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2. Course information

About the course

This course is an introduction to General Relativity and includes:
Explanation of the fundamental principles of GR. The motion of particles in a given gravitational field. The prop-
agation of electromagnetic waves in a gravitational field. The derivation of Einstein’s field equations from the basic
principles. The derivation of the Schwarzschild solution. Analysis of the Kerr solution. A discussion of physical
aspects of strong gravitational fields around black holes. The generation, propagation and detection of gravitational
waves. The weak general relativistic effects in the Solar System and binary pulsars. The experimental tests of General
Relativity.

Assessment

Course-work 0%, exam 100%

Key Objectives

1. Effects of General Relativity in the Solar System and in the Universe:

you should have a good understanding of the importance of general relativity in physics and astronomy.

2. Curvilinear Coordinates, Covariant Differentiation:

You should be able to operate with concepts of differential geometry and understand the deep relationship between
physics and geometry.

3. Motion of Particles in a Gravitational Field:

You should understand the fundamental difference in the motion of particles in relativistic theory of gravitation and
in Newtonian theory. You should be able to write down and solve in the simplest cases the geodesic equation.

4. The Curvature Tensor and the Einstein Equations:

You should understand basic physical principle of the least action and have good qualitative understanding of the
most important stages of the derivation of these equations.

5. Black Holes:

You should understand what is event horizon and what is the limit of stationarity. You should be able to describe the
main effects of strong gravitational field around black hole and have idea how the black holes could be discovered.

6. Gravitational Waves:

You should be able to derive the wave equation for propagation of gravitational radiation, understand why gravitational
waves are transverse and traceless, what is similarity and what is the difference with electromagnetic waves. You
should also be able to produce order of magnitude estimations of amplitudes of gravitational waves from astrophysical
sources of gravitational radiation.
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Lecture 1. Last updated 07.03.10

I. INTRODUCTION

About this course I A

The principle of equivalence I B

Gravity as a space-time geometry I C

The principle of covariance I D

A. About this course

This course is an introduction to General Relativity (GR) and includes:
Explanation of the fundamental principles of GR.
The motion of particles in a given gravitational field.
The propagation of electromagnetic waves in a gravitational field.
The derivation of Einstein’s field equations from the basic principles.
The derivation of the Schwarzschild solution.
Analysis of the Kerr solution.
A discussion of physical aspects of strong gravitational fields around black holes.
The generation, propagation and detection of gravitational waves.
The weak general relativistic effects in the Solar System and binary pulsars.
The experimental tests of General Relativity.

B. The principle of equivalence

The basic postulate of the GR states that a uniform gravitational field is equivalent to (which means is not distinguish-
able from) a uniform acceleration. In practice this means that a person cannot feel (locally) the difference between
standing on the surface of some gravitating body (for example the Earth) and moving in a rocket with corresponding
acceleration (Fig. 1.1).
According to Einstein ( Fig.1.2) these effects are actually the same.
The important consequence of the equivalence principle is that any gravitational field can be eliminated in free falling
frames of references, which are called local inertial frames or local galilean frames Fig. 1.3).
In other words, there is no experiment to distinguish between being weightless far out from gravitating bodies in space
and being in free-fall in a gravitational field. Another illustration of this principle is shown on Fig.1.4. This picture,
as well as some other images, is taken from the very interesting astronomical website by Nick Strobel.

1. The Principle of Equivalence in Newtonian Gravity.

All bodies in a given gravitational field will move in the same manner, if initial conditions are the same. In other
words, in given gravitational field all bodies move with the same acceleration. In absence of gravitational field, all
bodies move also with the same acceleration relative to the non-inertial frame. Thus we can formulate the Principle
of Equivalence which says: locally, any non-inertial frame of reference is equivalent to a certain gravitational field.

5



A. Polnarev. (MTH720U/MTHM033). 2010. Lecture 1.

————————————————————————————————————————————————-
Globally (not locally), ”actual” gravitational fields can be distinguished from corresponding non-inertial frame of
reference by its behavior at infinity: Gravitational Fields generated by gravitating bodies decay with distance.
In Newton’s theory the motion of a test particle is determined by the following equation of motion

min~a = −mgr∇φ, (I.1)

where ~a is the acceleration of the test particle, φ is newtonian potential of gravitational field, min is the inertial mass
of the test particle and mgr is its gravitational mass, which is the gravitational analog of the electric charge in the
theory of electromagnetism. The fundamental property of gravitational fields that all test particles move with the
same acceleration for given φ is explained within frame of newtonian theory just by the following ”coincidence”:

min

mg
= 1, (I.2)

i.e. inertial mass min is equal to gravitational mass mgr.

2. The Principle of Equivalence in GR.

As it is known from every course on Special Relativity (SR), this theory works only in the frames of reference of the
special kind called Global Inertial Frames of Reference. For such frames of reference the following combination of
time and space coordinates remains invariant in all global inertial frames of references

ds2 = c2dt2 − dx2 − dy2 − dz2. (I.3)

This combination is called the interval. All space-time coordinates in different global inertial frames of reference are
related to each other by the Lorentz transformations. It is also known that these transformations leave the shape of
the interval unchanged. But this is not the case if one considers transformation of coordinates in more general case,
when at least one of frames of reference is non-inertial. This interval is not reduced anymore to the simple sum of
squares of the coordinate differentials and can be written in the following more general quadratic form:

ds2 = gikdxidxk ≡
3∑

i=0

3∑
k=0

gikdxidxk, (I.4)

where repeating indices mean summation. In inertial frames of reference

g00 = 1, g11 = g22 = g33 = −1, and gik = 0, if i 6= k. (I.5)

3. Example.

Transformation to an uniformly rotating frame is

x = x′ cos Ωt− y′ sinΩt, y = x′ sinΩt + y′ cos Ωt, z = z′, (I.6)

where Ω is the angular velocity of rotation around z-axis. In this non-inertial frame of reference as one can see by
straightforward calculations

ds2 = [c2 − Ω2(x′2 + y′2)]dt2 − dx′2 − dy′2 − dz′2 + 2Ωy′dx′dt− 2Ωx′dy′dt. (I.7)
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C. Gravity as a space-time geometry

The fundamental physical concept of GR is that a gravitational field is identical to geometry of curved space-time.
This idea, called the Geometrical Principle, entirely determines the mathematical structure of General Relativity.
According to the GR gravity is nothing but a manifestation of space-time 4-geometry, this geometry is determined
by by metric

ds2 = gik(xm)dxidxk, (I.8)

where gik(xm) is called the metric tensor (what exactly is meant by the term ”tensor” we will discuss in the next
lecture). At the present moment we can consider gik(xm) as a 4 × 4 -matrix and all its components in a general
case can depend on all 4 coordinates xm, where m = 0, 1, 2, 3. All information about the geometry of space-
time is contained in gik(xm). The dependence of gik(xm) on xm means that this geometry is different in different
events, which implies that the space-time is curved and its geometry is not Euclidian. Such sort of geometry is the
the subject of mathematical discipline called Differential Geometry developed in XIX Century. Examples of highly
curved space-time are shown on Fig.1.5 and Fig.1.6.
The GR gives a very simple and natural explanation of the Principle of Equivalence: in curved space-time all bodies
move along geodesics, that is why their world lines are the same in given gravitational field. The situation is the same
as in a flat space-time when free particles move along straight lines which are geodesics in flat space-time. What is
the geodesic we will discuss in the next lectures.
If we know gik, we can determine completely the motion of test particles and the performance of all test fields. This is
one of the main statements of GR. [When we say test particle or test field we mean that gravitational field generated
by these test objects is negligible.] In the next lectures we will see that the metric tensor gik itself, and hence geometry,
is determined by physical content of the space-time.
In any curved space-time (i.e in the actual gravitational field) there is no global galilean frames of reference. In flat
space-time, if me work in non-inertial frames of reference metrics looks like the metric in gravitational field (because
according to the Equivalence Principle, locally, actual gravitational field is not distinguishable from corresponding
non-inertial frame of reference), nevertheless local (not global) galilean frames of reference do exist.
The local galilean frame of reference is equivalent to the freely falling frame of reference in which locally gravitational
field is eliminated. From geometrical point of view to eliminate gravitational field locally means to find such frame of
reference in which

gik → ηik ≡ diag(1,−1,−1,−1). (I.9)

D. The principle of covariance

If space-time is flat and one works with inertial frames of reference then the world lines of free particles are straight
lines. For particles moving with acceleration the world lines are curved (see Fig.1.7).
The fact that all bodies move with the same acceleration in a given gravitational field means that this gravitational
field is really a manifestation of properties of space-time itself and that there is no way experimentally to discriminate
between a gravitational field and non-inertial frame of reference. More mathematically this statement can be formu-
lated as the Principle of Covariance which says: the shape of all physical equations should be the same in an arbitrary
frame of reference. Otherwise the physical equations [being different in gravitational field and in inertial frames
of reference] would have different solutions, in other words, these equations would predict the difference between a
gravitational field and a non-inertial frame of reference and ,hence, would contradict to the experimental data. This
principle refers to the most general case of non-inertial frames (in contrast to the SR which works only in inertial
frames of reference).
————————————————————————————————————————————-

Back to Content Next Lecture
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II. TENSORS

The principle of covariance and tensors II A

Transformation of coordinates II B

Contravariant and covariant tensors II C

Reciprocal tensors II D

Examples II E

A. The principle of covariance and tensors

The Principle of Covariance predetermines the mathematical structure of General Relativity: all equations should
contain tensors only. By definition, tensors are objects which are transformed properly in the course of coordinate
transformations from one frame of reference to another. Taking into account that non-inertial frames of reference
in the 4-dimensional space-time correspond to curvilinear coordinates, it is necessary to develop four-dimensional
differential geometry in arbitrary curvilinear coordinates.

