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A. The principle of covariance and tensors

The Principle of Covariance predetermines the mathematical structure of General Relativity: all equations should
contain tensors only. By definition, tensors are objects which are transformed properly in the course of coordinate
transformations from one frame of reference to another. Taking into account that non-inertial frames of reference
in the 4-dimensional space-time correspond to curvilinear coordinates, it is necessary to develop four-dimensional
differential geometry in arbitrary curvilinear coordinates.

B. Transformation of coordinates

Let us consider the transformation of coordinates from one frame of reference (x0, x1, x2, x3) to another,
(x

′0, x
′1, x

′2, x
′3):

x0 = f0(x′0, x′1, x′2, x′3), x1 = f1(x′0, x′1, x′2, x′3), x2 = f2(x′0, x′1, x′2, x′3), x3 = f3(x′0, x′1, x′2, x′3). (II.1)

Then

dxi =
∂xi

∂x′k dx′k = Si
kdx′k, i, k = 0, 1, 2, 3, where Si

k =
∂xi

∂x′k (II.2)

is a transformation matrix. Remember that all repeating indices mean summation, otherwise even such a basic
transformation would be very ugly when written. To demonstrate that summation convention is really very useful, I
will write, the first and the last time, the same transformation without using the summation convention:
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
dx0 = ∂x0

∂x′0 dx′0 + ∂x0

∂x′1 dx′1 + ∂x0

∂x′2 dx′2 + ∂x0

∂x′3 dx′3 = S0
0dx′0 + S0

1dx′1 + S0
2dx′2 + S0

3dx′3,

dx1 = ∂x1

∂x′0 dx′0 + ∂x1

∂x′1 dx′1 + ∂x1

∂x′2 dx′2 + ∂x1

∂x′3 dx′3 = S1
0dx′0 + S1

1dx′1 + S1
2dx′2 + S1

3dx′3,

dx2 = ∂x2

∂x′0 dx′0 + ∂x2

∂x′1 dx′1 + ∂x2

∂x′2 dx′2 + ∂x2

∂x′3 dx′3 = S2
0dx′0 + S2

1dx′1 + S2
2dx′2 + S2

3dx′3,

dx3 = ∂x3

∂x′0 dx′0 + ∂x3

∂x′1 dx′1 + ∂x3

∂x′2 dx′2 + ∂x3

∂x′3 dx′3 = S3
0dx′0 + S3

1dx′1 + S3
2dx′2 + S3

3dx′3

(II.3)

C. Contravariant and covariant tensors

Now we can give the definition of the Contravariant four-vector: The Contravariant four-vector is the combination of four
quantities (components) Ai, which are transformed like differentials of coordinates:

Ai = Si
kA′k. (II.4)

Let ϕ is scalar field, then

∂ϕ

∂xi
=

∂ϕ

∂x′k
∂x′k

∂xi
= S̃k

i
∂ϕ

∂x′k , (II.5)

where S̃k
i is another transformation matric. What is the relation of this matrix to the previous transformation matrix Si

k? If
we take product of these matrices, we obtain

Si
nS̃n

k =
∂xi

∂x′n
∂x′n

∂xk
=

∂xi

∂xk
= δi

k, (II.6)

where δi
k is so called Kronneker symbol, which actually is nothing but the unit matrix:

δi
k =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (II.7)

In other words S̃i
k is inverse or reciprocal with respect to Si

k.
Now we can give the definition of the Covariant four-vector: The Covariant four-vector is the combination of four quantities
(components) Ai, which are transformed like components of the gradient of a scalar field:

Ai =
∂x′k

∂xi
A′

k. (II.8)

Note, that for contravariant vectors we always use upper indices, which are called contravariant indices, while for covariant
vectors we use low indices, which are called covariant indices. In General Relativity summation convention always means that
one of two repeating indices should be contravariant and another should be covariant.For example,

AiBi = A0B0 + A1B1 + A2B2 + A3B3 (II.9)

is the scalar product.
There is no summation if both indices are, say, covariant, for example:

AiBi =

A0B0, if i = 0,
A1B1, if i = 1,
A2B2, if i = 2,
A3B3, if i = 3.

