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6. DIFFRACTION. 

 

Introduction. 

Diffraction and interference are approached in a very similar fashion and in fact there is 

very little difference between the two phenomena. Interference refers to the effects 

observed when two or more beams of light, separately derived from the same source, 

are brought together to show fringes. Diffraction, by comparison, refers to phenomena 

brought about by interference of light from point sources on a continuous portion of the 

same wavefront. For example, if we take a spherical or plane wave from a point source 

at its origin, O , we can easily find the field amplitudes and phases at some position, P, 

at any later time if we knew them at time t = 0 at O. If some opaque object or 

alternatively an aperture, is now placed between O and P there will be new field 

amplitudes and phases at P.  

The form of the fields beyond the opaque object/aperture are complex and not purely 

suggestive of the sharp shadows predicted by a naïve application of ray optics. In 

general the intensity distribution at the edge of a shadow will show complex behavior. 

The new field beyond the opaque object is generated from the same waves that 

generated the original fields with the important exception that the elements from the 

area of the object are now missing. To find the new field/intensity distribution is the 

objective of diffraction theory. 
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The importance of these diffraction effects lies primarily in the fact that optical 

instruments frequently contain apertures and obstacles as part of their construction and 

we need to understand the action of these obstacles on the overall operation of the 

instrument. Such diffraction effects will for example place limits on the resolution of 

optical instruments. A good example is the circular aperture presented by a lens in many 

optical instruments.  

Diffraction requires a reconsideration of Huygen’s Principle  which states that 

 

Every point on a propagating wavefront acts as a new point source and serves as a 

source of spherical secondary waves. The amplitude of the new wavefront in advance 

is the product of the superposition of these secondary waves at the later 

time/advanced position. 

 

Much can be achieved following this principle but it is independent of any consideration 

of the wavelength involved and this becomes important when introducing the effect of 

obstacles on the advancing wavefront. It is well known that long wavelength radiation 

such as radio waves can advance around even large obstacles as long as the size of the 

obstacle is less than the wavelength under consideration eg. Trees usually act as no 

obstacle to radio of waves. Buildings on the other hand may introduce real obstacles 

that impede the progress of a radio wave and reception is only due to reflection around 

the building (ignoring wavelengths where reflection from the ionosphere or re-

transmission from a satellite is important. These large objects also cast distinct shadows 

when illuminated by light.  

Huygen’s Principle has nothing to say about the phase of the advanced wave and to get 

a more accurate picture this needs to be accounted for in a revised version of Huygens 

Principle due to Fresnel, the Huygens-Fresnel Principle which includes phase and 

states that 

 

Every unobstructed point on a propagating wavefront acts as a new point source and 

serves as a source of spherical secondary waves. The amplitude of the new wavefront 

in advance is the product of the superposition of these secondary waves at the later 

time/advanced position including the effects of both their amplitudes and relative 

phases. 
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Any approaches that attempt to incorporate the Huygens-Fresnel principle when 

calculating the effects of an aperture or any other restriction on a propagating wavefront 

are going to be difficult. Indeed, the problem of diffraction and calculations of its effects 

are among the most difficult (though not intractable) in optics. We will limit ourselves 

here to the examination of some simple but important diffraction problems that will also 

serve to illustrate the type of method that may be employed. 

Before taking a detailed look at some simple problems it is useful to look at two 

limiting situations and to define their occurrence, namely near field and far field 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above diagram a point source, S, illuminates an aperture in the aperture plane, , 

after which the light passes through the aperture and impinges upon a screen in the 

image plane, . The precise details of what is observed in the image plane will depend 

on the wavelength of the light involved and the distance of the source from the aperture 

and of the aperture from the image plane or screen. Two types of diffraction theory are 

commonly distinguished depending on the approximations made. The simpler of these 

to work with is Fraunhoffer diffraction. 
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Fraunhofer diffraction 

Fraunhofer diffraction requires 

1. That the aperture plane is far from the point source, ie the distance is great 

compared with the aperture dimensions, then two simplifications in subsequent analysis 

result; 

i) The wavefront at the aperture will approximate a plane wavefront (the radius 

of curvature is very large). That is, there is no relative phase difference, between the 

individual wavelets acting as the secondary sources, across the aperture.  

Also  

ii) The amplitude of the wavefront across the aperture will show no variation as 

all points across the aperture are approximately equidistant from the source (recall the 

amplitude falls as 
R

1
 where R is the distance from the source to the aperture.  

