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IV. COVARIANT DIFFERENTIATION

Parallel translation IV A

Covariant derivatives and Christoffel symbols IV B

The Christoffel symbols and the metric tensor IV C

Physical applications IV D

A. Parallel translation

In Special Relativity if Ai is a vector dAi is also a vector ( the same is valid for any tensor). But in curvilinear
coordinates this is not the case:

Ai =
∂x′k

∂xi
A′

k (IV.1)

dAi =
∂x′k

∂xi
dA′

k + A′
k

∂2x′k

∂xi∂xl
dxl, (IV.2)

thus dAi is not a vector unless x′k are linear functions of xk ( like in the case of Lorentz transformations). Let us
introduce the following very useful notation:

, i =
∂

∂xi
(IV.3)

According to the principle of covariance we can not afford to have not tensors in any physical equations, thus we
should replace all differentials like

dAi and
∂Ai

∂xk
≡ Ai,k (IV.4)

by some corrected values which we will denote as

DAi and Ai;k (IV.5)

correspondingly. In arbitrary coordinates to obtain a differential of a vector which forms a vector we should subtract
vectors in the same point, not in different as we have done before.
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Hence, we need produce a parallel transport or a parallel translation. Under a parallel translation of a vector in galilean frame
of reference its components don’t change, but in curvilinear coordinates they do and we should introduce some corrections:

DAi = dAi − δAi. (IV.6)

These corrections obviously should be linear with respect to all components of Ai and independently they should be linear with
respect of dxk, hence we can write these corrections as

δAi = −Γi
klA

kdxl, (IV.7)

where Γi
kl are called Christoffel Symbols which obviously don’t form any tensor, because DAi is the tensor while as we know

dAi is not a tensor.

B. Covariant derivatives and Christoffel symbols

In terms of the Christoffel symbols

DAi = (
∂Ai

∂xl
+ Γi

klA
k)dxl = (Ai

,l + Γi
klA

k)dxl, (IV.8)

DAi = (
∂Ai

∂xl
− Γk

ilAk)dxl = (Ai,l − Γk
ilAk)dxl, (IV.9)

Ai
;l =

∂Ai

∂xl
+ Γi

klA
k = Ai

,l + Γi
klA

k, (IV.10)

Ai;l =
∂Ai

∂xl
− Γk

ilAk = Ai,l − Γk
ilAk. (IV.11)

To calculate the covariant derivative of tensor let us start with contravariant tensor which can be presented as a product of
two contravariant vectors AiBk. In this case the corrections under parallel transport are

δ(AiBk) = AiδBk + BkδAi = −AiΓk
lmBldxm −BkΓi

lmAldxn, (IV.12)

since these corrections are linear we have the same for arbitrary tensor Aik:

δAik = −(AimΓk
ml + AmkΓi

ml)dxl (IV.13)

DAik = dAik − δAik ≡ Aik
; ldxl, (IV.14)

hence

Aik
; l = Aik

,l + Γi
mlA

mk + Γk
mlA

im (IV.15)

In similar way we can obtain that

Ai
k; l = Ai

k,l − Γm
klA

i
m + Γi

mlA
m
k , and Aik; l = Aik,l − Γm

il Amk − Γm
klAm, i. (IV.16)

In the most general case when we have tensor of m+n rank with m contravariant and n covariant indices the rule for calculation
of the covariant derivative with respect to index p is the following

Ai1 i2 ... im
j1 j2 ... jn ; p = Ai1 i2 ... im

j1 j2 ... jn , p + Γi1
kpAk i2 ... im

j1 j2 ... jn
+ Γi2

kpAi1 k ... im
j1 j2 ... jn

+ ... + Γim
kpAi1 i2 ... k

j1 j2 ... jn
− (IV.17)

− Γk
j1 pAi1 i2 ... im

k j2 ... jn
− Γk

j2 pAi1 i2 ... im
j1 k ... jn

− ... − Γk
jn pAi1 i2 ... im

j1 j2 ... k . (IV.18)
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C. The Christoffel symbols and the metric tensor

So far we don’t know how the Christoffel symbols depend on coordinates, however we can prove that they are symmetric in
the subscripts. Let some covariant vector Ai is the gradient of a scalar φ, i.e. Ai = φ,i. Then

