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A. Relativistic experiments in the Solar system and Binary pulsar

General relativity is currently the most successful gravitational theory, being almost universally accepted and well-
supported by observations. General relativity’s first success was in explaining the anomalous perihelion precession
of Mercury, then observations of stars near the eclipsed Sun quantitatively confirmed general relativity’s prediction
that massive objects bend light. Other observations and experiments have since confirmed many of the predictions
of general relativity, including the gravitational redshift of light and the gravitational time dilation. All these effects
in the Solar System were then observed in tremendously magnified version in binary pulsars.
In 1916 Einstein proposed three famous tests of general relativity, subsequently called the classical tests of general
relativity.

1. The perihelion precession of Mercury’s orbit.

In Newtonian physics, an object orbiting a spherical mass would trace out an ellipse with the spherical mass at a
focus.There are a number of solar system effects that cause the perihelion of a planet to precess, or rotate around the
sun. These are mainly because of the presence of other planets, which perturb orbits. Another effect is solar oblateness,
which produces only a minor contribution. The precession of the perihelion of Mercury was a longstanding problem
in celestial mechanics. Careful observations of Mercury showed that the actual value of the precession disagreed with
that calculated from Newton’s theory by 43 seconds of arc per century, which was much larger than the experimental
error at the time. In general relativity, this orbit will precess, or change orientation within its plane, due to the
curvature of spacetime.

2. Deflection of Light by the Sun.

The first observation of light deflection was performed by noting the change in position of stars as they passed near the
Sun on the celestial sphere. The observations were performed by Sir Arthur Eddington who traveled to the island of
Principe near Africa to watch the solar eclipse of May 29, 1919.According to GR, stars near the Sun would appear to
have been slightly shifted because their light had been curved by its gravitational field. This effect is noticeable only
during an eclipse, since otherwise the Sun’s brightness obscures the stars.Prediction of Newtonian theory is exactly
two times smaller than predicted by GR. Eddington’s 1919 measurements of the bending of star-light by the Sun’s
gravity confirmed GR.
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3. Gravitational Redshift.

Einstein predicted the gravitational redshift of light in 1907.
This prediction was confirmed by Pound and Rebka in 1959. They measured the relative redshift of two sources
situated at the top and bottom of Harvard University’s Jefferson tower. The result was in excellent agreement with
GR.

4. Examples of other experiments in Solar System.

There were a lot of other precision tests of general relativity, which are not discussed here. I will give you just two
examples:
Example 1. Gravity Probe A was launched in 1976. This experiment showed that gravity and velocity affect the
ability to synchronize the rates of clocks orbiting a central mass.
Example 2. Current experiment Gravity Probe B. is testing the prediction of GR which says that rotating bodies
drag spacetime around themselves in a phenomenon referred to as frame-dragging (or gravimagnetism). This is the
same effect as in the vicinity of rotating black holes (see notes to Lecture 9), but extremely small about one part in
a few trillion.
The Gravity Probe B satellite, launched in 2004, is currently attempting to detect frame dragging.

5. Binary Pulsar.

General relativity has been extremely well tested after 1974, when Hulse and Taylor discovered the first binary pulsar.
Pulsar is a highly magnetized rotating neutron star. A neutron star is formed from the collapsed remnant of a massive
star and consists mostly of neutrons. A typical neutron star has a mass between 1.35 and about 2.1 solar masses,
with a corresponding radius of order 10 km. The density of a neutron star, ρns, is comparable with the density of
an atomic nucleus, i.e. ρns ∼ 1017 ÷ 1018 kgm−3. Pulsars emit a beam of radio waves. Their observed periods range
from 1 ms to 10 s. The radiation can only be observed when the beam of emission is pointing towards the Earth.
Because neutron stars are very dense objects, the rotation period and thus the interval between observed pulses are
very regular. For some pulsars, the regularity of pulsation is as precise as an atomic clock.
A binary pulsar is a pulsar with a binary companion, often another pulsar, white dwarf or neutron star. The first
binary pulsar, PSR 1913+16 or the ”Hulse-Taylor binary pulsar” was discovered in 1974 at Arecibo by Joseph Taylor,
Jr. and Russell Hulse, for which they won the 1993 Nobel Prize in Physics.
The binary pulsars allow astrophysicists to test general relativity in the case of a strong gravitational field. The timing
of the pulses from the pulsar can be measured with an extraordinary accuracy.
The orbit of the pulsar in binary system experiences periastron advance, the radiation is gravitationally redshifted
and the orbital period decreases with time due to gravitational radiation.Binary pulsar timing has thus indirectly
confirmed the existence of gravitational radiation and verified GR.
The rotation of the pulsar’s periastron is analogous to the advance of the perihelion of Mercury in its orbit. The
observed advance for PSR 1913+16 is about 4.2 degrees per year: the pulsar’s periastron advances in a single day by
the same amount as Mercury’s perihelion advances in a century!