B. Transformation of coordinates

Let us consider the transformation of coordinates from one frame of reference (x0, x1, x2, x3) to another,
(x

′0, x
′1, x

′2, x
′3):

x0 = f0(x′0, x′1, x′2, x′3), x1 = f1(x′0, x′1, x′2, x′3), x2 = f2(x′0, x′1, x′2, x′3), x3 = f3(x′0, x′1, x′2, x′3). (II.1)

Then

dxi =
∂xi

∂x′k
dx′k = Si

kdx′k, i, k = 0, 1, 2, 3, where Si
k =

∂xi

∂x′k
(II.2)

is a transformation matrix. Remember that all repeating indices mean summation, otherwise even such a basic
transformation would be very ugly when written. To demonstrate that summation convention is really very useful, I
will write, the first and the last time, the same transformation without using the summation convention:

dx0 = ∂x0

∂x′0 dx′0 + ∂x0

∂x′1 dx′1 + ∂x0

∂x′2 dx′2 + ∂x0

∂x′3 dx′3 = S0
0dx′0 + S0

1dx′1 + S0
2dx′2 + S0

3dx′3,

dx1 = ∂x1

∂x′0 dx′0 + ∂x1

∂x′1 dx′1 + ∂x1

∂x′2 dx′2 + ∂x1

∂x′3 dx′3 = S1
0dx′0 + S1

1dx′1 + S1
2dx′2 + S1

3dx′3,

dx2 = ∂x2

∂x′0 dx′0 + ∂x2

∂x′1 dx′1 + ∂x2

∂x′2 dx′2 + ∂x2

∂x′3 dx′3 = S2
0dx′0 + S2

1dx′1 + S2
2dx′2 + S2

3dx′3,

dx3 = ∂x3

∂x′0 dx′0 + ∂x3

∂x′1 dx′1 + ∂x3

∂x′2 dx′2 + ∂x3

∂x′3 dx′3 = S3
0dx′0 + S3

1dx′1 + S3
2dx′2 + S3

3dx′3

(II.3)

C. Contravariant and covariant tensors

Now we can give the definition of the Contravariant four-vector: The Contravariant four-vector is the combination of
four quantities (components) Ai, which are transformed like differentials of coordinates:

Ai = Si
kA′k. (II.4)
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Let ϕ is scalar field, then

∂ϕ

∂xi
=

∂ϕ

∂x′k
∂x′k

∂xi
= S̃k

i

∂ϕ

∂x′k
, (II.5)

where S̃k
i is another transformation matric. What is the relation of this matrix to the previous transformation matrix

Si
k? If we take product of these matrices, we obtain

Si
nS̃n

k =
∂xi

∂x′n
∂x′n

∂xk
=

∂xi

∂xk
= δi

k, (II.6)

where δi
k is so called Kronneker symbol, which actually is nothing but the unit matrix:

δi
k =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (II.7)

In other words S̃i
k is inverse or reciprocal with respect to Si

k.
Now we can give the definition of the Covariant four-vector: The Covariant four-vector is the combination of four
quantities (components) Ai, which are transformed like components of the gradient of a scalar field:

Ai =
∂x′k

∂xi
A′

k. (II.8)

Note, that for contravariant vectors we always use upper indices, which are called contravariant indices, while for
covariant vectors we use low indices, which are called covariant indices. In General Relativity summation convention
always means that one of two repeating indices should be contravariant and another should be covariant.For example,

AiBi = A0B0 + A1B1 + A2B2 + A3B3 (II.9)

is the scalar product.
There is no summation if both indices are, say, covariant, for example:

AiBi =

A0B0, if i = 0,
A1B1, if i = 1,
A2B2, if i = 2,
A3B3, if i = 3.

(II.10)

Now we can generalize the definitions of vectors and introduce tensors entirely in terms of transformation laws.
Scalar, A, is the tensor of the 0 rank. It has only 40 = 1 component and 0 number of indices. Transformation law is

A = A′, (II.11)

we see that transformation matrices appear in transformation law 0 times.
Contravariant and covariant vectors are tensors of the 1 rank. They have 41 = 4 components and 1 index. Corre-
sponding transformation laws are

Ai = Si
nA′n, (II.12)

Ai = S̃n
i A′

n, (II.13)

we see only 1 transformation matrix in each transformation law.
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Contravariant tensor of the 2 rank has 42 = 16 components and 2 contravariant indices. Corresponding transformation
law is

Aik = Si
nSk

mA′nm, (II.14)

we see 2 transformation matrices in the transformation law.
Covariant tensor of the 2 rank has 42 = 16 components and 2 covariant indices. Corresponding transformation law is

Aik = S̃n
i S̃m

k A′
nm, (II.15)

we see 2 transformation matrices in the transformation law.
Mixed tensor of the 2 rank has 42 = 16 components and 2 indices, 1 contravariant and 1 covariant. Corresponding
transformation law is

Ai
k = Si

nS̃m
k A′n

m, (II.16)

we see 2 transformation matrices in the transformation law.
Covariant tensor of the 3 rank has 43 = 64 components and 3 covariant indices. Corresponding transformation law
is...and so on.
The most general definition: Mixed tensor of the N + M rank with N contravariant and M covariant indices, has
4N+M = 22(N+M) components and N + M indices. Corresponding transformation law is

Ai1 i2 ... iN

k1 k2 ... kM
= Si1

n1
Si2

n2
...SiN

nN
S̃m1

k1
S̃m2

k2
...S̃mM

kM
A′n1 n2 ... nN

m1m2...mM
, (II.17)

we see N + M transformation matrices in the transformation law.

D. Reciprocal tensors

Two tensors Aik and Bik are called reciprocal to each other if

AikBkl = δl
i. (II.18)

Now we can introduce a contravariant metric tensor gik which is reciprocal to the covariant metric tensor gik:

gikgkl = δl
i. (II.19)

With the help of the metric tensor and its reciprocal we can form contravariant tensors from covariant tensors and
vice versa, for example:

Ai = gikAk, Ai = gikAk, (II.20)

in other words we can rise and descend indices as we like, like a kind of juggling with indices. We can say that
contravariant, covariant and mixed tensors can be considered as different representations of the same geometrical
object.
For the contravariant metric tensor itself we have very important representation in terms of the transformation matrix
from locally inertial frame of reference (galilean frame) to an arbitrary non-inertial frame, let us denote it as Si

(0)k.
We know that in the galilean frame of reference

gik =

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ≡ ηik ≡ diag(1,−1,−1,−1), (II.21)

hence

gik = Si
(0)nSk

(0)mηlm = Si
(0)0S

k
(0)0 − Si

(0)1S
k
(0)1 − Si

(0)2S
k
(0)2 − Si

(0)3S
k
(0)3. (II.22)

This means that if we know the transformation law from the local galilean frame of reference to an arbitrary frame of
reference, we know the metric at this arbitrary frame of reference and, hence, we know the gravitational field which
is identical to geometry!
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E. Examples

————————————————————————————————————————————-
————————————————————————————————————————————-
Problem: Given that gik is a covariant tensor of the second rank and that

ds2 = gikdxidxk, (II.23)

prove that ds is a scalar.
————————————————————————————————————————————-
Solution:

ds2 = gikdxidxk = (S̃n
i S̃m

k g′nm)(Si
pdx′p)(Sk

wdx′w) = (S̃n
i Si

p)(S̃
m
k Sk

w)(g′nmdx′pdx′w) =

= δn
p δm

w (g′nmdx′pdx′w) = g′pwdx′pdx′w = g′ikdx′idx′k = ds′2, (II.24)

hence ds = ds′ which means that ds is a scalar.
————————————————————————————————————————————-
————————————————————————————————————————————-
Problem: How many independent components in the metric tensor?
————————————————————————————————————————————-
Solution: First, let us prove that the metric tensor is symmetric, i.e.

gik = gki. (II.25)

Indeed,

ds2 = gikdxidxk =
1
2
(gikdxidxk + gikdxidxk) =

1
2
(gkidxkdxi + gikdxidxk) =

1
2
(gki + gik)dxidxk =

= g̃ikdxidxk, (II.26)

where

g̃ik =
1
2
(gki + gik), (II.27)

which is obviously a symmetric one. Then we just drop ” ˜ ”. The end of proof. Now the answer is obvious:
altogether we have 4 × 4 components, 4 components on the diagonal, 3 + 2 + 1 = 6 components above the diagonal
and 3+2+1 = 6 components under the diagonal and we know that these components are equal to components above
the diagonal. Thus the final answer is there are 4 + 6 = 10 independent components.
————————————————————————————————————————————-
————————————————————————————————————————————-
————————————————————————————————————————————-

Back to Content Previous Lecture Next Lecture
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Lecture 3. Last updated 07.03.10

III. PHYSICAL GEOMETRY OF SPACE-TIME

Proper time III A

Physical distance III B

Synchronization of clocks III C

Invariant 4-volume IIID

A. Proper time

One of the most central problems in the geometry of 4-spacetime can be formulated as follows. If the metric tensor is
given, how is actual (measurable) time and distances related with coordinates x0, x1, x2, x3 chosen in arbitrary way?
Let us consider the world line of an observer who uses some clock to measure the actual or proper time, dτ , between
two infinitesimally close events in the same place in space. How dτ is related to coordinate time dx0. Obviously we
should put in the interval

dx1 = dx2 = dx3. (III.1)

Let us define proper time exactly as in Special Relativity:

dτ =
ds

c
, (III.2)

then we have

ds2 ≡ c2dτ2 = gikdxidxk = g00(dx0)2, (III.3)

thus

dτ =
1
c

√
g00dx0. (III.4)

For the proper time between any two events which are not necessary infinitesimally close occurring at the same point
in space we have

τ =
1
c

∫
√

g00dx0. (III.5)

B. Physical distance

Separating the space and time coordinates in ds we have

ds2 = gαβdxαdxβ + 2g0αdx0dxα + g00(dx0)2. (III.6)

