
Magnetic materials

Summary of electromagnetism
All materials acquire a magnetisation M in a magnetic field. M is the magnetic dipole
moment per unit volume and is a vector.
The magnetic field B in a material with a magnetisation M  is given by

( )B H M= +µ 0  which defines the magnetic field strength H. In practical situations

(for example a solenoid), the H field can be calculated from external currents and can
be considered to be the driving force. The magnetisation and the overall B field are the
material response to this force. For a linear, isotropic, homogeneous material the
magnetisation is proportional to H, and we define the magnetic susceptibility, χ  by the
identity M H= χ  Therefore, B H= µ µ0  and we have the relative permeability
µ χ= +1 . As in the electric case, it is the susceptibility that is the material property.

Unfortunately, magnetic dipole moments are denoted by
�  (but that is convention for you). Classically, a magnetic
dipole moment is associated with a current loop; the
magnitude of the dipole is the area (shaded in the
diagram) multiplied by the current. �  = IAn where n is
the unit normal defining the plane of the loop

Materials contain elementary magnetic dipoles in the
form of electrons. They have intrinsic angular momentum
(spin) as well as the potential for orbital angular momentum (when bound to a specific
nucleus) and since they are charged they can be thought of  as a flow of current in a
loop. The problem for the rest of this section is to relate the magnetic properties of
materials to the properties of electrons.

Diamagnetism (cf the 2B23 course)
When a charged particle is accelerated by a changing magnetic field, momentum is apparently created
from nowhere. This paradox is resolved by writing the momentum of  a charged particle as
p = Mv + qA where A is the magnetic vector potential (recall that B = curl A ). The momentum
possessed by a charged particle at rest is the electromagnetic momentum. When a particle is
accelerated by a changing magnetic field, the total momentum is conserved, but there is an exchange
between the kinetic momentum Mv and the electromagnetic momentum qA. These ideas can be
transferred to quantum mechanics by replacing the momentum p by the quantum mechanical
analogue − ∇i � . In an atom, there are only discrete electronic states with different wavefunctions.
These states are separated by large energies and so are perturbed only weakly by a normal magnetic
field. The wavefunction  of the system does not change significantly; when a magnetic field is applied
to an atom p cannot alter greatly (since it is controlled by the geometry of the wavefunction of the
atom); thus any change must be in v. Hence from the definition above, the induced velocity v = -qA/M
= eA/m. and the induced current density is j = n(-e)v = -ne2A/m. This current  sets up an opposing
magnetic dipole to the applied field. The effect is usually slight and the susceptibility is small and

negative; χ ≈ − −10 6 . However, all materials are diamagnetic and so all bodies can be affected in

this way. This mechanism is the way that superconductors levitate materials. These are the only
strong diamagnets; in this case χ ≈ −1

 n
 �

 I



Paramagnetism
The energy of a magnetic dipole in a magnetic field with a component Bz along a
specified z axis is
E = -� zBz (1)
where � z is the z component of the dipole moment. (From now on, we will denote Bz

simply by B ). If reorientation is possible, the dipoles align with the field and an overall
magnetisation results. Reorientation is often not possible; many materials are not
paramagnetic. Susceptibilities are small and positive. The paramagnetic response of
electrons depends on their state in the material.

Delocalised electrons
Free electrons have a magnetic moment  �  = -g� Bs where s is the electron spin (with
components ± 1

2  along the z axis); µ B e m= � / 2  the Bohr magneton and g the

gyromagnetic ratio (which is approximately equal to 2). This was all discovered in the
spirit of enlightened empiricism; the justification is to be found in the Dirac equation
where the relativistic origin of all this is revealed. The components of   �  along the z
axis are (from the above) ±µ B .

Consider the free-electron density of states,
but split into densities of states for electrons
with spin up and spin down with respect to
the z axis. In the absence of a magnetic field,
there are equal numbers of spin-up and spin-
down electrons and there is no resultant
magnetisation. When a field is applied, the
spin-up states are raised in energy by µ B B
and the spin-down states are lowered by
µ B B . Since µ B ≈ × −9 4 10 24. JT-1, this
change is much less than the Fermi energy.
Thus, at zero temperature, a total of
1
2 D E BFE F B( )µ  electrons flip their spins to

minimise the energy (where DFE(E) is the
free-electron density of states and EF is the
Fermi energy) - the deeply shaded areas in
the diagram. The magnetisation is the
difference between down spins and up spins
(down - up) per unit volume, multiplied by
the Bohr magneton and so
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where we have used the result (derived when
we were considering the free-electron model) that EFDFE(EF) = 3Ne/2  where Ne  is the
number of electrons and  n = Ne/V is the electron density. Assuming that the
susceptibility ( χ ) is small, B H≈ µ 0  and so

M n H Ez B F= 3 22
0µ µ /  (3)
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That is, the paramagnetic susceptibility is small,
positive and (in this approximation) temperature
independent. This line of argument also shows that
materials with filled bands are not paramagnetic since
the electrons cannot re-orientate - there are no
available states for them to move into to reduce their
energy.