B. Propagation of GWs

A weak gravitational field is a small perturbation of the Galilean metric:

gik = ηik + hik. (XI.1)

It is easy to show that

gik = ηik − ηinηkmhnk. (XI.2)

The gravitational wave is a transverse and traceless part of these perturbations and the plane wave has two independent
states of linear polarization. Using a linear coordinate transformation

x
′i = xi + ξi, (XI.3)
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where ξi are small functions of xi, we can impose on hik the following four supplementary conditions:

ηkmhmi,k −
1

2
δki η

nmhnm,k = 0. (XI.4)

After such transformation the Ricci tensor is reduced to

Rik = −1

2
ηlm

∂2hik
∂xl∂xm

. (XI.5)

According to the Einstein equations in empty space-time Rik = 0, hence gravitational waves satisfy the wave equation

(∇2 − 1

c2
∂2

∂t2
)hik = 0, (XI.6)

where ∇2 is the 3-dimensional Laplacian operator.

C. Detection of GWs

Let us consider a ring of test particles initially at rest in the (y − z) plane, perturbed by a plane monochromatic
gravitational wave propagating in x-direction with frequency ω and amplitude h0. Then it is possible to show that
all components of hik can be eliminated by the transformation of coordinates except

h22 = −h33 ≡ h+ (XI.7)

and

h23 = h32 ≡ h×, (XI.8)

corresponding to “+” and “×” polarizations. By calculating the physical distances between the test particles on the
ring and its center we can determine distortions in shape and in orientation of the ring produced by a gravitational
wave at different moments of time and for different polarizations of the gravitational wave:

(i) h+ = h0 sinω(t− x/c), h× = 0 (XI.9)

and

(ii) h+ = 0, h× = h0 sinω(t− x/c). (XI.10)

The distortions of the originally circular ring for these two states of polarization of the wave at t = 0, t = T/4,
t = T/2, t = 3T/4 and t = T , where T is the period of the wave, are shown below. Without loss of generality we can
assume that the ring is located at x = 0. If

h+ = h0 sinωt (XI.11)

and

h× = 0, (XI.12)

we have

δl(θ) = −1

2
l0h0 sinωt cos 2θ. (XI.13)

ωt δl(θ)
0 0
π
2 − 1

2 l0h0 cos 2θ
π 0
3π
2

1
2 l0h0 sinωt cos 2θ

2π 0
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If

h+ = 0, (XI.14)

and

h× = h0 sinωt, (XI.15)

we have

δl(θ) = −1

2
l0h0 sinωt sin 2θ. (XI.16)

ωt δl(θ)
0 0
π
2 −

1
2 l0h0 sin 2θ

π 0
3π
2

1
2 l0h0 sin 2θ

2π 0

If

h+ = h0 sinωt (XI.17)

and

h× = h0 cosωt (XI.18)

we have

δl(θ) = −1

2
l0h0(sinωt cos 2θ + cosωt sin 2θ) = −1

2
l0h0(sinωt+ 2θ) = −1

2
l0h0 sin 2(θ − θ0(t)), (XI.19)

where

θ0(t) = −1

2
ωt. (XI.20)

ωt θ0(t) δl(θ)
0 0 − 1

2 l0h0 sin 2θ
π
2 −π4 −

1
2 l0h0 sin 2(θ + π

4 ) = − 1
2 l0h0 cos 2θ

π −π2 − 1
2 l0h0 sin 2(θ + π

2 ) = 1
2 l0h0 sin 2θ

3π
2 −

3π
4

1
2 l0h0 cos 2θ

2π −π − 1
2 l0h0 sin(2θ + 2π) = − 1

2 l0h0 sin 2θ

This polarization can be called circular polarization.

D. Generation of GWs

Starting from the Einstein equations we can linearize them by taking into account that gravitational waves are
characterized by small amplitudes. Then in approximation of slow motions and small separations we can use the
Quadrupole formula for gravitational waves:

hαβ = − 2G

3c4R

d2Dαβ

dt2
(t−R/c), (XI.21)

where R is the distance to the source of gravitational radiation and

Dαβ =

∫
(3xαxβ − r2δαβ)dM (XI.22)

is the quadrupole tensor.
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E. Examples, problems and summary

Example: A white dwarf (or netron star, or black hole) of mass m moves around a black hole of mass M � m on a
circular orbit with radius r. Find the frequency of gravitational radiation if T is the orbital period.
Taking into account that

xα = δαβx
β = eα cosω0t, (XI.23)

where eα is some constant vector, we have

hαβ ∼ D̈αβ ∼ (3xαxβ − r2δαβ)
··

∼ (xαxβ)
··

∼ eαeβ(cos2 ω0t)
··

∼ 1

2
eαeβ(1 + cos 2ω0t)

··
∼ cosω, (XI.24)

where

ω = 2ω0 = 4π/T. (XI.25)

Estimate to an order of magnitude, h0, the amplitude of the gravitational wave.

Solution: To an order of magnitude and omitting indices we have

h ∼ 2G

3c4R
D̈ ∼ 2G

3c4R

3

2
(2ω0)2mr2 =

4Gmr2ω2
0

c4R
=

4Gmr2

c4R

GM

r3
=

=
m

M

r2g
rR

=
m

M

rg
r

rg
R
. (XI.26)
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