Both of these facts make the evaluation of the field at P on the screen much simpler 

when an integral across the aperture is evaluated.  

If, further to this,  

2. The screen is far enough from the aperture that rays arriving at the point P 

from across the aperture may be considered to propagate to P parallel to one another a 

further simplification in analysis is achieved and the relative phase difference of the 

rays on arrival at P compared with some arbitrarily chosen reference ray, commonly 

chosen as that arriving from a point in the centre of the aperture, will depend linearly 

on the distance from the reference point. This is called the far field 

approximation and Fraunhofer diffraction is the simple diffraction theory 

used to study problems in this approximation. Many elements of the approximation 

may be achieved by using highly coherent laser sources which, being highly collimated, 

are sources of plane waves.  

Condition 1 may also be achieved by using a lens between the source and aperture with 

the lens acting to collimate the rays from the point source which is placed at the focus of 

the lens. Condition 2 may also be achieved by placement of a lens between the aperture 

and screen which acts to focus light from the aperture onto the screen (or observation 

point). 
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If, on the other hand;  

(i) The source is close to the aperture compared with its dimensions then the 

wavefront across the aperture will be spherical and the relative phase across the aperture 

compared to the phase at any particular position (eg. the centre of the aperture) will vary 

with position. This means that the relative phases of the secondary wavelets arriving at 

P will have a complex dependence on the position across the aperture from which they 

derive 

or 

(ii) The screen is close to the aperture in which case the phase difference on arrival 

at P depends in a non-linear way on the position from where the secondary wave 

emanated across the aperture 

 

or if both conditions apply, the task of calculating the integral across the aperture of the 

fields arriving at P will be far more complex. This is called the near field condition 

and Fresnel diffraction theory is necessary to evaluate the fields and intensities at 

the screen. 

 

These two limits are illustrated in the diagram below. 
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Illustrating the Fraunhoffer (parallel dashed lines and 
/
) , far field 

and Fresnel (solid lines and ), near field situations. 
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The diagram shows an aperture and the spherical and plane wavefronts that may result 

from a source placed close to or far from the aperture respectively. If we are dealing 

with the plane wave the phase does not depend on y at the aperture then the phase 

difference at P due to the two extreme edges of the aperture is simply  

 

     APBPk  0  

 

If the screen is far enough from the aperture and AP  CP then this is simplified to 

 

       sin0 bkBCk o  

 

Whether we can use the far field approximation, AP  CP, depends on the wavelength 

of the light. Clearly if AP – CP << 0 , then this extra distance will not add anything of 

consequence to the phase difference. On the other hand if AP – CP >> 0 there will be 

an important effect on the phase that will depend sinusoidally on the value of AP – CP. 

If we can use the simplification then the phase difference for a wavelet emitted from a 

point on the aperture a distance y from O is simply 

 

     sinyko  

 

and is linear in y. 

Furthermore, if the screen is at a distance from the aperture such that all secondary 

wavelets have traveled approximately the same distance to reach a point P, then the 

amplitudes for the contributions from each of the secondary wavelets will be equal 

again greatly simplifying the problem. 

This far field or Fraunhofer approximation is clearly far more straightforward than 

the near field or Fresnel diffraction that would need to be invoked were the spherical 

wavefront to describe the form of the phase variation at the aperture. We need to use the 

Fraunhoffer approximation to analyse several very important problems in diffractive 

optics. 
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a) Linear array of emitters. 

To begin, a simple but useful problem is examined. We imagine a finite line of N 

individual, equally spaced oscillators, with spacing, d, with each one being in phase 

with the others and acting as a source of spherical waves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Choosing to examine the waves traveling off at an angle  towards some distant point 

the diagram shows a collection of effectively parallel rays with a path difference of 

 sind  between adjacent rays and a consequent phase difference of  00 knk   

between each. (In what follows n = 1 as the problem involves waves propagating in air) 

Because they each travel the same distance to the observation point the amplitudes will 

be equal, E0(r1) = E0(r2) =…..= E0(rN) = E0(r). To find the field at the distant point is a 

simple matter of summing each of the individual fields including phase. 
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Which can be re-expressed as 

 

 )()()(
0

1013012010 .....1)(
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      (6.2) 

 

Noting that the phase difference between adjacent waves  is  sin00 dkk   

Using the diagram we note 

 