Core electrons
Matters are quite different for electrons which are
localised on atoms and unable to move about the
lattice. First let us consider a single electron in an
atomic orbit with L =  0. When we apply the B field,
the energies of the up and down spin states are
altered by ±µ B B . Let us consider the statistical
mechanics of such a system. The probability of

occupying each state is ( )P E k TB
± ±∝ −exp / , so

the mean value of µ z  (the z component of the
magnetic dipole) per atom is given by
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Hence, the magnetisation is ( )M N B k Tz a B B B= µ µtanh /  where Na  is the atomic

number density. If both spin states had been occupied, no reorientation would have
been possible; the paramagnetism of core electrons relies on  the existence of partially
filled shells. The magnetisation as a function of B  is
shown on the right. Since µ B BB k T<<  usually we
need only consider the linear part of the curve and
write
M N B k Tz a B B≈ µ 2 / . (6)

Again, if the susceptibility is small, we can write
B H≈ µ 0 , M Hz = χ where

χ µ µ= =N k T C Ta B B
2

0 / /  (7)
which defines the Curie constant  (his not hers).
Putting in typical numbers at room temperature we get χ ≈ −10 3 . This is much more
than for the free electrons - the effect of different degrees of constraint on electron re-
orientation.

Finally, let us consider the general case of a set of core electrons in an atomic shell
with angular momentum J,  comprising a total spin S and a total orbital angular
momentum L. The same kind of argument leads to a paramagnetic susceptibility
χ µ µ= +N g J J k Ta B B
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where the Landé g-factor  is
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as in atomic physics. Thus the paramagnetic response enables us to determine the
angular momentum state of the electrons attached to each atom.

Magnetic order
This includes the most obviously ‘magnetic’ materials - ferromagnets. In some
materials, the magnetic dipoles of core electrons align spontaneously. No external field
is needed for a permanent magnetisation to exist. The current understanding of
magnetic ordering is that it is a collective electronic effect induced by the Pauli
principle. We leave this until later; let us first imagine that the single electron in the
L=0 state we considered earlier feels a force
which tends to align its spin with the spins of
electrons on neighbouring atoms. Magnetic
dipole - magnetic dipole interactions are far too
weak to do this, so we cannot construct a
magnetic analogue to the electric polarisation
theory we considered earlier. Let us then simply
imagine that the spin-up state is raised in energy
by an amount λ µ µ0 0 B zM  and the down-spin
reduced by the same amount, when a
magnetisation Mz is induced in the material. λ 0  is
a dimensionless number that characterises this energy change. These shifts are in
addition to the usual ±µ B B  (and much bigger). The new terms promote an alignment
of spins; the up-spin will be less favoured if Mz and λ 0  are both positive, this effect
then increases Mz and so on.

If we use the same analysis as for the paramagnetic response, we find that the
magnetisation of the material is given by

( )M N B M k Tz a B B z B= +µ µ λ µtanh ( ) /0 0 (10)

where Na is the number density of the atoms. Insert B H M z= +µ0( )  into this and
absorb µ 0 M z  into the second term. (There are some slight complications involving the
exact coefficient of Mz introduced by the replacement of B by H but these are not
important). Then we have

( )M N H M k Tz a B B z B= +µ µ µ λtanh ( ) /0 (11)

where λ  differs from λ 0  by about unity. This
equation can be written in the dimensionless
parametric form

′ =M xz tanh    (12a)
( )′ = ′ − ′M T x Hz (12b)

where ′ =M M Nz z a B/ µ  ; ′ =H H k TB Bµ µ0 /
and ′ =T T TC/  where TC is the Curie-Weiss

critical temperature given by T N kC B a B= λµ µ0
2 /

The two parametric equations (12a, b) can be
solved graphically as shown. There are two different cases of interest
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Paramagnetic response
If  the situation is as shown on the right above (i.e. the gradient of  (12b) at the origin
is greater than equation (12a), then the magnetisation ′M z  is single-valued for a given
field ′H  This corresponds to the situation when T > TC. For small x, tanh(x) ~ x
and so  we must solve the parametric equations

′ =M xz    (13a)            ( )′ = ′ − ′M T x Hz (13b)
This is trivial; the solution is

( )′ = ′ ′ − ′M T M Hz z (14)

and, if we substitute back for all the various relations, we get
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i.e. the magnetic response is paramagnetic with Curie law behaviour except that the
temperature is shifted by the constant TC. This is known as the Curie-Weiss Law. Iron,
for example, is paramagnetic above 1043K.

