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Lecture 3

III. PHYSICAL GEOMETRY OF SPACE-TIME

Proper time III A

Physical distance III B

Synchronization of clocks III C

Invariant 4-volume IIID

A. Proper time

One of the most central problems in the geometry of 4-spacetime can be formulated as follows. If the metric tensor is
given, how is actual (measurable) time and distances related with coordinates x0, x1, x2, x3 chosen in arbitrary way?
Let us consider the world line of an observer who uses some clock to measure the actual or proper time, dτ , between
two infinitesimally close events in the same place in space. How dτ is related to coordinate time dx0. Obviously we
should put in the interval

dx1 = dx2 = dx3. (III.1)

Let us define proper time exactly as in Special Relativity:

dτ =
ds

c
, (III.2)

then we have

ds2 ≡ c2dτ2 = gikdxidxk = g00(dx0)2, (III.3)

thus

dτ =
1
c

√
g00dx0. (III.4)

For the proper time between any two events which are not necessary infinitesimally close occurring at the same point
in space we have

τ =
1
c

∫
√

g00dx0. (III.5)
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B. Physical distance

Separating the space and time coordinates in ds we have

ds2 = gαβdxαdxβ + 2g0αdx0dxα + g00(dx0)2. (III.1)

To define dl we will use a light signal according to the following procedure: From some point B with spatial coordinates
xα + dxα a light signal emitted at the moment corresponding to time coordinate x0 + dx0(1) propagates to a point A with
spatial coordinates xα and then after reflection at the moment corresponding to time coordinate x0 the signal propagates back
over the same path and is detected in the point B at the moment corresponding to time coordinate x0 + dx0(2) as shown on
Fig.3.1.
According to both Special and General Relativity the interval between any two events which belong to the same world line of
light is always equal to zero:

ds = 0. (III.2)

Solving this equation with respect to dx0 we find two roots:

dx0(1) =
1

g00

(
−g0αdxα −

√
(g0αg0β − gαβg00)dxαdxβ

)
dx0(2) =

1

g00

(
−g0αdxα +

√
(g0αg0β − gαβg00)dxαdxβ

)
dx0(2) − dx0(1) =

2

g00

√
(g0αg0β − gαβg00)dxαdxβ . (III.3)

Then

dl =
c

2
dτ =

c

2

√
g00

c
(dx0(2) − dx0(1)) (III.4)

and finally

dl2 = γαβdxαdxβ , where γαβ = −gαβ +
g0αg0β

g00
. (III.5)

C. Synchronization of clocks

If we want to determine the distance between two not infinitesimally closed points, but points separated by some finite distance
we should take an integral

∫
dl along some path connecting the two points. Obviously, we should take dl over the path at the

simultaneous moment of time. Hence, we should first to define what are simultaneous events and then we should synchronize
clocks (again with using light signals) over finite volume in space along the path of integration.
The moment at the point B, corresponding to the time coordinate x0 + ∆x0, is simultaneous to the moment at the point A,
corresponding to the time coordinate x0, if

x0 + ∆x0 = x0 +
1

2
(dx0(2) + dx0(1)), (III.1)

i.e. the reading of clock in B is halfway between the moments of departure and return of the signal to that point, hence

∆x0 = −g0α

g00
dxα. (III.2)

As we are able now to define simultaneous events along any open curve, however, synchronization of clocks along a closed
contour is impossible in general, since

−
∮

g0α

g00
dxα 6= 0, (III.3)

which means that starting synchronization in some point we return back with

∆x0 6= 0. (III.4)
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In other words, in an arbitrary reference system the synchronization of clocks in a whole space-time is impossible, but this is
not the property of the space-time itself, but the property of the given frame of reference. We always can choose such a frame
of reference in which all

g0α = 0 (III.5)

and hence the synchronization of clocks in a whole space-time is possible. For that we should write 3 equations for 4 arbitrary
functions, which is always possible.

D. Invariant 4-volume

To derive EFEs we should be able to calculate integrals over the all space and over the time coordinate

Sg =

∫
GdΩ̃, (III.1)

where dΩ̃ is invariant, i.e. not depending on the frame of reference, the element of 4-volume and G is some scalar function.
Thus we should understand what the invariant volume is.
Let us prove that the invariant volume is

dΩ̃ =
√
−gdΩ, (III.2)

where

dΩ = dx0dx1dx2dx3 (III.3)

and g is the determinant of the metric tensor.

Proof

Let us introduce the Jacobian, J , of the transformation from the Galilean (locally inertial) frame of reference, (x′0, x′1, x′2, x′3),
to the curvilinear coordinates (x0, x1, x2, x3)

J =
∂(x0, x1, x2, x3)

∂(x′0, x′1, x′2, x′3)
= | ∂xi

∂(x′n
| = |Si

n|, (III.4)

where |Ai
n| means the determinant of a matrix Ai

n. Then let us write the formula for the transformation of the contravariant
metric tensor

gik = Si
l S

k
mglm(0) = Si

l S
k
mηlm, (III.5)

where

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (III.6)

Taking into account that the determinant of the reciprocal tensor gik is the inverse of the determinant of the tensor gik, we
have

|gik| = 1

|gik|
=

1

g
. (III.7)

Taking into account that the determinant of the product of matrices is equal to the product of their determinants (the fact
known from any textbook on Linear Algebra), we obtain

|gik| = |Si
l | × |Sk

m| × |ηlm| = J × J × (−1) = −J2, (III.8)

hence

1

g
= −J2 and J =

1√
−g

. (III.9)
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From the definition of J we have

dΩ ≡ dx0dx1dx2dx3 = Jdx′0dx′1dx′2dx′3 =
1√
−g

dx′0dx′1dx′2dx′3 =
1√
−g

dΩ′, (III.10)

hence in all curvilinear coordinates

√
−gdΩ = dΩ′, thus dΩ̃ =

√
−gdΩ (III.11)

is invariant 4-volume.
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