(II.10)

Now we can generalize the definitions of vectors and introduce tensors entirely in terms of transformation laws.
Scalar, A, is the tensor of the 0 rank. It has only 40 = 1 component and 0 number of indices. Transformation law is

A = A′, (II.11)

we see that transformation matrices appear in transformation law 0 times.
Contravariant and covariant vectors are tensors of the 1 rank. They have 41 = 4 components and 1 index. Corresponding
transformation laws are
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Ai = Si
nA′n, (II.12)

Ai = S̃n
i A′

n, (II.13)

we see only 1 transformation matrix in each transformation law.
Contravariant tensor of the 2 rank has 42 = 16 components and 2 contravariant indices. Corresponding transformation law is

Aik = Si
nSk

mA′nm, (II.14)

we see 2 transformation matrices in the transformation law.
Covariant tensor of the 2 rank has 42 = 16 components and 2 covariant indices. Corresponding transformation law is

Aik = S̃n
i S̃m

k A′
nm, (II.15)

we see 2 transformation matrices in the transformation law.
Mixed tensor of the 2 rank has 42 = 16 components and 2 indices, 1 contravariant and 1 covariant. Corresponding transformation
law is

Ai
k = Si

nS̃m
k A′n

m, (II.16)

we see 2 transformation matrices in the transformation law.
Covariant tensor of the 3 rank has 43 = 64 components and 3 covariant indices. Corresponding transformation law is...and so
on.
The most general definition: Mixed tensor of the N + M rank with N contravariant and M covariant indices, has 4N+M =
22(N+M) components and N + M indices. Corresponding transformation law is

Ai1 i2 ... iN
k1 k2 ... kM

= Si1
n1Si2

n2 ...SiN
nN

S̃m1
k1

S̃m2
k2

...S̃mM
kM

A′n1 n2 ... nN
m1m2...mM

, (II.17)

we see N + M transformation matrices in the transformation law.

D. Reciprocal tensors

Two tensors Aik and Bik are called reciprocal to each other if

AikBkl = δl
i. (II.18)

Now we can introduce a contravariant metric tensor gik which is reciprocal to the covariant metric tensor gik:

gikgkl = δl
i. (II.19)

With the help of the metric tensor and its reciprocal we can form contravariant tensors from covariant tensors and vice versa,
for example:

Ai = gikAk, Ai = gikAk, (II.20)

in other words we can rise and descend indices as we like, like a kind of juggling with indices. We can say that contravariant,
covariant and mixed tensors can be considered as different representations of the same geometrical object.
For the contravariant metric tensor itself we have very important representation in terms of the transformation matrix from
locally inertial frame of reference (galilean frame) to an arbitrary non-inertial frame, let us denote it as Si

(0)k. We know that
in the galilean frame of reference

gik =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ≡ ηik ≡ diag(1,−1,−1,−1), (II.21)

hence

gik = Si
(0)nSk

(0)mηlm = Si
(0)0S

k
(0)0 − Si

(0)1S
k
(0)1 − Si

(0)2S
k
(0)2 − Si

(0)3S
k
(0)3. (II.22)

This means that if we know the transformation law from the local galilean frame of reference to an arbitrary frame of reference,
we know the metric at this arbitrary frame of reference and, hence, we know the gravitational field which is identical to
geometry!
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E. Examples

Example 1. Given that gik is a covariant tensor of the second rank and that

ds2 = gikdxidxk, (II.23)

prove that ds is a scalar.

The proof:

ds2 = gikdxidxk = (S̃n
i S̃m

k g′
nm)(Si

pdx′p)(Sk
wdx′w) = (S̃n

i Si
p)(S̃m

k Sk
w)(g′

nmdx′pdx′w) =

= δn
p δm

w (g′
nmdx′pdx′w) = g′

pwdx′pdx′w = g′
ikdx′idx′k = ds′2, (II.24)

hence ds = ds′ which means that ds is a scalar.