Permanent magnetic ordering
If T < TC. then the graphical construction
shows that there are multi-valued
solutions and permanent magnetisation.
as shown on the right. Moreover, if we
sketch a graph of ′M z  against  ′H
(shown on the right below),  it is clear
that the magnetisation does not vanish
after the driving field, H,  is removed.
Equally, the permanent magnetisation can
be shifted to other directions by using a
suitable external field. This is magnetic ordering
emerging in a simple model, but so far it is empirical.
We have said nothing about the origin of the
ordering force or the constant  λ .

The exchange field
In we use the expression for the critical temperature
and insert values for iron, we can deduce that
λ ≈ 104 , in other words, the alignment energies are
far greater than can be ascribed to  magnetic dipole
interactions (which would give a value of  λ ≈ 1). It
is believed that the Pauli principle is ultimately responsible for this high value of λ .
This alignment effect is known in atomic physics. The antisymmetry of the
wavefunction (i.e. the Pauli principle) ensures that electrons with the same spin cannot
be found in the same place. Thus, the electrostatic repulsion between electrons of the
same spin will be less than the repulsion between electrons of opposite spin. This is the
exchange interaction and is responsible for Hund’s first rule in atomic spectroscopy
(that states with maximum S value are the lowest in energy). A similar argument
applies here. Although we have ignored it, the electron-electron repulsion is important
in materials. A good approximation is to consider each electron as interacting with the
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smeared-out density of all the others. However, we must take account of the effect
discussed above. If, for example, our electron is spin-up; its interaction with the density
of the spin-up electrons will be less than the interaction with the spin-down density.
There must be a ‘hole’ in the ‘spin-up’ density close to our electron because of the
Pauli principle and so the interaction is less
(Note: this argument looks as though we are able to ‘pick out’ and distinguish one electron which is
not possible. In fact, it can be shown that we are not doing this, and the idea of solving the electronic
structure of materials by looking at a one-electron model but incorporating the effects of the others in
terms of a density is the basis of most modern calculations in this area.)
This argument leads to the conclusion that electron spins in materials will tend to order
if they can to minimise the total energy. Because the exchange interaction is
responsible for the ordering, the term λµ 0 M z  is called the exchange field. This field is
a combination of electrostatics and quantum mechanics; the calculation of the
exchange field and therefore of λ  is distinctly messy. Free electrons can order their
spins, but the effect is small. The greater effect comes from ordering the spins of the
core electrons. This leads to the various forms of permanent magnetism

Types of magnetic ordering
Ferromagnetism
The exchange field aligns the magnetic
dipole moments of the core electrons. Hence
λ > 0and the permanent magnetisation
which appears below the critical temperature
TC is given by the solution to our simple
model equation

( )′ = ′ ′M M Tz ztanh /

This gives the behaviour of Mz as a function
of temperature shown on the right. Below
TC the spins tend to be aligned even in the absence of an external field. The classic
material exhibiting this behaviour is iron (hence ferromagnetism).

Antiferromagnetism
Despite the above argument, it is possible for λ  to be negative, at
least between nearest neighbours. We can then get two sub-
lattices of aligned spins; one up and one down such that the
nearest neighbour spins are anti-parallel. There is now no magnetisation in the absence
of an external field. The effect can, however be detected in two ways. First, there is a
characteristic kink in the susceptibility curve at the Néel temperature (analogous to the
Curie temperature in ferromagnetism). The susceptibility is a maximum at this point.
Second, the unit cell is different if it is determined by a probe (like neutrons) that can
interact with the magnetic moments of the atoms. Recall that the definition of a lattice
point is that the environment must look the same for all points. Thus, if one ‘lattice
point’ is an up-spin surrounded by down-spins and another is a down-spin surrounded
by up-spins, although in terms of atomic arrangement they can still seem to be the same
(and therefore can both be lattice points), in terms of magnetic structure they are not
(and so only one of them can be). We have a magnetic lattice with a different structure
to the lattice that can be detected by X-rays. The commonest antiferromagnetic
element is chromium. Many oxides are also antiferromagnetic; one of the most studied
in MnO
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Ferrimagnetism
This occurs when  there is an antiferromagnetically
ordered lattice, but the two sub-lattices (up and down)
contain atoms with different intrinsic magnetic dipole
moments. In this case, the material does have a resultant
magnetisation when there is no applied field. The commonest example is magnetite,
Fe3O4. This can be considered to be a mixture of FeO and Fe2O3 and the two magnetic
ions are Fe2+ and Fe3+. The mineral occurs naturally, it is lodestone and its magnetic
properties have been known for millenia; it is the material traditionally used in
compasses (lode = a course or way (Old Norse)).

Spin waves (magnons)
An ordered system of spins (or magnetic dipoles) can be excited  such that wave-like
disturbances pass through the material. These are spin waves. At low temperatures,
these excitations are quantised in the same way as the vibrational excitations we
studied earlier. The excitations are called magnons by analogy with phonons.