To define dl we will use a light signal according to the following procedure:
From some point B with spatial coordinates xα + dxα a light signal emitted at the moment corresponding to time
coordinate x0 + dx0(1) propagates to a point A with spatial coordinates xα. Then after reflection at the moment
corresponding to time coordinate x0 the signal propagates back over the same path and is detected at the point B at
the moment corresponding to time coordinate x0 + dx0(2) (see Fig.3.1).
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According to both Special and General Relativity the interval between any two events which belong to the same world
line of light is always equal to zero:

ds = 0. (III.7)

Solving this equation with respect to dx0 we find two roots:

dx0(1) =
1

g00

(
−g0αdxα −

√
(g0αg0β − gαβg00)dxαdxβ

)

dx0(2) =
1

g00

(
−g0αdxα +

√
(g0αg0β − gαβg00)dxαdxβ

)

dx0(2) − dx0(1) =
2

g00

√
(g0αg0β − gαβg00)dxαdxβ . (III.8)

Then

dl =
c

2
dτ =

c

2

√
g00

c
(dx0(2) − dx0(1)) (III.9)

and finally

dl2 = γαβdxαdxβ , where γαβ = −gαβ +
g0αg0β

g00
. (III.10)

C. Synchronization of clocks

If we want to determine the distance between two not infinitesimally closed points, but points separated by some
finite distance we should take an integral

∫
dl along some path connecting the two points. Obviously, we should take

dl over the path at the simultaneous moment of time. Hence, we should first to define what are simultaneous events
and then we should synchronize clocks (again with using light signals) over finite volume in space along the path of
integration.
The moment at the point B, corresponding to the time coordinate x0 + ∆x0, is simultaneous to the moment at the
point A, corresponding to the time coordinate x0, if

x0 + ∆x0 = x0 +
1
2
(dx0(2) + dx0(1)), (III.11)

i.e. the reading of clock in B is halfway between the moments of departure and return of the signal to that point,
hence

∆x0 = −g0α

g00
dxα. (III.12)

As we are able now to define simultaneous events along any open curve, however, synchronization of clocks along a
closed contour is impossible in general, since

−
∮

g0α

g00
dxα 6= 0, (III.13)

which means that starting synchronization in some point we return back with

∆x0 6= 0. (III.14)

In other words, in an arbitrary reference system the synchronization of clocks in a whole space-time is impossible,
but this is not the property of the space-time itself, but the property of the given frame of reference. We always can
choose such a frame of reference in which all

g0α = 0 (III.15)

and hence the synchronization of clocks in a whole space-time is possible. For that we should write 3 equations for 4
arbitrary functions, which is always possible.
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D. Invariant 4-volume

To derive EFEs we should be able to calculate integrals over the all space and over the time coordinate

Sg =
∫

GdΩ̃, (III.16)

where dΩ̃ is invariant, i.e. not depending on the frame of reference, the element of 4-volume and G is some scalar
function. Thus we should understand what the invariant volume is.
Let us prove that the invariant volume is

dΩ̃ =
√
−gdΩ, (III.17)

where

dΩ = dx0dx1dx2dx3 (III.18)

and g is the determinant of the metric tensor.
Let us first introduce the Jacobian, J , of the transformation from the Galilean (locally inertial) frame of reference,
(x′0, x′1, x′2, x′3), to the curvilinear coordinates (x0, x1, x2, x3)

J =
∂(x0, x1, x2, x3)

∂(x′0, x′1, x′2, x′3)
= | ∂xi

∂(x′n
| = |Si

n|, (III.19)

where |Ai
n| means the determinant of a matrix Ai

n. Then let us write the formula for the transformation of the
contravariant metric tensor

gik = Si
lS

k
mglm(0) = Si

lS
k
mηlm, (III.20)

where

η =

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (III.21)

Taking into account that the determinant of the reciprocal tensor gik is the inverse of the determinant of the tensor
gik, we have

|gik| = 1
|gik|

=
1
g
. (III.22)

Taking into account that the determinant of the product of matrices is equal to the product of their determinants
(the fact known from any textbook on Linear Algebra), we obtain

|gik| = |Si
l | × |Sk

m| × |ηlm| = J × J × (−1) = −J2, (III.23)

hence
1
g

= −J2 and J =
1√
−g

. (III.24)

From the definition of J we have

dΩ ≡ dx0dx1dx2dx3 = Jdx′0dx′1dx′2dx′3 =
1√
−g

dx′0dx′1dx′2dx′3 =
1√
−g

dΩ′, (III.25)

hence in all curvilinear coordinates
√
−gdΩ = dΩ′, thus dΩ̃ =

√
−gdΩ (III.26)

is invariant 4-volume.
————————————————————————————————————————————-
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IV. COVARIANT DIFFERENTIATION

Parallel translation IV A

Covariant derivatives and Christoffel symbols IV B

The Christoffel symbols and the metric tensor IV C

Physical applications IV D

A. Parallel translation

In Special Relativity if Ai is a vector dAi is also a vector ( the same is valid for any tensor). But in curvilinear
coordinates this is not the case:

Ai =
∂x′k

∂xi
A′

k (IV.1)

dAi =
∂x′k

∂xi
dA′

k + A′
k

∂2x′k

∂xi∂xl
dxl, (IV.2)

thus dAi is not a vector unless x′k are linear functions of xk ( like in the case of Lorentz transformations). Let us
introduce the following very useful notation:

, i =
∂

∂xi
(IV.3)

According to the principle of covariance we can not afford to have not tensors in any physical equations, thus we
should replace all differentials like

dAi and
∂Ai

∂xk
≡ Ai,k (IV.4)

by some corrected values which we will denote as

DAi and Ai;k (IV.5)

correspondingly. In arbitrary coordinates to obtain a differential of a vector which forms a vector we should subtract
vectors in the same point, not in different as we have done before.
Hence, we need produce a parallel transport or a parallel translation. Under a parallel translation of a vector in galilean
frame of reference its components don’t change, but in curvilinear coordinates they do and we should introduce some
corrections:

DAi = dAi − δAi. (IV.6)

These corrections obviously should be linear with respect to all components of Ai and independently they should be
linear with respect of dxk, hence we can write these corrections as

δAi = −Γi
klA

kdxl, (IV.7)

where Γi
kl are called Christoffel Symbols which obviously don’t form any tensor, because DAi is the tensor while as

we know dAi is not a tensor.
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B. Covariant derivatives and Christoffel symbols

In terms of the Christoffel symbols

DAi = (
∂Ai

∂xl
+ Γi

klA
k)dxl = (Ai

,l + Γi
klA

k)dxl, (IV.8)

DAi = (
∂Ai

∂xl
− Γk

ilAk)dxl = (Ai,l − Γk
ilAk)dxl, (IV.9)

Ai
;l =

∂Ai

∂xl
+ Γi

klA
k = Ai

,l + Γi
klA

k, (IV.10)

Ai;l =
∂Ai

∂xl
− Γk

ilAk = Ai,l − Γk
ilAk. (IV.11)

To calculate the covariant derivative of tensor let us start with contravariant tensor which can be presented as a
product of two contravariant vectors AiBk. In this case the corrections under parallel transport are

δ(AiBk) = AiδBk + BkδAi = −AiΓk
lmBldxm −BkΓi

lmAldxn, (IV.12)

since these corrections are linear we have the same for arbitrary tensor Aik:

δAik = −(AimΓk
ml + AmkΓi

ml)dxl (IV.13)

DAik = dAik − δAik ≡ Aik
; ldxl, (IV.14)

hence

Aik
; l = Aik

,l + Γi
mlA

mk + Γk
mlA

im (IV.15)

In similar way we can obtain that

Ai
k; l = Ai

k,l − Γm
klA

i
m + Γi

mlA
m
k , and Aik; l = Aik,l − Γm

il Amk − Γm
klAm, i. (IV.16)

In the most general case when we have tensor of m + n rank with m contravariant and n covariant indices the rule
for calculation of the covariant derivative with respect to index p is the following

Ai1 i2 ... im
j1 j2 ... jn ; p = Ai1 i2 ... im

j1 j2 ... jn , p + Γi1
kpAk i2 ... im

j1 j2 ... jn
+ Γi2

kpAi1 k ... im
j1 j2 ... jn

+ ... + Γim
kpAi1 i2 ... k

j1 j2 ... jn
− (IV.17)

− Γk
j1 pAi1 i2 ... im

k j2 ... jn
− Γk

j2 pAi1 i2 ... im

j1 k ... jn
− ... − Γk

jn pAi1 i2 ... im

j1 j2 ... k . (IV.18)

C. The Christoffel symbols and the metric tensor

So far we don’t know how the Christoffel symbols depend on coordinates, however we can prove that they are
symmetric in the subscripts. Let some covariant vector Ai is the gradient of a scalar φ, i.e. Ai = φ,i. Then

Ak; i −Ai; k = φ,k,i − Γl
kiφ,l − φ,i,k + Γl

ikφ,l =
(
Γl

ki − Γl
ik

)
φ,l. (IV.19)
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In Galilean coordinates

Γl
ik = Γl

ki = 0, hence in Galilean coordinates Ak; i −Ai; k = 0, (IV.20)

but taking into account that Ak; i−Ai; k is a tensor we conclude that if it equals to zero in one system of coordinates
it should be equal to zero in any other coordinate system, hence

Γl
ik = Γl

ki (IV.21)

in any coordinate system.
This is a typical example of the proof widely used in General Relativity:
If some equality between tensors is valid in one coordinate system then this equality is valid in arbitrary coordinate
system. This is obvious advantage to deal with tensors.
Then we can show that covariant derivatives of gik are equal to zero. Indeed:

DAi = gikDAk DAi = D(gikAk) = gikDAk + AkDgik, hence gikDAk = gikDAk + AkDgik, (IV.22)

which obviously means that

AkDgik = 0. (IV.23)

Taking into account that Ak is arbitrary vector, we conclude that

Dgik = 0. (IV.24)