  1200 sin rrkdk         (6.3) 

 

The total field is then 
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The finite geometric progression on the RHS can be easily evaluated  
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The quotient on the RHS can be re-arranged using a manipulation that is frequently 

used in problems of this type to obtain the expression in a form in which de Moivres 

theorem may be applied, thus 
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And finally applying De Moivre’s theorem to obtain 
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           (6.8) 

 

Defining R as the distance of the centre of the line of oscillators to the observation point 

we have 

   1sin1
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Using this along with the expression for ,  1200 sin rrkdk   , we can 

simplify the field further 
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Using 


2E
I   and the time average introducing a factor 

2
1  we may obtain the 

intensity in the usual way 

And therefore by noting that the intensity of a single oscillator at the centre of the line 

of oscillators, I0 , is given by 
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The total intensity at the distant point due to N in phase oscillators is then given by; 
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The directional dependence of I is contained in 6.12. As  m  ,  sin  and 6.12 

approximates to  
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The numerator oscillates N times more rapidly than the denominator as  is gradually 

increased but it is the denominator that determines the positions of subsequent peaks 

when it goes to zero. As the numerator is modulated by the more slowly varying 

denominator each major peak is accompanied by a set of satellite peaks. 

 

The major peaks therefore occur for angles M when  

 

 


m
dk

M  sin
22

0           (6.14a) 

 

or equivalently 

 

 0sin  md M              (6.14b) 

 

First thing to note is that in the forward direction the intensity is N
2
 times the intensity 

of an individual oscillator. 
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Recalling the reversibility of propagation that is a requirement of optics, this also means 

that an aerial structured as a linear array of detectors will behave similarly to the linear 

array emitter described above and will also have highly directional receiving properties 

and indeed such structured aerials are commonly found acting as TV aerials at longer 

wavelengths. 

An interesting proposition is the phased array antenna which can be engineered using 

these concepts, where with longer wavelengths, radio or microwaves, each of a linear 

array of transmitters/receivers may be engineered with the possibility of being able to 

control the relative intrinsic phase difference, , between adjacent transmitters. Now the 

total phase difference between adjacent emitters is 

 

   sin0dk        (6.15) 

 

This moderates 6.14 for the maxima to appear where 

 

  mdk sin0        (6.16) 

Intensity distribution from a linear array of ten radiators  

with separation d = /3. 
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Or  
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This enables the directionality of the emission to be finely controlled by an adjustment 

of .  

The direction that an aerial looks in can similarly be finely controlled. Phased array 

antennae are now used with two dimensional arrays of receivers or emitters to 

introduce this controllable directionality and such phased array antennae are widely 

used as receivers in astronomy or emitter/receivers in radar work. 
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Fraunhoffer (Far Field )Diffraction. 

 

a) The line source 

The last topic of a linear array of emitters could have just as easily been brought in for 

discussion under the general heading of interference. It appears here because we soon 

move on to describe Fraunhoffer diffraction from a single slit of finite but narrow width. 

To do this we need to first study the line source where instead of a discrete array of 

transmitters we have a continuous line of transmitters and instead of a discrete 

summation an integral will be used. Otherwise the two systems are very similar. 

The line source itself is a physical fiction but it serves as an elemental emitter and 

building block when studying more realistic problems such as diffraction from a single 

slit (double slit, multiple slits). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above diagram shows the idealized line source of length,D, that we now consider. It 

is illuminated from behind by plane waves. The width of the line is much less than the 

wavelength. Each point along the line emits a spherical wave whose electric field at a 

distance r from the slit is written 

 

P 

y 

z 

yi 



x 

R 

+D/2 

-D/2 

ri 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 187 

 )sin()( 0
0 rkt
r

rE 







 


      (6.18) 

 

Where a sinusoidal representation is used (although a cosine or imaginary exponential 

representation would give the same ultimate result as far as intensity is concerned) 

and the pre-factor includes the inverse r dependence which is necessary to describe 

the drop in field amplitude with r as the spherical wave expands and advances.  

It should be noted that 0 is not an electric field as the unit of the pre-factor, 
r

0  

needs to be that of an electric field. It is called the source strength. There are an 

enormous number, N, of oscillator sources along the line. The line is divided into finite 

number, M, of extremely small segments of length y whose separation is vanishingly 

small and each of which contains N
D

y
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th
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at a distance ri from P contributes an amount 
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to the electric field, where we assume that yi is so small that all of the sources within 

it are in phase at P (ri = constant ). Now we can allow N to tend to infinity to enable 

calculus to be used in evaluations. As N becomes large 0 will become infinitesimally 

small and we define L as the source strength per unit length. 

