
Beyond the free electron model

The effects of translational symmetry
The most serious omission in the free
electron model is the entire neglect of the
way the ions are arranged as a structure. If
we are to include this, we need to discuss
the Schrödinger equation with the potential
due to the lattice included. The most
important feature of the potential is that it
is periodic. The basic points can be made by considering a one-dimensional chain of
atoms, equally spaced with separation a . The chain is either infinite in length or finite
with periodic boundary conditions. The Schrödinger equation is
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ψ ψ( )  Where V(x) is periodic, i.e. V(x+a) = V(x). (1)

This is a one-dimensional lattice with one atom per unit cell and lattice parameter a.
The probability of finding an electron at a given point x is | ( )|ψ x 2 . But, from our
discussion on the meaning of a unit cell, this probability must be the same at the same
place in all unit cells. The wavefunction need not be the same in all cells provided that
this condition is met, since the probability of finding an electron is an observable but
the wavefunction is not. Thus, as we go from the first unit cell to the second cell in the
chain, we can write ( ) ( )xCax ψψ =+  where C is a pure phase, so that

22 |)(||)(| xax ψψ =+ . Thus, for the pth cell, we have ( ) ( )xCpax pψψ =+ . If the
system is periodic, with N cells as the repeating block, we have the further condition

that ( ) ( )xNax ψψ =+ . This determines the constant C  since 1=NC . Hence C  is one

of the complex roots of unity; ( )NiC /2exp π=  and so the condition that the
wavefunction must satisfy is

( ) ( ) ( )Nipxpax /2exp πψψ =+ where p is an integer (2)

Let us write the wavefunction in the form ( ) ( ) )/2exp( Naixxux πψ = .  Then, writing
the wavefunction for the position (x+pa), we have

( ) ( ) ( )( ) ( ) ( ) )/2exp(/2exp/2exp NipNaixxuNapaxixupax πππψ =+=+ (3)
This satisfies the condition (2) provided that u(x+pa) = u(x). This, together with the
form of the wavefunction suggested above, constitute Bloch’s theorem. This argument
closely resembles the arguments used when we were considering the displacement
functions for lattice dynamics (except that there the displacements and not their
squares are the observables). In other words the solutions we have found are travelling
waves. As before, we can have a wavevector, Napk /2π= . Thus we can write the

Bloch wavefunction as ( ) ( ) )exp(ikxxux =ψ . In three dimensions, this generalises to

( ) ( ) )exp( rkrr ⋅= iuψ . Also, as in the case of lattice dynamics, all the physically
significant values of k must lie in the (first) Brillouin zone (i.e. for − ≤ <π π/ /a k a
in the 1-d case). Using a Bloch wavefunction labelled by a k outside this region is
equivalent to using one within it: the wavevector is defined modulo ak /2π= .

The nearly-free electron model.
This theory assumes that the free electron model is quite a good approximation and that
the ions make only a small perturbation. For the free electron model, we get standing
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waves for the Bragg conditions ak /π±= . The (normalised) standing wave solutions
are

( ) ( ) ( )( )axiaxi
a

S /exp/exp
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1 ππψ −+=+ , ( ) ( ) ( )( )axiaxi
a

S /exp/exp
2

1 ππψ −−=− ;

which reduce to

( ) ( )ax
aS /cos
2 πψ =+ ( ) ( )ax

a
iS /sin

2 πψ =−

We can use first-order perturbation theory (see the note on perturbation theory at the
end of the section) to calculate the effect the ionic potential provided that we can
assume that the potential consists of a large, constant part (which the free electron
model considers) and a small, periodically repeating bit, V(x).  For our one-
dimensional chain, we can write this as a Fourier series,
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Assuming that the lattice sites are at x = la, where l is an integer, then we would expect
Vn  to be strongly negative at that point (the electrons should be attracted to the ions)
and have positive regions in between the sites. By first order perturbation theory, the
energy change with respect to the unperturbed system is given by

>ΨΨ=< 0/0/ |H|E

The wavefunctions 0Ψ  we need are the standing wave states for the free-electron
model ( )+Sψ  and ( )−Sψ .  These are orthogonal to each other and normalised. Also,

they look physically reasonable since the first function peaks at the
lattice sites and the second peaks between them for k a= π / , so the energy of the two
wavefunctions should be different. Putting in the wavefunctions and the potential, the
perturbation on the energy can now be calculated. This is given by
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This is a somewhat messy calculation,
requiring the used of the standard
trigonometrical integrals. All terms in the
summation give zero except for

 n = 1. The final result is ( ) 2/1
/ VE �=± .