This is another example of proof in General Relativity: If the the sum BikAi = 0 for arbitrary vector Ai then the
tensor Bik = 0. Then taking into account that

Dgik = gik;mdxm = 0 (IV.25)

for arbitrary infinitesimally small vector dxm we have

gik;m = 0. (IV.26)

Now we are ready to relate the Christoffel symbols to the metric tensor. Introducing useful notation

Γk, il = gkmΓm
il , (IV.27)

we have

gik; l =
∂gik

∂xl
− gmkΓm

il − gimΓm
kl =

∂gik

∂xl
− Γk, il − Γi, kl = 0. (IV.28)

Permuting the indices i, k and l twice as i → k, k → l, l → i,we obtain

∂gik

∂xl
= Γk, il + Γi, kl,

∂gli

∂xk
= Γi, kl + Γl, ik and − ∂gkl

∂xi
= −Γl, ki − Γk, li. (IV.29)

Taking into account that Γk, il = Γk, li, after summation of these three equation we have

gik,l + gli,k − gkl,i = 2Γi, kl, (IV.30)

and finally

Γi
kl =

1
2
gim

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)
. (IV.31)

Now we have expressions for the Christoffel symbols in terms of the metric tensor and hence we know their dependence
on coordinates.
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D. Physical applications

The previous material can be summarized as follows:
Gravity is equivalent to curved space-time, hence in all differentials of tensors we should take into account the change
in the components of a tensor under an infinitesimal parallel transport. Corresponding corrections are expressed in
terms of the Cristoffel symbols and are reduced to replacement of any partial derivative by corresponding covariant
derivative. In other words we can say that if one wants to take into account all effects of Gravity on any local physical
process, described by the corresponding equations written in framework of Special Relativity, one should just replace
all partial derivatives by covariant derivatives in these equation according to the following very nice and simple but
actually very strong and important formulae:

d→ D and , → ;. (IV.32)

Let us consider only a few examples.

1. Application of (IV.32) to the metric tensor itself

In special Relativity

dgik = 0 and gik,l = 0, (IV.33)

while in General Relativity

Dgik = 0 and gik;l = 0. (IV.34)

2. Application of (IV.32) to the motion of test particle

Let us apply above formulae to Let

ui =
dxi

ds
(IV.35)

is the four-velocity. Then the equation for motion of a free particle in absence of gravitational field is

dui

ds
= 0 (IV.36)

is generalized to the equation

Dui

ds
= 0, (IV.37)

which gives

Dui

ds
=

dui

ds
+ Γi

knuk dxn

ds
=

d2xi

ds2
+ Γi

knukun = 0. (IV.38)

Thus from physical point of view the equation

d2xi

ds2
+ Γi

kl

dxk

ds

dxl

ds
= 0 (IV.39)

describes the motion of free particle in a given gravitational field and

d2xi

ds2
= −Γi

kl

dxk

ds

dxl

ds
(IV.40)

is the four-acceleration, while from geometrical point of view this equation is the equation for geodesics in a curved
space-time. That is why all particles move with the same acceleration and now this experimental fact is not coincidence
anymore but consequence of geometrical interpretation of gravity.
————————————————————————————————————————————-
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V. MOTION OF A TEST PARTICLE IN A GRAVITATIONAL FIELD

Hamilton-Jacobi equation V A

Eikonal equation V B

The motion in a spherically symmetric static gravitational field V C

A. Hamilton-Jacobi equation

Any object of a small enough mass is called a test particle. Small mass means that gravitational field generated by
this object is negligible in comparison with the external gravitational field generated by other, much more massive,
objects. The role of such test particle can be played by a planet around a star or a star around a massive black hole,
or by photon propagating around a neutron star or black hole.
From the previous lecture we know that the motion of particles and photons in a given gravitational field is described by
the space-time geodesics. The geodesic equations are very useful for physical understanding of the motion of particles
and propagation of photons; however, it is easier to work with the Hamilton−Jacobi equation. The advantage of this
approach is that it equates the motion of particles with the propagation of waves.
The derivation of Hamilton−Jacobi equation is really very simple. From the definition of the four-velocity

ui =
dxi

ds
, (V.1)

we have

ds2 = gikdxidxk = gikuiukds2 = uiu
ids2, (V.2)

hence

uiui = 1. (V.3)

Four-momentum of the particle is defined as

pi = mcui, hence pip
i = gikpipk = m2c2. (V.4)

Taking into account that a covariant vector transforms as the gradient of a scalar, we can introduce such a scalar
function that

pi = − ∂S

∂xi
, (V.5)

then we immediately obtain the Hamilton−Jacobi Equation for a particle in a gravitational field

gik ∂S

∂xi

∂S

∂xk
−m2c2 = 0. (V.6)
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B. Eikonal equation

The equation for the geodesic obtained in Lecture 4 is not applicable to the propagation of light since ds = 0. However,
we can introduce some scalar parameterλ varying along world line of the light signal and then introduce a vector

ki =
dxi

dλ
, (V.7)

which is tangent to the word line. This vector is called the four- dimensional wave vector. In the absence of a
gravitational field according to the geometrical optics the propagation of light is given by the equation

dki = 0. (V.8)

We know that the generalization of this equation in General Relativity is straightforward: d → D. Then from Dki = 0
we obtain

dki

dλ
+ Γi

klk
kkl = 0. (V.9)

From the definition of the four-vector for light (V.7) we have

ds2 = gikdxidxk = gikkikkdλ2, (V.10)

then taking into account that ds = 0, we obtain

kik
i = gikkikk = 0. (V.11)

We know that any covariant vector can be presented as the gradient of a scalar

ki = − ∂Ψ
∂xi

, (V.12)

were Ψ is a scalar. And we immediately obtain the Eikonal Equation in gravitational field

gik ∂Ψ
∂xi

∂Ψ
∂xk

= 0. (V.13)

The physical meaning of Ψ, which is called the Eikonal, follows from the obvious relationship

Ψ = −
∫

kidxi, (V.14)

which looks like the phase of the electromagnetic wave. We can see that the General Relativity can easily solve the
problem of propagation of electromagnetic signals in the presence of a gravitational field, while the Newtonian gravity
can not even offer more or less self consistent approach to the problem.
The shortest way to obtain the Eikonal equation is just to put m = 0 in the HamiltonJacobi equation and change
notations.

C. The motion in a spherically symmetric static gravitational field

As an example of the motion of a test particle in a given gravitational field, let us consider a spherically symmetric
gravitational field and assume that this field does not depend on time, i.e. it is static field. Taking into account the
spherical symmetry we can choose our spherical coordinates in a such way that the plane of orbit coincides with the
equatorial plane θ = π/2 and dθ = 0. Obviously, all the components of a metric tensor are functions of the radial
coordinate only. Let us denote the radial coordinate as x1 = r.
We can write the interval describing such gravitational field as

ds2 = g00(r)c2dt2 + g11(r)dr2 + g33dφ2. (V.15)

20



A. Polnarev. (MTH720U/MTHM033). 2010. Lecture 5.

————————————————————————————————————————————————-
In this case the Hamilton−Jacobi equation can be written as

g00(r)
(

∂S

c∂t

)2

+ g11(r)
(

∂S

∂r

)2

+ g33(r)
(

∂S

∂φ

)2

−m2c2 = 0. (V.16)

Since all coefficients in this equation do not depend on t and φ we can say that

∂S

∂t
= −E, and

∂S

∂φ
= L, (V.17)

where E and L are constants, which by definition are the energy and angular momentum of the particle under
consideration. Then putting

S = −Et + Lφ + Sr(r) (V.18)

into the Hamilton−Jacobi equation we have

g00(r)
E2

c2
+ g11(r)

(
dSr(r)

dr

)2

+ g33(r)L2 −m2c2 = 0, (V.19)

hence

g11(r)
(

dSr(r)
dr

)2

= −g00(r)
E2

c2
− g33(r)L2 + m2c2, (V.20)

and

dSr(r)
dr

= ±

√
− 1

g11(r)

(
g00(r)

E2

c2
+ g33(r)L2 −m2c2

)
= ±mc

√
−g00(r)

g11(r)

(
Ẽ2 +

g33(r)
g00(r)

L̃2 − 1
g00(r)

)
, (V.21)

where

Ẽ =
E

mc2
and L̃ =

L

mc
. (V.22)

Then we can calculate the radial component of the 4-velocity:

u1 ≡ dr

ds
=

p1

mc
= g11(r)

p1

mc
= −g11(r)

∂S

mc∂r
= −g11(r)

dSr(r)
mcdr

= ∓
√
−g00(r)g11(r)

(
Ẽ2 − U2(r)eff

)
, (V.23)

where

U2
eff (r) =

1
g00(r)

(
1− g33(r)L̃2

)
(V.24)

is the so called ”effective” potential. One can see that the condition

E

mc2
> Ueff (V.25)

determines the admissible range of the motion. The effective potential includes in the relativistic manner potential
energy plus kinetic energy of non-radial motion, this kinetic energy is determined by angular momentum L.
The radius of stable and unstable circular orbits is obtained from the simultaneous solution of the equations

Ueff = Ẽ and
dUeff

dr
= 0. (V.26)

————————————————————————————————————————————-
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VI. CURVATURE OF SPACE-TIME

The Riemann curvature tensor VI A

Symmetry properties of the Riemann tensor VI B

Bianchi Identity VI C

The Ricci tensor and the scalar curvature VI D

Geodesic deviation equation VI E

Stress-Energy Tensor VI F

Heuristic ”Derivation” of EFEs VI G

A. The Riemann curvature tensor

We know that Ai,k,l−Ai,l,k = 0. What can we say about the following commutator Ai; k; l−Ai; l; k? Straightforward
calculations will show that this is not equal to zero in the presence of gravitational field and can be presented as

Ai; k; l −Ai; l; k = AmRm
ikl, (VI.1)

where the object Ri
klm is obviously a tensor and called the curvature Riemann tensor.

