VI.22)

After all these manipulations we have

gipRkpml;i + Rkl;m −Rkm;l = 0. (VI.23)

Then multiplying by gkm and taking into account that all covariant derivatives of the metric tensor are equal to zero,
we have

gkmgipRkpml;i + gkmRkl;m − gkmRkm;l =
(
gkmgipRkpml

)
;i

+
(
gkmRkl

)
;m
−
(
gkmRkm

)
;l

= 0. (VI.24)

In the first term expression in brackets can be simplified as

gkmgipRkpml = gipRpl = Ri
l . (VI.25)

In the second term the expression in brackets can be simplified as

gkmRkl = Rm
l . (VI.26)

According to the definition of the scalar curvature (VI.15), the third term can be simplified as(
gkmRkm

)
;l

= R;l = R,l. (VI.27)

Thus

Ri
l;i + Rm

l;m −R,l = 0, (VI.28)

replacing in the second term index of summation m by i we finally obtain

2Ri
l;i −R,l = 0, or Ri

l;i −
1
2
R,l = 0. (VI.29)

Thus the important consequence of Bianchi identity is

Ri
l;i −

1
2
R,l = 0. (VI.30)
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E. Geodesic deviation equation

The geodesic deviation equation is an equation involving the Riemann curvature tensor, which measures the change
in separation of neighboring geodesics. In the language of mechanics it measures the rate of relative acceleration of
two particles moving forward on neighboring geodesics. Let the 4-velocity along one geodesic is

ui =
dxi

ds
. (VI.31)

There is an infinitesimal separation vector between the two geodesics ηi. Then the relative acceleration, ai, is

ai =
d2ηi

ds2
. (VI.32)

It is possible to show that

ai = Ri
klmukulηm. (VI.33)

If gravitational field is weak and all motions are slow

ui ≈ δi
0, (VI.34)

and the above equation is reduced to the Newtonian equation for the tidal acceleration.

F. Stress-Energy Tensor

The stress-energy tensor (sometimes stress-energy-momentum tensor), Tik, describes the density and flux of energy
and momentum.
In general relativity this tensor is symmetric and contains ten independent components:
The component T00 represents the energy density (1 component).
The components T0α (α = 1, 2, 3) represent the flux of energy across the surface which is normal to the xα-axis. These
components are equivalent to the components Tα0 which describe the density of the αth momentum (3 components).
The components Tαβ (α, β = 1, 2, 3) represent flux of αth momentum across the surface which is normal to the xβ-axis.
In particular, the diagonal components Tαalpha represents a pressure-like quantity, normal stress (3 components).
Non-diagonal components Tαβ (α 6= β), represent shear stress (3 components).
All these ten components participate in the generation of a gravitational field, while in Newton gravity the only source
of gravitational field is the mass density.

1. Conservation of energy-momentum in gravitational field

According to physics in absence of gravitational field the stress-energy tensor satisfies the following conservation law:

T i
k,i = 0. (VI.35)

We know from previous lectures that according ”, → ;-rule” in the presence of gravitational field this should be
rewritten as

T i
k;i = 0. (VI.36)

25



A. Polnarev. (MTH720U/MTHM033). 2010. Lecture 6.

————————————————————————————————————————————————-

G. Heuristic ”Derivation” of EFEs

It seems like a good idea to relate the Ricci tensorto the stress-energy tensor.
The most general form of the second rank tensor formed from the metric tensor gik and containing second derivatives
of the metric tensor gik, let us call it the Einstein tensor, is

Gik = Rik + αgikR. (VI.37)

As follows from the the previous section

Gi
k;i = (ginGnk);i = Ri

k;i + αδi
kR,i = (

1
2

+ α)R,k. (VI.38)

Let us assume that the EFEs have the following form

Gik = κTik, (VI.39)

where the constant κ is called the Einstein constant. Multiplying this by gmk we obtain

Rm
i + αδm

i R = κTm
k . (VI.40)

Taking covariant divergence of LHS and RHS of this equation we obtain

(α +
1
2
)R;k = κTm

k; m = 0, (VI.41)

hence

α = −1
2
, (VI.42)

and final EFEs are

Ri
k −

1
2
δi
kR = κT i

k. (VI.43)

To determine κ we can use the so called the correspondence principle, which says that the EFEs in weak-field and
the slow-motion approximation should be reduced to Newton’s law of gravity, i.e. to the Poisson’s equation

∆φ = 4πGρ. (VI.44)

By straightforward calculations one can prove that such reduction is possible only if

κ =
8πG

c4
. (VI.45)

Finally, EFEs can be written as

Rik −
1
2
gikR =

8πG

c4
Tik. (VI.46)

Despite the simple appearance of this equation it is, in fact, quite complicated. Given a specified distribution of
matter and energy in the form of a stress-energy tensor, the EFE are understood to be equations for the metric tensor
gik, as both the Ricci tensor and Ricci scalar depend on the metric (in a complicated nonlinear manner). In fact, when
fully written out, the EFEs are the system of 10 coupled, nonlinear, hyperbolic-elliptic partial differential equations.
In other words, Despite the simple appearance of the EFEs they are, in fact, rather complicated.
Solutions of the Einstein field equations model an extremely wide variety of gravitational fields.
Some of them are really exotic, for example the solution corresponding to the so called wormhole [A wormhole is
a hypothetical topological feature of spacetime that is essentially a ’shortcut’ through space and time. A wormhole
has at least two mouths which are connected to a single throat. If the wormhole is traversable, matter can ’travel’
from one mouth to the other by passing through the throat. While there is no observational evidence for wormholes,
spacetimes containing wormholes are known to be valid solutions of the Einsteins equations.
Gravitational waves and black holes are also solutions of EFEs.
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