 

 )N(lim
D

1
0

N
L 



       (6.20) 

 

The net field at P from all M segments is 
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And for a continuous line source we replace the summation by an integral 
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r = r(y) and we need to find r in terms of y in order to proceed with the integral over dy. 

We may assert that r  R when R >> D, ie we use the Fraunhoffer, far field 

approximation. The infinitesimal element dy contributes dE to the total field where 
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       (6.33) 

 

We have been careful about what to do with r inside the sinusoid as the phase is much 

more sensitive to r than is the amplitude. Using the same procedure that was used in 

the analysis of Young’s slits we can find a relation between y and r as follows; 

From the previous diagram and using the law of cosines, Cabbac cos2222  , on 

the triangle 
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NB.  is measured from the xz plane 
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We can use this in 6.33 and integrate to find the electric field at P 
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Concentrating on evaluation of the integral in 6.35 
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To evaluate the integral we begin by using the trigonometric identity 

 

  vuvuvu sincoscossin)sin(   

 

The integral is then written as 
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The second integral on the RHS must vanish as it is an odd function and we are left with 
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And finally 
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Using this integral in 6.35 we have for the electric field at P 
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6.41 has been phrased in a way suggestive of making the substitution  
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Leading to the compact form 
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It is the intensity that is measured and we find this in the normal way by taking the time 

average of the electric field squared and dividing by impedance,  
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and 

 



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


2
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 II  I0sinc

2      (6.46) 

 

For   0  (  = 0) , 1


sin
 and therefore I( = 0) = I0.  

i) If the line length, D, is of any great length compared to  then , 









 


 sin

D
, becomes very large compared with sin which is no greater 

than 1 and therefore the intensity drops off very rapidly for any angle away 
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from the straight through angle. In these circumstances, with D >>  , the 

emission of the line source is symmetric about the y axis and it behaves as 

a single point emitter radiating in the forward direction with circular 

wavefronts (as opposed to spherical) propagating in the xz plane. 

 

ii) If, on the other hand  >> D, then  is very small and 1
sin





 independent 

of  according to 6.46 and the line source behaves as a point source or 

emitter of spherical waves. 

 

The result 6.46 for the line of emitters can be compared with the result found earlier for 

a linear array of discrete emitters, 6.12 . 

 





























sin
2

sin

sin
2

sin

2
sin

2
sin

02

02

0
2

2

0
dk

dk
N

I

N

II      (6.12) 

 

If we define 

 

  sin
2

0dk
  

 

Then 6.12 for the line of discrete emitters may be written 

 

 
 




2

2

0
sin

sin N
II                   (6.12b) 

 

We can compare this with the continuous line of emitters described by 6.46 whilst 

recalling that the s in each equation are slightly different where one uses D, the length 

of the line whilst the other uses d, the separation of adjacent emitters. 

 

This analysis of a line source has given us the tools to study the behavior of a slit of 

finite width. 
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The single slit 

The single slit or rectangular aperture with a finite but narrow width, b, of several 

hundred wavelengths and a length, l, of several centimeters is depicted in the diagram 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The single slit of width b in the object plane , is illuminated from the left by plane 

waves derived from either a laser or from a point source at the focus of a 

collimating lens. The radiation that propagates beyond the slit to the right falls upon a 

screen in the image plane,  , either far enough from  or brought to a focus at , 

such that the Fraunhofer diffraction limit applies. To find this field distribution we 

divide the rectangular aperture into strips of width dz as shown and length l, each strip 

acting as a coherent line source which can be replaced by a point emitter on the z 
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axis that emits circular waves in the xz plane. The problem is then to find the field 

variation in the xz plane of an infinite number of point emitters along the z axis. 

Looking down on top of the slit in the xz plane, the coordinate system origin is in the 

centre of the slit where we measure all phases with respect to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 sinzRr   

 

The integral to be evaluated is then equivalent to that in 6.35  
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As previously we show that sinzRr   
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Relative diffraction intensity of single slit
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      (6.48) 

 

NB The line of emitters is now in the z direction across the width of the slit and each 

emitter is an infinitesimal slit or line source acting as a point source emitter of 

circular waves. 