We know that if at least one component of a tensor is not equal to zero in at least one frame of reference, the same
is true for any other frame of reference. In other words, tensors (in contrast to the Christoffel symbols) can not be
eliminated by transformations of coordinates.
The Riemann tensor describes an actual tidal gravitational field, which is not local and, hence, can not be eliminated
even in the locally inertial frame of reference. Let us calculate the curvature Riemann tensor directly:

Ai;k;l −Ai;l;k = Ai;k,l −Ai;l,k − Γm
il Am;k − Γm

klAi;m + Γm
ikAm;l + Γm

lkAi;m =

= (Ai,k − Γm
ikAm),l − (Ai,l − Γm

il Am),k − Γm
il (Am,k − Γp

mkAp) + Γm
ik (Am,l − Γp

mlAp) =

= Ai,k,l − Γm
ikAm,l − Γm

ik,lAm −Ai,l,k + Γm
il Am,k + Γm

il,kAm − Γm
il Am,k + Γm

il Γp
mkAp + Γm

ikAm,l − Γm
ikΓp

mlAp =

= −Γm
ik,lAm + Γm

il,kAm + Γm
il Γp

mkAp − Γm
ikΓp

mlAp = −Γm
ik,lAm + Γm

il,kAm + Γp
ilΓ

m
pkAm − Γp

ikΓm
plAm =

=
(
−Γm

ik,l + Γm
il,k + Γp

ilΓ
m
pk − Γp

ikΓm
pl

)
Am = Rm

iklAm. (VI.2)

Finally

Rm
ikl = Γm

il,k − Γm
ik,l + Γp

ilΓ
m
pk − Γp

ikΓm
pl . (VI.3)

Similar equations can be written for tensors of higher ranks, for example

Aik; l; m −Aik; m; l = AinRn
klm + AnkRn

ilm. (VI.4)
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Let us introduce the covariant presentation of the Riemann tensor:

Riklm = ginRn
klm. (VI.5)

By straightforward calculations one can show that

Riklm =
1
2

(gim,k,l + gkl,i,m − gil,k,m − gkm,i,l) + gnp(Γn
klΓ

p
im − Γn

kmΓp
il). (VI.6)

B. Symmetry properties of the Riemann tensor

There are several symmetry properties of the curvature tensor:
1) The Riemann tensor is antisymmetric with respect to permutations of indices within each pair

Riklm = −Rkilm = −Rikml. (VI.7)

2) The Riemann tensor is symmetric with respect to permutations of pairs of indices

Riklm = Rlmik. (VI.8)

3) The cyclic sum formed by permutation of any three indices is equal to zero

Riklm + Rimkl + Rilmk = 0. (VI.9)

C. Bianchi Identity

The most important property of the Riemann tensor is so called the Bianchi identity:

Rn
ikl; m + Rn

imk; l + Rn
ilm; k = 0. (VI.10)

It is easy to verify this identity in a locally inertial frame of reference, where

Γi
kl = 0, (VI.11)

hence

Rn
ikl; m + Rn

imk; l + Rn
ilm; k = Rn

ikl,m + Rn
imk,l + Rn

ilm,k = (VI.12)

Γn
il,m,k − Γn

ik,m,l + Γn
ik,l,m − Γn

im,l,k + Γn
im,k,l − Γn

il,k,m = 0. (VI.13)

Taking into account that the Bianchi identity is of a tensor character, we can conclude that it valid in any other frame
of reference.

D. The Ricci tensor and the scalar curvature

Now we can introduce a second rank curvature tensor, called the Ricci tensor, as follows

Rik = glmRlimk = Rl
ilk. (VI.14)

We can also introduce a zero rank curvature tensor, i.e. a scalar, called the scalar curvature:

R = gikRik. (VI.15)
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1. The important consequence of Bianchi identity

After contracting the Biancci identity

Ri
klm;n + Ri

knl;m + Ri
kmn;l = 0 (VI.16)

over indices i and n (taking summation i = n) we obtain

Ri
klm;i + Ri

kil;m + Ri
kmi;l = 0. (VI.17)

According to the definition of Ricci tensor (VI.14), the second term can be rewritten as

Ri
kil;m = Rkl;m. (VI.18)

Taking into account that the Riemann tensor is antisymmetric with respect to permutations of indices within the
same pair

Ri
kmi = −Ri

kim = −Rkm, (VI.19)

the third term can be rewritten as

Ri
kmi;l = −Rkm;l. (VI.20)

The first term can be rewritten as

Ri
klm;i = gipRpklm;i, (VI.21)

then taking mentioned above permutation twice we can rewrite the first term as

Ri
klm;i = gipRpklm;i = −gipRkplm;i = gipRkpml;i. (VI.22)

After all these manipulations we have

gipRkpml;i + Rkl;m −Rkm;l = 0. (VI.23)

Then multiplying by gkm and taking into account that all covariant derivatives of the metric tensor are equal to zero,
we have

gkmgipRkpml;i + gkmRkl;m − gkmRkm;l =
(
gkmgipRkpml

)
;i

+
(
gkmRkl

)
;m
−
(
gkmRkm

)
;l

= 0. (VI.24)

In the first term expression in brackets can be simplified as

gkmgipRkpml = gipRpl = Ri
l . (VI.25)

In the second term the expression in brackets can be simplified as

gkmRkl = Rm
l . (VI.26)

According to the definition of the scalar curvature (VI.15), the third term can be simplified as(
gkmRkm

)
;l

= R;l = R,l. (VI.27)

Thus

Ri
l;i + Rm

l;m −R,l = 0, (VI.28)

replacing in the second term index of summation m by i we finally obtain

2Ri
l;i −R,l = 0, or Ri

l;i −
1
2
R,l = 0. (VI.29)

Thus the important consequence of Bianchi identity is

Ri
l;i −

1
2
R,l = 0. (VI.30)
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E. Geodesic deviation equation

The geodesic deviation equation is an equation involving the Riemann curvature tensor, which measures the change
in separation of neighboring geodesics. In the language of mechanics it measures the rate of relative acceleration of
two particles moving forward on neighboring geodesics. Let the 4-velocity along one geodesic is

ui =
dxi

ds
. (VI.31)

There is an infinitesimal separation vector between the two geodesics ηi. Then the relative acceleration, ai, is

ai =
d2ηi

ds2
. (VI.32)

It is possible to show that

ai = Ri
klmukulηm. (VI.33)

If gravitational field is weak and all motions are slow

ui ≈ δi
0, (VI.34)

and the above equation is reduced to the Newtonian equation for the tidal acceleration.

F. Stress-Energy Tensor

The stress-energy tensor (sometimes stress-energy-momentum tensor), Tik, describes the density and flux of energy
and momentum.
In general relativity this tensor is symmetric and contains ten independent components:
The component T00 represents the energy density (1 component).
The components T0α (α = 1, 2, 3) represent the flux of energy across the surface which is normal to the xα-axis. These
components are equivalent to the components Tα0 which describe the density of the αth momentum (3 components).
The components Tαβ (α, β = 1, 2, 3) represent flux of αth momentum across the surface which is normal to the xβ-axis.
In particular, the diagonal components Tαalpha represents a pressure-like quantity, normal stress (3 components).
Non-diagonal components Tαβ (α 6= β), represent shear stress (3 components).
All these ten components participate in the generation of a gravitational field, while in Newton gravity the only source
of gravitational field is the mass density.

1. Conservation of energy-momentum in gravitational field

According to physics in absence of gravitational field the stress-energy tensor satisfies the following conservation law:

T i
k,i = 0. (VI.35)

We know from previous lectures that according ”, → ;-rule” in the presence of gravitational field this should be
rewritten as

T i
k;i = 0. (VI.36)
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G. Heuristic ”Derivation” of EFEs

It seems like a good idea to relate the Ricci tensorto the stress-energy tensor.
The most general form of the second rank tensor formed from the metric tensor gik and containing second derivatives
of the metric tensor gik, let us call it the Einstein tensor, is

Gik = Rik + αgikR. (VI.37)

As follows from the the previous section

Gi
k;i = (ginGnk);i = Ri

k;i + αδi
kR,i = (

1
2

+ α)R,k. (VI.38)

Let us assume that the EFEs have the following form

Gik = κTik, (VI.39)

where the constant κ is called the Einstein constant. Multiplying this by gmk we obtain

Rm
i + αδm

i R = κTm
k . (VI.40)

Taking covariant divergence of LHS and RHS of this equation we obtain

(α +
1
2
)R;k = κTm

k; m = 0, (VI.41)

hence

α = −1
2
, (VI.42)

and final EFEs are

Ri
k −

1
2
δi
kR = κT i

k. (VI.43)

To determine κ we can use the so called the correspondence principle, which says that the EFEs in weak-field and
the slow-motion approximation should be reduced to Newton’s law of gravity, i.e. to the Poisson’s equation

∆φ = 4πGρ. (VI.44)

By straightforward calculations one can prove that such reduction is possible only if

κ =
8πG

c4
. (VI.45)

Finally, EFEs can be written as

Rik −
1
2
gikR =

8πG

c4
Tik. (VI.46)

Despite the simple appearance of this equation it is, in fact, quite complicated. Given a specified distribution of
matter and energy in the form of a stress-energy tensor, the EFE are understood to be equations for the metric tensor
gik, as both the Ricci tensor and Ricci scalar depend on the metric (in a complicated nonlinear manner). In fact, when
fully written out, the EFEs are the system of 10 coupled, nonlinear, hyperbolic-elliptic partial differential equations.
In other words, Despite the simple appearance of the EFEs they are, in fact, rather complicated.
Solutions of the Einstein field equations model an extremely wide variety of gravitational fields.
Some of them are really exotic, for example the solution corresponding to the so called wormhole [A wormhole is
a hypothetical topological feature of spacetime that is essentially a ’shortcut’ through space and time. A wormhole
has at least two mouths which are connected to a single throat. If the wormhole is traversable, matter can ’travel’
from one mouth to the other by passing through the throat. While there is no observational evidence for wormholes,
spacetimes containing wormholes are known to be valid solutions of the Einsteins equations.
Gravitational waves and black holes are also solutions of EFEs.
————————————————————————————————————————————-
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Lecture 7. Last updated 07.03.10

VII. RIGOROUS DERIVATION OF EFES

The principle of the least action VII A

The action function for the gravitational field VII B

The action function for matter VII C

The stress-energy tensor and the action density VII D

The final EFEs VII E

A. The principle of the least action

The derivation of EFEs is very important material for understanding GR. In this lecture we will derive rigorously the
Einstein Field equations (EFEs) from the principle of the least action.
This principle says that

δ(Sg + Sm) = 0, (VII.1)

where Sg and Sm are the actions of gravitational field and matter respectively. Taking into account that we are going
to derive EFEs, the subject of variations is all components of the metric tensor.
To derive EFEs we should understand what are Sg and Sm .