Example 2. How many independent components in the metric tensor?

The answer:

First, we can prove that the metric tensor is symmetric, i.e.

gik = gki. (II.25)

Indeed,

ds2 = gikdxidxk =
1

2
(gikdxidxk + gikdxidxk) =

1

2
(gkidxkdxi + gikdxidxk) =

1

2
(gki + gik)dxidxk =

= g̃ikdxidxk, (II.26)

where

g̃ik =
1

2
(gki + gik), (II.27)

which is obviously a symmetric one. Then we just drop ” ˜ ”. The end of proof. Now the answer is obvious: altogether we have
4× 4 components, 4 components on the diagonal, 3 + 2 + 1 = 6 components above the diagonal and 3 + 2 + 1 = 6 components
under the diagonal and we know that these components are equal to components above the diagonal. Thus the final answer is
there are 4 + 6 = 10 independent components.

———————————————————————————————————————————————————

Back to Content
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Next Lecture
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F. Course work 1

Q1.

a) Formulate the equivalence principle and explain what is the difference in interpretation of this principle in Newtonian theory
and in General relativity.

b) Explain the similarity between an ”actual” gravitational field and a non-inertial reference system. Give the definition of a
locally Galilean coordinate system.

c) Explain why an ”actual” gravitational field cannot be eliminated by any transformation of coordinates over all space-time.

d) Show that in a uniformly rotating system of coordinates x
′
, y

′
, z

′
, such that

x = x
′
cosΩt− y

′
sinΩt, y = x

′
sinΩt + y

′
cosΩt, z = z

′
, (F.1)

the interval ds has the following form:

ds2 = gikdxidxk = g
′
ikdx

′idx
′k = [c2 − Ω2(x

′2 + y
′2)]dt2 − dx

′2 − dy
′2 − dz

′2 + 2Ωy
′
dx′dt− 2Ωx

′
dy′dt. (F.2)

Q2.

a) Formulate the covariance principle and explain the relationship between this principle and the principle of equivalence.

b) Give the definition of a contravariant vector in terms of the transformation of curvilinear coordinates.

c) Give the definition of a covariant vector in terms of the transformation of curvilinear coordinates.

d) What is the mixed tensor of the second rank in terms of the transformation of curvilinear coordinates (you can assume that
a mixed tensor of the second rank is transformed as a product of covariant and contrvariant vectors).

e) Explain why the principle of covariance implies that all physical equations should contain only tensors.

Q3

a) Prove that the metric tensor is symmetric. Give a rigorous proof that the interval is a scalar.

b) Give the definition of the reciprocal tensors of the second rank. What is the contravariant metric tensor gik.

c) Show that in an arbitrary non-inertial frame

gik = Si
(0)0S

k
(0)0 − Si

(0)1S
k
(0)1 − Si

(0)2S
k
(0)2 − Si

(0)3S
k
(0)3,

where Si
(0)k is the transformation matrix from locally inertial frame of reference (galilean frame) to this non-inertial frame.

d) Demonstrate how using the reciprocal contravariant metric tensor gik and the covariant metric tensor gik you can form
contravariant tensor from covariant tensors and vice versa.

Q4.

a) In the local Galilean frame xi
[G] of reference a mixed tensor of the second rank, Ci

k has the only one non-vanishing component,

C0
0[G] = 1, and all other components are equal to zero. Write down all components of this mixed tensor in arbitrary frame of

reference. Express your result in terms of transformation matrix.

b) In the non-rotating system of Cartesian coordinates (x, y, z) the only non-vanishing component of some tensor Ai
k is

A1
1 = 1 and all other components vanish. Using coordinate transformation from Cartesian to the uniformly rotating cylindrical

coordinates (r, θ, φ)

x = r cos(θ + Ωt), y = r sin(θ + Ωt), z = Z, (F.3)

show that in the latter coordinates

A
′1
0 = −rΩ

2c
sin 2(θ + Ωt). (F.4)

———————————————————————————————————————————————————
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