Beyond the free electron model

The effects of trandational symmetry
The most serious omission in thefree

: ) a
electron mode isthe entire neglect of the —>
way theions are arranged as a structure. If

we are to include this, we need to discuss ® ® O ®
the Schrodinger equation with the potential
f:iueto thelat%ceﬁcluded. Thg mc_agt . \/\ /\ f\/\/\(r)
important feature of the potential isthat it
is periodic. The basic points can be made by considering a one-dimensional chain of
atoms, equally spaced with separation a. The chainisether infinitein length or finite
with periodic boundary conditions. The Schrodinger equation is
~ h2 d 2[//
2m dx®
Thisisaone-dimensional lattice with one atom per unit cell and lattice parameter a.
The probability of finding an electron at a given point x is |¢/(X)[°. But, from our
discussion on the meaning of a unit cell, this probability must be the same at the same
placein al unit cells. The wavefunction need not be the samein all cells provided that
this condition is met, since the probability of finding an eectron is an observable but
the wavefunction is not. Thus, aswe go from the first unit cell to the second cell in the
chain, we can write (¢/(x + a) = Cy/(x) where C is a pure phase, so that
l(x+a) P=|w(x) . Thus, for the pth cell, we have ¢/(x + pa) = CP(x). If the
system is periodic, with N cdlls as the repeating block, we have the further condition
that (x+ Na) = /(x). This determines the constant C since CM =1. Hence C isone
of the complex roots of unity; C = exp(27i/ N) and so the condition that the
wavefunction must satisfy is
w(x+ pa) = w(x)exp(27ip/ N) where p isan integer 2)
Let us write the wavefunction in theform ¢/(x) = u(x)exp(27ix/ Na) . Then, writing
the wavefunction for the position (x+pa), we have
w(x+ pa) = u(x)exp(27i(x + pa)/ Na) = u(x)exp(27ix/ Na)exp(27ip/ N)  (3)
This satisfies the condition (2) provided that u(x+pa) = u(x). This, together with the
form of the wavefunction suggested above, constitute Bloch’ s theorem. This argument
closely resembles the arguments used when we were considering the displacement
functions for lattice dynamics (except that there the displacements and not their
sguares are the observables). In other words the solutions we have found are travelling
waves. As before, we can have awavevector, k = 27/ Na. Thus we can write the
Bloch wavefunction as ¢/(x) = u(x)exp(ikx) . In three dimensions, this generalisesto
w(r) = u(r)exp(ik (). Also, asin the case of lattice dynamics, all the physically
significant values of k must liein the (first) Brillouin zone (i.e. for —-n/a<k <n/a

in the 1-d case). Using a Bloch wavefunction labelled by ak outside thisregion is
equivalent to using one within it: the wavevector is defined modulo k =272/ a.

+V(X)¢ =0 Where V(X) is periodic, i.e. V(x+a) = V(X). (1)

The nearly-free electron model.
This theory assumes that the free electron modéd is quite a good approximation and that
the ions make only a small perturbation. For the free e ectron model, we get standing



waves for the Bragg conditions k = +72/a. The (normalised) standing wave solutions
are

we(+) = %(exp(i &/ a) +exp(-irx/a)), ws(-) = %(exp(i mx/a)-exp(-imx/a));

which reduceto

W)= \E coslmia)  wgl-)= i\/g sin(7/ )

We can usefirst-order perturbation theory (see the note on perturbation theory at the
end of the section) to calculate the effect theionic potential provided that we can
assume that the potential consists of alarge, constant part (which the free electron
model considers) and asmall, periodically repeating bit, V(x). For our one-
dimensional chain, we can write this as a Fourier series,

V(X) = —Z:ﬂvn cos(2/mx/ a)

Assuming that the lattice sitesare at x = la, where| is an integer, then we would expect
V, to be strongly negative at that point (the eectrons should be attracted to the ions)
and have positive regions in between the sites. By first order perturbation theory, the
energy change with respect to the unperturbed system is given by

E/ :<l'|JO|H/ |LIJ0>

The wavefunctions W° we need are the standing wave states for the free-electron
model ¢s(+) and ws(-). Theseare orthogonal to each other and normalised. Also,
they look physically reasonable since the first function peaks at the

lattice sites and the second peaks between them for k = 72/ a, so the energy of the two

wavefunctions should be different. Putting in the wavefunctions and the potential, the
perturbation on the energy can now be calculated. Thisis given by