B. The action function for the gravitational field

First of all Sg should depend on configuration of gravitational field, or geometry, in the whole space-time, hence it
should be expressed in terms of a scalar integral over the all space and over the time coordinate between two given
moments of time

Sg =
∫

GdΩ̃, (VII.2)

where dΩ̃ is invariant element of 4-volume (see Lecture 3) and G is some scalar function called the action density.
We know that the final equations should contain derivatives of gik no higher than the second. Otherwise we could not
obtain Newtonian Poisson’s equation (see the previous lecture). In other words, G must contain only gik and Γl

mn, i.e

G = G(gik,Γi
kl). (VII.3)

Immediately we confront with the following problem : this is impossible to construct the scalar from gik and Γl
mn .

The only scalar in gravitational field, the scalar curvature R, contains the second derivatives of gik. Fortunately, there
is rather simple resolution of this paradox: R is linear with respect to the second derivatives and for this reason, as
we will see later, all terms containing second derivatives don’t contribute to the variations of the action. Let us write
the action function in the following form

Sg = α

∫
R
√
−gdΩ, (VII.4)

where α is a constant which will be determined later.
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Because of the linearity of R with respect to the second derivatives, the invariant action function can be transformed
in the following way

Sg = α

∫
R
√
−gdΩ = α

∫
G
√
−gdΩ + α

∫
wl

,ldΩ, (VII.5)

where G contains only gik and gik,n, w is a function which we can be obtained by straightforward calculations:
√
−gR =

√
−ggikRik =

√
−g
{
gikΓl

ik,l − gikΓl
il,k + gikΓl

ikΓm
lm − gikΓm

il Γl
km

}
, (VII.6)

obviously
√
−ggikΓl

ik,l = (
√
−ggikΓl

ik),l − Γl
ik(
√
−ggik),l (VII.7)

and
√
−ggikΓl

il,k = (
√
−ggikΓl

il),k − Γl
il(
√
−ggik),k = (

√
−ggilΓk

ik),l − Γk
ik(
√
−ggil),l. (VII.8)

Then we obtain
√
−gR = (

√
−ggikΓl

ik −
√
−ggilΓk

ik),l +
√
−gG = wl, l +

√
−gG, (VII.9)

where

wl =
√
−g(gikΓl

ik − gilΓk
ik) (VII.10)

and
√
−gG = Γm

im(
√
−ggik), k − Γl

ik(
√
−ggik),l − (Γm

il Γl
km − Γl

ikΓm
lm)
√
−ggik (VII.11)

Γi
ki =

1
2
gim ∂gim

∂xk
. (VII.12)

According to the Gauss’ theorem the volume integral of a full derivative is reduced to the integral over boundary.
Taking into account that our objective is to obtain proper equations by applying the principle of the least action, we
should keep all boundary conditions fixed. Hence, w disappears after variation. As a result

δ

∫
R
√
−gdΩ = δ

∫
G
√
−gdΩ. (VII.13)

Thus we don’t need G any more, because we proved that the variation of the integral with R is the same as the
variation of the integral with G, hence we can work with R only.

δ

∫
R
√
−gdΩ = δ

∫
gikRik

√
−gdΩ =

∫
{Rik

√
−gδgik + gikRikδ(

√
−g) + gik√−gδRik}dΩ. (VII.14)

There are three terms in the variation of the action function. Let us first calculate the second term.

δ(
√
−g) = − 1

2
√
−g

δg = − 1
2
√
−g

∂g

∂gik
δgik = − 1

2
√
−g

M ikδgik, (VII.15)

where M ik is the minor of the determinant g corresponding to the component gik. Indeed, the determinant g depends
on all components gik. Calculating g with the help, say the first raw, one can write g = M1ig1i, where M1i are minors
of the components in the first row. Obviously M1i do not contain g1i. Hence

∂g

∂g1i
= M1i. (VII.16)

This is true for any row in determinant:

∂g

∂gni
= Mni. (VII.17)
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Taking into account that gik is reciprocal to gik, i.e. gikgkn = δn

i , (gik is inverse matrix of gik), one can write
gik = M ik/g, i.e. M ik = ggik. Thus

dg =
∂g

∂gik
dgik = M ikdgik = ggikdgik, (VII.18)

hence

gikdgik =
dg

g
= d ln |g| = d ln(−g) = 2 ln

√
−g. (VII.19)

Then gikdgik = d(gikgik)− gikdgik = dδi
i − gikdgik = −gikdgik.

Thus

δ(
√
−g) = − 1

2
√
−g

ggikδgik =
1

2
√
−g

ggikδgik = −1
2
√
−ggikδgik. (VII.20)

Now we can rewrite the variation of action as

δ

∫
R
√
−gdΩ =

∫
[(Rik −

1
2
gikR)

√
−gδgik + gik√−gδRik]dΩ. (VII.21)

Let us consider now the last term in the variation. For the calculation of δRik we can use the fact that although Γi
kn

is not a tensor, its variation, δΓi
kn, is a tensor.

Proof: Let Ai is an arbitrary vector at the point xi. After the parallel transport From the point xi to the point
xi + dxi, as we know, its components are

Ai(xn + dxn) = Ai(xn) + (Ai
,m(xn) + Γi

mp(x
n)Ap(xn))dxm. (VII.22)

Then

δAi(xn + dxn) = δΓi
mp(x

n)Ap(xn))dxm. (VII.23)

The left side is a vector because it is the difference between two vectors in the same point, hence the right side is also
a vector. Thus δΓi

mp(x
n) is a tensor.

In a locally galilean frame of reference

gikδRik = gik
{
δΓl

ik,l − δΓl
il,k

}
= gikδΓl

ik,l − gilδΓk
ik,l = W l

,l, (VII.24)

where

W l = gikδΓl
ik − gilδΓk

ik, (VII.25)

obviously W l is a vector.
Now let us prove that the covariant divergence of an arbitrary vector can be written as follows

An
; n =

1√
−g

(
√
−gAn),n. (VII.26)

Proof:

An
;n = An

,n + Γn
niA

i = An
,n +

1
2
gnm(gnm,i + gmi,n − gin,m)Ai = An

,n +
1
2
(gnmgnm,i + gnmgmi,n − gnmgni,m)Ai =

= An
,n +

1
2
gnmgnm,iA

i. (VII.27)

Taking into account (VII.18), one obtains

Ai
;i = An

,n +
g,n

2g
An =

1√
−g

[
√
−gAn

,n + (
√
−g),nAn] =

1√
−g

(
√
−gAi),i. (VII.28)

As follows from the proof above, in local galilean frame of reference, where g = −1

Ai
;i = Ai

,i, (VII.29)

hence, returning back to δRik, in local galilean frame of reference we have

gikδRik = W l
,l = W l

;l. (VII.30)
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Since this is a relation between two tensors (of 0-rank), once this is valid in one frame of reference it is valid in an
arbitrary frame of reference. Hence

√
−ggikδRik =

√
−gW l

;l = (
√
−gW l),l, (VII.31)

this means that according to the Gauss theorem the contribution of the third term in the variation of the action
function is equal to zero.
Finally we obtain

δSg = α

∫
(Rik −

1
2
gikR)δgik√−gdΩ. (VII.32)

C. The action function for matter

Similar to the action function for gravitational field, the action function for matter can be written as

Sm =
∫

Ψ
√
−gdΩ, (VII.33)

where Ψ is a scalar action density (by matter we mean any substance including all physical fields, for example,
electromagnetic field).
Let us calculate the variation of Sm. Immediately the following problem arises. Obviously Ψ can depend on many
physical parameters describing the physical system to which we are trying to apply the least action method. let us
denote all of them as qa, a = 1, 2, 3, 4, ........ Should we take into account the variations of all these qa? The answer is
no, all these variations should cancel each other by virtue of the ”equations of motion” of the physical system under
consideration, since these equations are obtained, according to the principle of the least action, from the condition
that the variations of Sm, related with the variations of qa, are equal to zero. Thus it is enough to take into account
the variations of the metric tensor only. Then we have

δSm =
∫ {

∂
√
−gΨ

∂gik
δgik +

∂
√
−gΨ

∂(gik
,l )

δ(gik
,l )

}
dΩ. (VII.34)

Then taking into account that

δ(gik
,l ) = (δgik),l, (VII.35)

which means that the partial differentiation, obviously, commutates with the procedure of taking variations, we can
integrate the second term in the previous formula by parts, as a result we obtain

δSm =
∫ {

∂
√
−gΨ

∂gik
− ∂

∂xl

∂
√
−gΨ

∂(gik
,l )

}
δgikdΩ. (VII.36)

Let us introduce the following notation

√
−g Aik =

∂
√
−gΨ

∂gik
− ∂

∂xl

∂
√
−gΨ

∂(gik
,l )

. (VII.37)

Then δSm takes the following form

δSm =
∫

Aikδgik√−gdΩ. (VII.38)
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D. The stress-energy tensor and the action density