In this case, E0 is the free electron result
E k k m Vn( ) / /= ±�

2 2 2 2 and we can
add E/ to the free-electron parabola; at
k a= ±π / . This gives the same kind of
effect that we saw when, in the lattice
dynamics case, we considered the system
with two different masses (although the
physics is completely different); see
diagram on the right). As before, the
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states with k a= ±π / are standing waves, and a band gap has opened up at the zone
boundary. The basic physical point is that the band gaps arise because of the ionic
structure. One should be careful how this is interpreted. The way we have derived it, it
seems that the gaps come because of translational symmetry. This is not true.
Amorphous solids have band gaps. That said, the band gaps we shall consider for the
time being are tightly linked to the translational symmetry of the lattice.

In our model, we know that the physically significant values of k lie in the range
k a= ±π /  and that, for a lattice with N primitive unit cells, the allowed values of k are
equally spaced and separated by 2 2π π/ /Na L= . Thus there are N values of k and,
since we must also consider spin, 2N possible states for electrons to occupy. (This is
generally true). Thus, for a monatomic element (Na, K for example) the band is half-
filled. However, we have apparently concluded that diatomic elements have filled
bands, i.e. that Mg is an insulator. This is an embarrassing conclusion to come to since
Mg is a metal.

Our one-dimensional model is too simple. We must
consider filling bands in all spatial directions
simultaneously. Let us consider the situation in two
dimensions, and try to map out the Brillouin zone
boundary. Along [10] and [01] it is obviously at
k a= ±π / . In the [11] direction, the planes are

separated by a / 2 . Hence Bragg reflection will

occur at k a= ±π 2 / . The Brillouin zone is a square
with the vertices at k a= ±π /  along the kx, ky axes.
Moreover, the effect of the perturbation due to the
lattice is different in different directions. Thus we

have, along the [10] direction,
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Along the [11] direction, on the
other hand, we have

E k m Vn= ±�
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Thus, the question arises, do we
finish filling the first band before
we start filling the second? If we
do, then there will be a gap in the
density of states and we have an
insulator. If we do not, there may
be a dip in the density of states,

but no gap and we still have a metal. The second is the case in Mg.

Summary of nearly free electron model
Successes
1. We have a physical explanation of why gaps appear.
2. We have an explanation of why a periodic lattice does not scatter electrons.
Problems
1. The explanation is so tightly linked to the idea of translational symmetry that it

obviously cannot explain why glass has a band gap.
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A note on per turbation theory

There are many cases where we do not know the answer for the system we are
considering, but we do know the answer for a simple case that is, in some sense, ‘close’
to it. In this situation we can use the techniques of perturbation theory. I give here a
simple, non-rigorous derivation of the argument. Those who want to see the job done
better should consult a standard text on quantum mechanics; Schiff for example. Those
who really want to see the job done should start with Dirac’s text.

Consider a reference system with a Hamiltonian 0H and wavefunctions >Ψ0|  i.e. the

Schrodinger equation for this case is >Ψ>=Ψ 0000 || EH . Now consider a perturbed

system with Hamiltonian /HHH λ+= 0  where H/ is in some sense small and λ is the
‘knob’  (varying from zero to unity) that turns on the perturbation. As  λ is varied, we
assume that the wavefunctions and energies vary smoothly as

�+>Ψ+>Ψ>=Ψ /0 ||| λ  and �++= /0 EEE λ  such that 0| /0 >=ΨΨ< .
We can therefore expand the Schrodinger equation for the perturbed system as
( )( ) ( )( )���� +>Ψ+>Ψ++=+>Ψ+>Ψ++ /0/0/0/0 |||| λλλλ EEHH
Collecting terms to first order in λ, we obtain

>Ψ>=Ψ 0000 || EH ( ) ( )>Ψ+>Ψ=>Ψ+>Ψ 0//00//0 |||| EEλλ HH
The first equation is simply the Schrodinger equation for the unperturbed system.
Rearranging the second equation we get
( ) ( ) >Ψ−>=Ψ− 0///00 || HH EE

Premultiplying from the left by |0Ψ< , we get

>ΨΨ<−>ΨΨ>=<ΨΨ<−>ΨΨ< 0/0/00/00/00 |||| H|H| EE

The terms on the left hand side vanish because 0| /0 >=ΨΨ<  (after using
Schrodinger’s equation for the unperturbed system on the first term). This given our
result

>ΨΨ=< 0/0/ |H|E

This assumes that >Ψ0| is normalised; if it is not, we must divide the right-hand side

by >ΨΨ< 00 | .