£(4) = g_zcosz (i a)(— SV, cos{2mx! a)de

n=1

E() = -gigm(ma)(-jvn cos(me/a)de

n=1

Thisis asomewhat messy calculation,

requiring the used of the standard E(K)o
trigonometrical integrals. All termsin the
summation give zero except for

n=1. Thefinal resultisE/(+) = 7V, /2. u Y,
In this case, E° isthe free eectron result E :
E(k) = h?k? / 2m+V, / 2 and we can N e
add E' to the free-electron parabola; at \ 1%

k = +7n/a. Thisgivesthe samekind of
effect that we saw when, in the lattice

dynamics case, we considered the system \

with two different masses (although the 4
physicsis completely different); see -2Ma -a 0 wa 21ma

diagram on theright). As before, the



stateswith k = 71/ aare standing waves, and a band gap has opened up at the zone
boundary. The basic physical point isthat the band gaps arise because of theionic
structure. One should be careful how thisisinterpreted. The way we have derived it, it
seems that the gaps come because of trandational symmetry. Thisis not true.
Amorphous solids have band gaps. That said, the band gaps we shall consider for the
time being aretightly linked to the trandational symmetry of the lattice.

In our model, we know that the physically significant values of k liein the range
k = +71/a and that, for alattice with N primitive unit cells, the allowed values of k are
equally spaced and separated by 2721/ Na =27/ L. Thusthereare N values of k and,
since we must also consider spin, 2N possible states for electronsto occupy. (Thisis
generaly true). Thus, for amonatomic eement (Na, K for example) the band is half-
filled. However, we have apparently concluded that diatomic elements havefilled
bands, i.e. that Mg isan insulator. Thisis an embarrassing conclusion to come to since
Mgisametal.
Our one-dimensional modéd istoo simple. We must
@/\/_ consider filling bandsin all spatia directions
simultaneously. Let us consider the situation in two

. . . .. dimensions, and try to map out the Brillouin zone
J,f,ﬁ . | boundary. Along [10] and [01] it is obviously at
.9 @ . k =+7n/a.Inthe[11] direction, the planes are
T ot | separated by af /2 . Hence Bragg reflection will
. ‘ occur at k = +7%/2 / a. The Brillouin zone isasguare
: . '. . “| withtheverticesat k = +71/ a alongthek,, k, axes.
. Moreover, the effect of the perturbation dueto the
latticeis different in different directions. Thus we
have, along the [10] direction,
Ky E =%k, /2m+V,_ ([10]) /2.
-* Along the [11] direction, on the
Wa other hand, we have
E =n°k,” /2m=V, ([11])/ 2.
Thus, the question arises, do we
» K, finish filling the first band before
-Tva wa we start filling the second? If we
do, then therewill beagap in the
A -Ta density of states and we have an
Brillouin zone .
boundary msula{tor_. If wedo r_10t, there may
beadip in the density of states,

but no gap and we till have ametal. The second isthe casein Mg.

Summary of nearly free electron model

uccesses

1. We have aphysical explanation of why gaps appear.

2. We have an explanation of why a periodic lattice does not scatter electrons.

Problems

1. The explanation is so tightly linked to the idea of trandational symmetry that it
obviously cannot explain why glass has a band gap.



A note on perturbation theory

There are many cases where we do not know the answer for the system we are
considering, but we do know the answer for asimple case that is, in some sense, ‘close
toit. In this situation we can use the techniques of perturbation theory. | give here a
simple, non-rigorous derivation of the argument. Those who want to see the job done
better should consult a standard text on quantum mechanics; Schiff for example. Those
who really want to see the job done should start with Dirac’ stext.

Consider areference system with a Hamiltonian H® and wavefunctions | ¥° > i.e. the
Schrodinger equation for thiscaseis H® | W° >= E° | W° > . Now consider a perturbed

system with Hamiltonian H = H® + AH’ where H' isin some sense small and A isthe
‘knob’ (varying from zero to unity) that turns on the perturbation. As A isvaried, we
assume that the wavefunctions and energies vary smoothly as

|W>=| WP >+ |W >+... and E=E°+AE' +--- suchthat < $° |/ >=0.
We can therefore expand the Schrodinger equation for the perturbed system as
(HO + AH +X| Wos+h |y > +---): (EO + AE/ +X| Wos+h |y > +)
Collecting termsto first order in A, we obtain
HO | WO >= EO | w0 > MHO W > 41 w0 5) = A(E° | W/ > +E/ |40 >)
Thefirst equation is ssmply the Schrodinger equation for the unperturbed system.
Rearranging the second equation we get
(HO _ Eo)l W/ >= (E/ _H/)l Wo >
Premultiplying from the left by < W° |, we get
<lP°|H0|LIJ/ >_E0<L|J0|L|J/ >=<LIJ°|LIJO>E/—<HJO|H/ |lP0>
The terms on the left hand side vanish because < W° | W/ >= 0 (after using

Schrodinger’s equation for the unperturbed system on the first term). This given our
result

E/ :<LIJ0|H/ |LIJ0>
Thisassumesthat | W° >isnormalised; if it is not, we must divide the right-hand side
by <Wo|yo >,