One can prove that the tensor Aik introduced in the previous section, is proportional to the stress-energy tensor Tik

introduced in the previous lecture.
Proof: Let us carry out infinitesimally small translation from the coordinates xi to the coordinates x′i = xi + ξi,
where ξi are infinitesimally small quantities. Considering this translation as a transformation of coordinates, we can
see that the contravariant metric tensor is transformed under these translations as

g′ik(x′l) = glm(xl)
∂x′i

∂xl

∂x′k

∂xm
= glm(δi

l +
∂ξi

∂xl
)(δl

m +
∂ξk

∂xm
) = gik(xl) + gimξk

,m + gklξi
,l. (VII.39)

On other hand, using the usual Tailor expansion we have

g′ik(x′l) = gik(xl + ξl) = g′ik(xl) + ξl ∂gik

∂xl
= g′ik(xl) + ξlgik

,l , (VII.40)

hence

gik(xl) + gimξk
,m + gklξi

,l = g′ik(xl) + ξlgik
,l . (VII.41)

We obtain that

g′ik(xl) = gik(xl)− ξlgik
,l + gilξk

,l + gklξi
l or g′ik = gik + δgik, (VII.42)

where

δgik = −ξlgik
,l + gilξk

,l + gklξi
l . (VII.43)

It easy to show that

δgik = gilξk
;l + gklξi

;l ≡ ξi;k + ξk;i. (VII.44)

Indeed,

δgik = −ξl(gik
;l − Γi

nlg
nk − Γk

nlg
in) + gil(ξk

;l − Γk
lnξn) + gkl(ξi

;l − Γi
lnξn) =

= ξl(Γi
nlg

nk + Γk
nlg

in) + gilξk
;l + gklξi

;l − ξn(Γk
lngil + Γi

lngkl) =

= ξl(Γi
nlg

nk + Γk
nlg

in − Γk
nlg

in − Γi
nlg

kn) + gilξk
;l + gklξi

;l =

= gilξk
;l + gklξi

;l ≡ ξi;k + ξk;i. (VII.45)

Now we know what is the variation of the contravariant metric tensor under infinitesimally small translation. If we
substitute this variation into Eq.(VII.38), we obtain

δSm =
∫

Aik(ξi; k + ξk; i)
√
−gdΩ. (VII.46)

From the definition of Aik follows that it is a symmetric tensor. From the fact that Sm is scalar follows that the
variation of Sm under translation (which is the sort of transformation of coordinates) is equal to zero, hence, we
obtain

0 =
∫

Aikξi; k√−gdΩ =
∫

(Ak
i ξi); k

√
−gdΩ−

∫
Ak

i; kξi√−gdΩ. (VII.47)

The first term in the last expression can be written as

(Ak
i ξi); k

√
−g =

√
−gAk

;k, where Ak = Ak
i ξi. (VII.48)
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As follows from Eq. (VII.26)

√
−gAk

; k = (
√
−gAk),k, (VII.49)

and gives zero contribution to the variation. As a result we obtain that∫
Ak

i; kξi√−gdΩ = 0 (VII.50)

nd because of arbitrariness of ξi we conclude that

Ak
i; k = 0. (VII.51)

Taking into account that the covariant divergence of the stress-energy tensor T i
k (see the previous lecture) is also equal

to zero, one can identify Ak
i with the physical stress energy tensor within a constant factors, β and Λ:

Ai
k = β(T i

k + Λδi
k). (VII.52)

E. The final EFEs

Finally, from the principle of least action we have

δ(Sg + Sm) = 0, (VII.53)

or ∫ [
α

(
Rik −

1
2
gikR

)
+ β(T(phys)ik + Λgik)

]
δgik√−gdΩ = 0. (VII.54)

Taking into account the arbitrariness of δ and dropping label ”(phys)” and putting Λ = 0 [because discussion of this
famous Λ-terms is out of the scope of this course] we obtain

Rik −
1
2
gikR = κTik, (VII.55)

where

κ = −β

α
. (VII.56)

The value of κ called the Eistein constant, can be easily obtained from the weak field and slow motion limit. As we
will see later

κ =
8πG

c4
. (VII.57)

This is the end of the rigorous derivation of the EFEs.
One can see that the EFEs can be rewritten in mixed components as

Ri
k −

1
2
δi
kR = κT i

k. (VII.58)

Contracting indices one can obtain

R− 1
2
4R = κT, R = −κT, T = T i

k. (VII.59)

Hence

Rik = κ(Tik −
1
2
gikT ). (VII.60)
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In empty space-time

T i
k = 0, hence Ri

k = 0. (VII.61)

However, it could happen that

Riklm 6= 0. (VII.62)

The tidal accelerations related with non zero components of the Riemann tensor in empty space are produced by
gravitational waves. From

T i
;i = 0 (VII.63)

follows that

(Ri
k −

1
2
δi
kR);i = Ri

k;i −
1
2
R,k = 0. (VII.64)

This is actually the case as it follows from the Bianchi identity. And vice versa, from pure geometrical Bianchi identity
one can obtain the full description of motion of all forms of matter and fields. This means that the EFEs is complete
and self-consistent description of the interaction between matter and geometry, i.e. gravitational field.
————————————————————————————————————————————-
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Lecture 8. Last updated 07.03.10

VIII. SOLVING EFES

Weak field and slow motion approximation VIII A

The Schwarzschild metric as an exact solution of EFEs VIII B

Physical singularity versus coordinate singularity in the Schwarzschild metric VIII C

A. Weak field and slow motion approximation

In small velocity approximation

T k
i ≈ ρc2uiu

k, (VIII.1)

where ρ is the mass density, i.e., T 0
0 = ρc2 and all other components are small, i.e., |T 0

α| � T 0
0 and |T β

α | � T 0
0 . This

means that T ≡ T i
i ≈ T 0

0 .
In weak field approximation one can neglect by the non-linear part in the Ricci tensor:

R00 = R0
0 ≈ Γα

00,α = −1
2
ηαβg00,α,β =

1
c2

φ,α,β , (VIII.2)

where φ is defined by

g00 = 1− 2φ

c2
. (VIII.3)

Following usual notations

ηαβg00,α,β = 4g00, (VIII.4)

where 4 is the Laplace operator. From EFEs we obtain

R0
0 =

1
c2
4φ =

8πG

c4
(T 0

0 −
1
2
T ) ≈ 8πG

c4
(T 0

0 −
1
2
T 0

0 ) =
4πG

c4
T 0

0 . (VIII.5)

Hence,

4φ = 4πGρ. (VIII.6)

This is the Poisson equation, hence, as one can see, in this approximation EFEs give the Newtonian gravity and φ is
the Newtonian gravitational potential.
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B. The Schwarzschild metric as an exact solution of EFEs

Let r, θ, φ are spherical space coordinates. The most general spherically symmetric gravitational field can be described
by the interval in the following form

ds2 = h(r, t)dr2 + k(r, t)(sin2θdφ2 + dθ2) + l(r, t)dt2 + a(r, t)drdt. (VIII.7)

By transformations of coordinates

r = f1(r′, t′), t = f2(r′, t′), (VIII.8)

we always can make

a(r, t) = 0 and k(r, t) = −r2. (VIII.9)

Thus

ds2 = eνc2dt2 − r2(sin2θdφ2 + dθ2)− eλdr2. (VIII.10)

Taking into account that

g00 > 0 and g11 < 0, (VIII.11)

we can see that

g00 = eν , g11 = −eλ, g22 = −r2, and g33 = −r2 sin2 θ (VIII.12)

g00 = e−ν , g11 = −e−λ, g22 = −r−2 and g33 = −r−2 sin−2 θ. (VIII.13)

Now we can calculate the Christoffell symbols:

Γ1
11 =

λ′

2
, Γ0

10 =
ν′

2
, Γ2

33 = − sin θ cos θ, Γ0
11 =

λ

2
eλ−ν , (VIII.14)

Γ1
22 = −re−λ, Γ1

00 =
ν

2
eν−λ, Γ2

12 = Γ3
13 =

1
r
, Γ3

23 = cot θ, (VIII.15)

Γ0
00 =

ν̇

2
, Γ1

10 =
λ̇′

2
, Γ1

33 = −r sin2 θe−λ, (VIII.16)

where ′ means partial derivative with respect to r. Then after straightforward calculations of the components of the
Ricci tensor we obtain the Einstein’s equations:

8πG

c4
T 1

1 = −e−λ

(
ν′

r
+

1
r2

)
+

1
r2

, (VIII.17)

8πG

c4
T 2

2 =
8πG

c4
T 3

3 =

= −1
2
e−λ

(
ν′′ +

ν′2

2
+

ν′ − λ′

r
− ν′λ′

2

)
+

1
2
e−ν

(
λ̈ +

λ̇2

2
− λ̇ν̇

2

)
, (VIII.18)

8πG

c4
T 0

0 = −e−λ

(
1
r2
− λ′

r

)
+

1
r2

, (VIII.19)

8πG

c4
T 1

0 = −e−λ λ̇

r
. (VIII.20)
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In vacuum, where all T i

k = 0, we have

− e−λ

(
ν′

r
+

1
r2

)
+

1
r2

= 0, (VIII.21)

e−λ

(
λ′

r
− 1

r2

)
+

1
r2

= 0, (VIII.22)

λ̇ = 0, (VIII.23)

The most unpleasant equation fortunately is not independent and follows from other three equations. One can proove
this by straightforward calculations or by using the Bianchi identity. From equation (VIII.23) follows that λ = λ(r),
i.e. does not depend on t. From equations (VIII.21) and (VIII.22) follows that

λ′ + ν′ = 0, hence λ + ν = f(t). (VIII.24)

Now we can use our last freedom in coordinate transformation, namely we can transform the time coordinate, t = f(t′)
to make f(t) = 0. As a result we obtain

e−λ = eν . (VIII.25)