We know from the previous problem how this integral works out and the solution is 

again  
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Where now 

 

  sin
2

0
b

k         (6.50) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 196 

Relative diffraction intensity of single slit;

subsidiary maxima
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In this case the line source is short and it is b and not D that appears in the factor  and 

 is small enough that whilst the irradiance varies rapidly with , there will be higher 

order subsidiary maxima as emphasized in the graph below where the central maximum 

has amplitude 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We find the values of  where the extrema in I() occur by differentiating 6.49 wrt  

and equating the differential to zero.  

Writing 
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Therefore extrema occur when  

 sin = 0                  (6.53a) 
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or 

 

 0sincos     ie  tan             (6.53b) 

 

6.53a and 6.53b are both satisfied for  = 0, this is a special case and is a maximum 

representing the undiffracted light. Looking at 6.47 we can see that when  = 0, the 

undiffracted light intensity is  

 

 0)0( II   

And this represents a maximum in intensity. 

 

MINIMA 

Further analysis of 6.51a in the light of 6.49 leads to the conclusion that minima occur 

for sin = 0 (except for the particular situation discussed above of  = 0 ) and in fact the 

intensity is zero at these minima where 

 

 
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
 mb  sin
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 0sin  mb       (6.54) 

 

MAXIMA 

6.53b is a transcendental equation with no analytic solution. It will need to be solved 

graphically to find the values of  where I() has maxima.  
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The graphical solution of 6.51b is shown in the above graph with four of the solutions 

circled. The crossing points are  = 1.43,  2.46, 3.47 ……. where the first three 

subsidiary maxima will occur. We note first that between each pair of minima where I 

= 0 there is one maximum. If we concentrate on one of these, the first for example,  = 

1.43. We know that the first subsidiary maximum occurs when 

 

 



 43.1sin 1

0
1  b        (6.55) 

 

Looking at 6.55 it is clear that if we know both the slit width and the wavelength of 

light we can find the angle at which the first (or any other) subsidiary maximum occurs. 

We may deduce the following important behaviour concerning the angle at which 

subsidiary maxima are to be found 

 

i) If we have a monochromatic source and keep the wavelength constant 

increasing the slit width, b, means that the angle must get smaller. 

 

ii) On the other hand, if we try to restrict the beam spatially at the aperture 

plane, , by reducing the slit width then the diffraction pattern will be 

spread out further as  will need to increase in order to keep  constant. 

These considerations demonstrate for us the effect of varying the slit 

width. 

 

iii) If now, we keep the slit width constant and increase the wavelength then 

the angle must also increase in order to keep  constant satisfying 6.55. 

This means for example, that red light will diffract to greater angles than 

blue light.  

 

If we are using a white light source then the first diffraction order (and the other 

higher orders) will contain short wavelengths at smaller angles and longer 

wavelengths at larger angles. The diffracted beam will gradually change colour from 

blue through green and yellow to red as we move along a screen from the central peak 
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to larger angles before starting the sequence again as we come to the second subsidiary 

maximum. The central peak will contain all colours and will therefore be white light. 

 

One of the most important questions that diffraction theory can answer if we are 

designing optical instruments is how the existence of apertures affect the quality of 

images as they are transferred through the optical system and the most important effect 

is that a finite size parallel beam will spread as it propagates due to diffraction. We 

can answer the question “by how much” with the results we now have. The important 

quantity in this consideration is the angular spread of the image. Looking at the result 

and the position of the first minima the angular spread of the central maximum is 

between  =  . For the small angles that we are dealing with in the far field 

(Fraunhoffer) approximation we can approximate sin   
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00

sin        (6.56) 

 

at the first minimum and therefore the angular spread,  

 

 
b
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At a distance L from the aperture with L >> b the width, W , of the beam is  
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The half angle, 
22

1


  , is called the beam divergence and represents the rate at 

which the beam spreads. 