Ak; i −Ai; k = φ,k,i − Γl
kiφ,l − φ,i,k + Γl

ikφ,l =
(
Γl

ki − Γl
ik

)
φ,l. (IV.19)

In Galilean coordinates

Γl
ik = Γl

ki = 0, hence in Galilean coordinates Ak; i −Ai; k = 0, (IV.20)

but taking into account that Ak; i−Ai; k is a tensor we conclude that if it equals to zero in one system of coordinates it should
be equal to zero in any other coordinate system, hence

Γl
ik = Γl

ki (IV.21)

in any coordinate system.
This is a typical example of the proof widely used in General Relativity:
If some equality between tensors is valid in one coordinate system then this equality is valid in arbitrary coordinate system.
This is obvious advantage to deal with tensors.
Then we can show that covariant derivatives of gik are equal to zero. Indeed:

DAi = gikDAk DAi = D(gikAk) = gikDAk + AkDgik, hence gikDAk = gikDAk + AkDgik, (IV.22)

which obviously means that

AkDgik = 0. (IV.23)

Taking into account that Ak is arbitrary vector, we conclude that

Dgik = 0. (IV.24)

This is another example of proof in General Relativity: If the the sum BikAi = 0 for arbitrary vector Ai then the tensor
Bik = 0. Then taking into account that

Dgik = gik;mdxm = 0 (IV.25)

for arbitrary infinitesimally small vector dxm we have

gik;m = 0. (IV.26)

Now we are ready to relate the Christoffel symbols to the metric tensor. Introducing useful notation

Γk, il = gkmΓm
il , (IV.27)

we have

gik; l =
∂gik

∂xl
− gmkΓm

il − gimΓm
kl =

∂gik

∂xl
− Γk, il − Γi, kl = 0. (IV.28)

Permuting the indices i, k and l twice as i → k, k → l, l → i,we obtain

∂gik

∂xl
= Γk, il + Γi, kl,

∂gli

∂xk
= Γi, kl + Γl, ik and − ∂gkl

∂xi
= −Γl, ki − Γk, li. (IV.29)

Taking into account that Γk, il = Γk, li, after summation of these three equation we have

gik,l + gli,k − gkl,i = 2Γi, kl, (IV.30)

and finally

Γi
kl =

1

2
gim

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)
. (IV.31)

Now we have expressions for the Christoffel symbols in terms of the metric tensor and hence we know their dependence on
coordinates.
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D. Physical applications

The previous material can be summarized as follows:
Gravity is equivalent to curved space-time, hence in all differentials of tensors we should take into account the change in the
components of a tensor under an infinitesimal parallel transport. Corresponding corrections are expressed in terms of the
Cristoffel symbols and are reduced to replacement of any partial derivative by corresponding covariant derivative. In other
words we can say that if one wants to take into account all effects of Gravity on any local physical process, described by the
corresponding equations written in framework of Special Relativity, one should just replace all partial derivatives by covariant
derivatives in these equation according to the following very nice and simple but actually very strong and important formulae:

d→ D and , → ;. (IV.32)

Example 1: In special Relativity

dgik = 0 and gik,l = 0, (IV.33)

while in General Relativity

Dgik = 0 and gik;l = 0. (IV.34)

Example 2: Let us apply above formulae to description of motion of a free test particle in a given gravitational field. Let

ui =
dxi

ds
(IV.35)

is the four-velocity. Then the equation for motion of a free particle in absence of gravitational field is

dui

ds
= 0 (IV.36)

is generalized to the equation

Dui

ds
= 0, (IV.37)

which gives

Dui

ds
=

dui

ds
+ Γi

knuk dxn

ds
=

d2xi

ds2
+ Γi

knukun = 0. (IV.38)

Thus from physical point of view the equation

d2xi

ds2
+ Γi

kl
dxk

ds

dxl

ds
= 0 (IV.39)

describes the motion of free particle in a given gravitational field and

d2xi

ds2
= −Γi

kl
dxk

ds

dxl

ds
(IV.40)

is the four-acceleration, while from geometrical point of view this equation is the equation for geodesics in a curved space-time.
That is why all particles move with the same acceleration and now this experimental fact is not coincidence anymore but
consequence of geometrical interpretation of gravity.

———————————————————————————————————————————————————
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