Thus we actually proved a very important theorem: If a gravitational field is spherical symmetric then this field is
static! Now the system has been reduced to the single equation (VIII.22), which after multiplying by r2 can be written
as

e−λ (rλ′ − 1) + 1 = 0 or −
(
e−λr

)′
+ 1 = 0. (VIII.26)

Finally

e−λ = eν = 1 +
A

r
, (VIII.27)

where A is a constant of integration. One can see that if r →∞, then

e−λ = eν → 1, (VIII.28)

which corresponds to the Minkowskian space-time.
In order to determine the constant A let consider a test particle far from the centre of gravitating object. It’s radial
acceleration is given by the geodesic equation:

d2r

ds2
+ Γ1

ikuiuk = 0. (VIII.29)

If we assume that the particle moves slowly, i.e. four-velocity ui ≈ δi
0 and ds ≈ cdt we obtain

d2r

dt2
≈ −c2Γ1

ikδi
0δ

k
0 = −c2Γ1

00 =

= −c2

2
g1n(g0n,0 + gn0,0 − g00,n) = −c2

2
g11(g01,0 + g10,0 − g00,1) ≈ −

c2

2
dg00

dr
=

= −c2

2
de−λ

dr
= −c2

2
d

dr
(1 +

A

r
) =

Ac2

2r2
. (VIII.30)
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On other hand we know from Newtonian theory that

d2r

dt2
= −GM

r2
, (VIII.31)

hence the constant of integration

A = −2Gm

c2
= −rg and g00 = 1− rg

r
, (VIII.32)

where rg is the so called gravitational radius

rg =
2Gm

c2
. (VIII.33)

Finally we derived the famous solution of the EFEs obtained by K. Schwarzschild in 1916, the same year when Einstein
published his equations. This solution is called the Schwarzschild metric:

ds2 =
(
1− rg

r

)
c2dt2 − r2(sin2θdφ2 + dθ2)− dr2

1− rg

r

. (VIII.34)

One can see that this metric describes a curved space-time. To prove, for example, that even the space itself is curved,
let us compare the physical radial distance, l, with the corresponding circumference, C. In the flat Euclidian space

l =
C

2π
, (VIII.35)

while in the case of the Schwarzschild metric

dl2 =
dr2

1− rg

r

+ r2(sin2 θdφ2 + dθ2), (VIII.36)

hence

l =
∫ r2

r1

dr√
1− rg

r

> r2 − r1 =
lcircl2 − lcircl1

2π
. (VIII.37)

One can see also that time runs at a different rate at different radii, indeed

dτ =
√

g00dt =
√

1− rg

r
dt. (VIII.38)

C. Physical singularity versus coordinate singularity in the Schwarzschild metric

We can prove that there is no physical singularity at r = rg. For that we produce the following transformation of
coordinates

cτ = ±ct±
∫

f(r)dr

1− rg

r

, (VIII.39)

R = ct +
∫

dr(
1− rg

r

)
f(r)

, (VIII.40)

where f(r) is an arbitrary function. Now the interval can be written in the following form:

ds2 =
1− rg

r

1− f2
(c2dτ2 − f2dR)− r2(dθ2 + sin2θdφ2). (VIII.41)
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To eliminate ”singularity” at r = rg, we can choose f(r) in such a way that f(rg) = 1. For example,

f(r) =
√

rg

r
. (VIII.42)

In this case

R− cτ =
∫

(1− f2)dr(
1− rg

r

)
f

=
∫ √

r

rg
dr =

2
3

r3/2

r
1/2
g

(VIII.43)

and

r =
3
2
(R− cτ)2/3r1/3

g , (VIII.44)

ds2 = c2dτ2 − dR2[
3

2rg
(R− cτ)

]2/3
−
[
3
2
(R− cτ)

]4/3

r2/3
g (dθ2 + sin2θdϕ2). (VIII.45)

We can see that there is now singularity at r = rg, indeed if r = rg

3
2
(R− cτ) = rg. (VIII.46)

In other words, the formal ”singularity” ar r = rg can be removed by the transformation of coordinates.
The real physical singularity does take place at r = 0 when, say, the scalar curvature is infinite (one can easily verify
this by straightforward calculations) and this fact can not be removed by any transformation of coordinates.
————————————————————————————————————————————-
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Lecture 9. Last updated 07.03.10

IX. BLACK HOLES

Limit of stationarity IX A

Event horizon IX B

Schwarzschild black holes IX C

Kerr Black Holes IX D

”Ergosphere” and Penrose process IX E

A. Limit of stationarity

Let us consider ds for the test particle in rest, i.e. put dr = dθ = dφ = 0, in this case

ds2 = g00dx02
, (IX.1)

If g00 = 0 then ds2 = 0, which means that the world line of the particle at rest is the world line of light, hence at
the surface g00 = 0 no particle with finite rest mass can be at rest. Thus the surface g00 = 0 is called the limit of
stationarity.

B. Event horizon

Let us consider a surface

F (r) = const (IX.2)

and let

ni = F,i (IX.3)

is its normal. If g11 = 0 then

giknink = g11n1n1 = 0, (IX.4)

which means that ni is the null vector and any particle with finite rest mass can not move outward the surface g11 = 0,
thus this surface is the event horizon.
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C. Schwarzschild black holes

Schwarzschild Black holes are described by the following metric

ds2 =
(
1− rg

r

)
c2dt2 − dr2(

1− rg

r

) − r2
(
sin2 θdφ2 + dθ2

)
, (IX.5)

obtained in the previous lecture.One can see that both the limit of stationarity and the event horizon are located at
r = rg.
Let us consider the structure of light cone in the Schwarzschild metric using the new coordinates cτ and R introduced
in Lecture 8. Putting ds = 0, we have

c
dτ

dR
= ± 1(

3
2rg

(R− cτ)
)1/3

= ±
√

rg

r
. (IX.6)

Thus we can see that if r > rg

|c dτ

dR
| < 1 (IX.7)

and the surface r = const is inside the light cone, while for r < rg

|c dτ

dR
| > 1 (IX.8)

and the surface r = const is outside the light cone, which means that all particles and even photons should propagate
inward. In order words we can see that the surface r = rg is the event horizon.

D. Kerr Black Holes

The Kerr metric describing the gravitational field of rotating black holes has the following form

ds2 = (1− rgr

ρ2
)c2dt2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2 +

rgra
2

ρ2
sin2 θ) sin2 θdφ2+

+
2rgra

ρ2
sin2 θcdφdt, (IX.9)

where

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − rgr + a2 and a =
J

mc
(IX.10)

and J is the specific angular momentum of the black hole.

1. Limit of stationarity

The location of the limit of stationarity, rst, corresponding to g00 = 0, in the Kerr metric is determined from the
equation

1− rgr

ρ2
= 0, thus r2 − rgr + a2 cos2 θ = 0. (IX.11)

Solving this equation we obtain that

rst =
1
2
(rg ±

√
r2
g − 4a2 cos2 θ) =

rg

2
±
√

(
rg

2
)2 − a2 cos2 θ. (IX.12)
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2. Event horizon

The location of the event horizon, rhor is determined by g11 = 0. In the Kerr metric this corresponds to g11 = ∞, i.e.
corresponds to

∆ = r2 − rgr + a2 = 0, (IX.13)

and

r =
1
2
(rg ±

√
r2
g − 4a2 cos2 θ) =

rg

2
±
√

(
rg

2
)2 − a2 cos2 θ, (IX.14)

hence

rhor =
rg

2
±
√(rg

2

)2

− a2. (IX.15)

E. ”Ergosphere” and Penrose process

1. Ergosphere

The region between the limit of stationarity and the event horizon is called the ”ergosphere”. By the Penrose process
it is possible to extract the rotational energy of the Kerr black hole.

2. Penrose process

The Penrose process is a process wherein energy can be extracted from a rotating black hole. That extraction is
made possible because the rotational energy of the black hole is located not inside the event horizon, but outside in
a curl gravitational field. Such field is also called gravi-magnetic field. All objects in the ergosphere are unavoidably
dragged by the rotating spacetime. Imagine that some body enters into the black hole and then it is split there into
two pieces. The momentum of the two pieces of matter can be arranged so that one piece escapes to infinity, whilst
the other falls past the outer event horizon into the black hole. The escaping piece of matter can have a greater
mass-energy than the original infalling piece of matter. In other words, the captured piece has negative mass-energy.
The Penrose process results in a decrease in the angular momentum of the black hole, and that reduction corresponds
to a transference of energy whereby the momentum lost is converted to energy extracted. As a result of the Penrose
process a rotating black hole can eventually lose all of its angular momentum, becoming a non-rotating (i.e. the
Schwarzschild) black hole.
————————————————————————————————————————————-

Back to Content Previous Lecture Next Lecture

41



A. Polnarev. (MTH720U/MTHM033). 2010. Lecture 10.

————————————————————————————————————————————————-

Lecture 10. Last updated 07.03.10

X. IN VICINITY OF THE SCHWARZSCHILD BLACK HOLE

Test particles in the Schwarzschild Metric X A

Stable and Unstable Circular Orbits X B

Propagation of light in the Schwarzschild metric X C

A. Test particles in the Schwarzschild Metric

B. Stable and Unstable Circular Orbits

C. Propagation of light in the Schwarzschild metric
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Lecture 11. Last updated 07.03.10

XI. EXPERIMENTAL CONFIRMATION OF GR AND GRAVITA-
TIONAL WAVES (GWS)

Relativistic experiments in the Solar system and Binary pulsar XI A

Propagation of GWs XI B

Detection of GWs XI C

Relativistic experiments in the Solar system and Binary pulsar XI D

Propagation of GWs XI E

A. Relativistic experiments in the Solar system and Binary pulsar

B. Propagation of GWs

C. Detection of GWs

D. Generation of GWs

E. Examples, problems and summary

XII. SUMMARY OF THE COURSE

i)
ii)
iii)
iv)
————————————————————————————————————————————-
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