From 2.54, 
b

0  , but we should remember that this is a lower limit on divergence 

and is known as the diffraction limited beam divergence. It is very important to note 

at this point that the previous analysis is independent of how the beam at  has a limited 

width b. Any plane wave limited to some size, b, by collimation with lenses or as the 

output from a highly collimated laser will spread according to 2.54 and 2.55. We note 

that the beam spreads less the larger the limiting size, b. As we try to confine a 

beam more at some plane, , the more it will spread as it propagates away from 

this plane. Therefore, if for example, you wish to get a laser beam to the moon and 

back in order to determine it’s distance, and you require that the beam spread is minimal 

on the way there then it is appropriate to start with a beam that is not confined at the 

start of the journey. 
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The double slit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To analyze the intensity distribution on a screen in the plane, , from a double slit in the 

aperture plane, , illuminated from the left, as shown above, the apertures are again 

divided into infinitesimal strips of width dz and length l which act as line sources and 

therefore point sources. The figure shown below is a plan view allowing the geometry 

to be seen. The origin of the coordinate system is in the centre of the first slit 
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The integral performed is similar to 6.47  
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  (6.59) 

 

 

We have solved the integrals already for the line source and the solution of each of the 

integrals in 6.59 is the same giving for the electric field 
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 Diffraction term Interference term 

 

Where 

 

  sin
2

0ak
         (6.61) 

 

is the additional part to the second of the integrals in 6.59 due to the phase difference 

between the two slits. 

Previously, for the line source and single slit, when it came to finding the intensity the 

time averaged squared electric field yielded only a factor 0.5 from a single sinusoid 

sin(t – k0R). There is now a summation of two sinusoids with the time dependence and 

this will change the resulting intensity significantly. Using the trigonometric identity 
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6.60 may be simplified 

 

   



cossin

sin
2 0 








 Rkt

R
bE L     (6.62) 

 

We can now find the intensity by squaring the electric field and taking a time average 

and dividing by the impedance,  
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      Diffraction term & Interference term

  

In the direction  = 0 ,  =  = 0 and  

 I( = 0)=4I0                  (6.63a) 
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where I0 is the intensity from either one of the slits and the factor 4 is due to the fact that 

at the straight through point the electric field is twice what it would be with one of the 

slits covered and the intensity is proportional to the square of the electric field.. 

The intensity distribution of 6.63 is the single slit distribution, 
2

2sin




 modulated by the 

oscillatory function, 2cos . The first is a diffraction term and the second an 

interference term from interference between the two slits. Below, are shown the two 

functions whose product produces the double slit diffraction distribution plotted against 

sin. 
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The graph below shows how the double slit intensity appears for some realistic values 

of a, b and  in the mid visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bear in mind that sin = 0.5 represents light propagating at 90
o
 to the system axis (x 

direction). 
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If the width of the slits becomes vanishingly small then 
2

2sin




  1 and 6.63 tends to 

 

  2
0 cos4)( II         

 (6.64) 

 

Which is the expression we found for the interference problem of Young’s slits, 5.113 

 

Alternately, if we reduce the separation of the slits, making a smaller then   0 and 

6.63 tends to 
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which is the diffraction from a single slit, 6.49, where the extra factor 4 appears in the 

intensity because the electric field is twice as large due to the two slits. 

 

The above demonstrates that with two slits we have single slit diffraction modulated by 

double slit interference. 
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Multiple slit diffraction/interference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram shows the multiple slit setup, and it is to be treated in the same way as the 

double slit set up with an integration along z of line sources acting in the xz plane as 

sources of circular waves. There are of course many more integrals to be carried out but 

they are all similar and the work has been done already. The slits are again of width b 

and length l (the length is considered much longer than  and never features in the 

calculations) and separated by a distance a. The diagram below shows the plan view 

again and we have a similar arrangement to that seen previously. 
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The geometry is as shown, where the first slit is is labelled as zero, with the origin of 

the coordinate system in the center of the first slit. The integration across all N sources 

in the z direction is now 
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As before,  rktzF 0sin)(    where r is the distance from the position z in the 

aperture plane and we use the approximation, sinzRr  , as before so 

 )sin(sin)( 0  zRktzF  . 

 

The n
th

 integral in 6.66 gives the n
th

 contribution to the field 
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     (6.67) 

 

Evaluating 6.67 in the same way that has been done previously 
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Using the definitions of  sin
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k  to tidy 6.69 
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Using 
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We may tidy up further 
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The square bracket can be simplified using the trigonometric identity 
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We need to sum the disturbances from all of the slits to find the total field at the 

observation point 
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   (6.74) 

 

It is convenient to now write the sinusoid as the imaginary part of an exponential  
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We have evaluated this geometric series before when examining an array of emitters in 

equations 6.5 and 6.6 where  
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We use the same method as previously, re-arranging the quotient on the RHS of 6.76 
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And using De Moivre 
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The sin of the exponential represents the imaginary part and so 
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Finally we get to the intensity (flux) distribution by the usual route 
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I0 is the intensity emitted in the forward direction by any one of the slits and at  = 0 

(where  = = 0) the intensity of the system is 
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 oINI 2)0(          (6.81) 

 

This is in agreement with our result 6.63a for two slits with N = 2. 

If the width of the slit was shrunk to approach zero and 1
sin

2

2





then equation 

6.80 would become the equation previously obtained for a linear array of N 

emitters 6.12b.  

There is again a diffraction term, 
2

2sin




 , modulated by an interference term, 




2

2

sin

sin N
 as indicated by the graph shown below. 
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Multiple slit interference and 

the single slit diffraction envelope, 

a = 3b , b = 3,N8
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The intensity distribution is complex as described by 6.80 and as seen in the graphs and 

requires careful examination. We examine where the maxima and minima appear.  

 

 

 

Multiple slit diffraction and the single slit envelope, 

a = 3b , b = 3,N8
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i) The straight through intensity or zeroth order. 

We need to consider the angular dependence of the intensity distribution for multiple 

slits very carefully; 
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The straight through intensity is straightforward as we have the fact that at  = 0, ( = 0, 

 = 0)  

The diffraction term is then; 
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The interference term  
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as   0 and here we get the direct transmission of 6.81. 

     oINI 2)0(   

ii) Principle maxima, 

The diffraction term needs careful attention as  m . The denominator of the 

quotient goes to zero and we could naively expect to have the principle maxima where 

this condition is satisfied. Ie.; 

     m
ak

 sin
2

0  

However N in the numerator of the interference term is also an integer and the 

numerator will therefore also be an integer multiple of   that will go to zero at the same 

time. There is therefore a competition between the numerator and the denominator 

which both go to zero as  m ! 

To understand what happens when , m  0  (m = 0 is the straight through case 

previously considered) we need to use l’Hopitals rule concerning what happens to a 

quotient of two functions of x as they both tend to zero at the same value of x. 

l’Hopitals rule states that 
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Therefore applying this rule 
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Ie. both cosines are equal to 1. 

 

Therefore the principle maxima which occur where the denominator is zero at  = m, 

will have, according to l’Hopitals rule, the value 
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for 

  m ......2,,0       (6.82b) 

 

Since 



 sinsin

2 0

0 aak
 , the condition can be expressed equivalently as a 

condition on  

    0sin  ma       (6.82c) 

 

iii) Minima 

Zeroes or minima exist whenever the numerator of the interference term, 



2

2

sin

sin N
, is 

zero whilst the denominator is not. So generally the condition for a zero or minimum 

is 

    0
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or 

 

     mN       (6.83b) 
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But if 
N

m
 is an integer, then the denominator of the interference term will tend to zero 

as well then 

     q
N

m
  

 

Where q is also an integer and the value of the interference term will not be zero. 

NB. We have discussed the m = 0 solution where  = 0 and in this case the denominator 

would be zero as well and as seen previously this corresponds to a maximum.  

Generally we have zeroes where 
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NB the N
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1
term in the 6.83c sequence is missing as it equals mN + 1 which is 

an integer and therefore the denominator goes to zero. Otherwise the numerator 
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The criterion for a zero may also be written in terms of  
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And between each of these minima there will be subsidiary maxima located 

approximately at the points where Nsin  has its greatest values. 
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There are (N-2) subsidiary maxima between each principle maximum related to the 

existence of (N-1) minima between principle maxima. 

The graphs below show these properties with the second graph emphasizing the 

subsidiary maxima. In that example N = 15 and there are 13 subsidiary maxima. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The upper graph shows the m = 0 and 1 principle maxima whilst the lower graph 

shows the many much smaller subsidiary maxima for this set of slit parameters. 

Intensity distribution from multiple slits;

b = 3 , a = 6 , N= 15
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b) Diffraction grating. 

 

The multiple slit aperture offers a method for obtaining wavelength separation as 

different wavelengths will have m = 1 etc. principle maxima diffracted at different 

angles as expressed by 6.82c, 0sin  ma   , where for constant order m if  is larger 

then  must be bigger to maintain the equality. ie. blue wavelengths will be diffracted to 

smaller angles than red wavelengths in any given order m. In fact as we can see from the 

graphs the intensity in higher orders diminishes rapidly  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the preceding analysis of multiple slits that lead to 6.80 the intensity distribution was 

obtained as well as the direction at which maxima were observed in 6.82c. When 

studying diffraction gratings we are just going to be concerned with the angular 

directions in which the principle maxima occur as described by 6.82c 
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This can be obtained by a more simple analysis where the relative intensities of the 

principle maxima are ignored and we just seek the condition for effective diffraction 

with the aid of geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above diagram shows two slits from the multiple slit previously discussed. It shows 

incoming waves (solid arrows) and plane wavefronts (dashed lines) incident at an angle 

i and outgoing waves and plane wavefronts. Diffracted at an angle d. To find the 

directions in which there is strong diffraction we need the optical path difference, , to 

be some integer multiple, m, of the wavelength, 0. 

 

 0 m)sin(sinaBCAB di      (6.84) 

 

NB we are again assuming propagation in air with n = 1 as we have throughout this 

section of diffraction and the previous on interference. This is why the wavelength 

and wavevector are being written as 0 and k0 respectively with the subscript 0 to 

remind that this is in free space. 
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In the previous analysis, it was assumed that the incident plane wave was perpendicular 

to the slits and that therefore i= 0. In this case 6.84 becomes 

 

 0sin  ma d                  (6.84a) 

 

which is 6.82c again as required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above diagram shows how the different diffraction orders may be displayed using a 

lens to bring the parallel rays of each order from each slit to a focus at a screen placed at 

the focus of the lens. Note that the screen is curved in order to maintain the distance F. 

As we have seen the longer (red) wavelengths will be diffracted at greater angles than 

the shorter (blue) wavelengths. This means that the longer wavelengths of the m
th

 order 
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will overlap with the shorter wavelengths of the (m+1)
th

 order. ie if there are two 

wavelengths where the condition 

 

 mm mm   1)1(        (6.85) 

 

applies, they will be diffracted at the same angle and similarly to the Fabry Perot 

studied previously it is necessary to define a free spectral range when deciding on how 

useful a diffraction grating will be in operation. Ie. if we are using the diffraction 

grating to separate wavelengths before performing spectral analysis it is undesirable to 

have the red light of one order to overlap with the blue light of the higher order. 

The free spectral range for the order m is then defined in the same way as for the Fabry 

Perot as 
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The free spectral range is the wavelength range over which there is no spectral overlap 

between orders and it depends on the order we are considering, furthermore it decreases 

with increasing order. This is the same result as found for the Fabry Perot. 

The angular dispersion of the grating is another important property describing how well 

the different wavelengths within a particular order are separated 
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 mam  sin                  (6.82b) 
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If a lens is used to focus the different wavelengths onto a photographic sheet (or other 

detector) in it’s focal plane as in the diagram above, then we can define the linear 

dispersion 
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d

dy
DLin          (6.89) 

 

Now, we have dy = Fd and so 

 

 
m

AngLin
a

m
FFD

d

d
FD





cos
      (6.90) 

 

The resolution of a grating is a measure of the sharpness of the peaks in any particular 

order. We are now going to need our previous analysis which gave the intensity 

distribution of a multiple slit aperture. 

If min is the minimum wavelength interval that is just resolvable by Rayleighs 

criterion then the resolution, R, is  

 

 R 
min


         (6.91) 

 

Rayleighs criterion states that two peaks at different wavelengths,  and +, are 

resolvable if the peak of one coincides (same angle) with the first minimum of the other. 

We found previously that the principle maxima (peaks) occur at 

 

 ....sin 0 ma         (6.82b) 

 

And the minima at 
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Therefore Rayleighs criterion is that 
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Re arranging to find R =



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The resolution of the grating is then given by 

 R = mN



       (6.95) 

 

Higher orders have higher resolution although the intensity available in higher orders is 

much reduced. Increasing the number of lines will also increase the resolution. 

Interestingly, neither the slit width or separation have any effect on the resolution other 

than indirectly inasmuch as decreasing a or b will increase N in the area illuminated if 

this area remains fixed. 

We have been examining the transmission grating in the preceding discussion. It is 

also possible to make a grating to act as a dispersing element which operates in a 

reflecting mode. 

The reflection grating operates under the same principles as the transmission grating 

with the difference being that the grating consists of lines of high reflectivity separated 

by lines of low reflectivity. Such a grating with a repeat distance,  , and its operation is 

shown in the diagram below. 
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A plane wave with a wavefront AC is incident on the reflection grating at an angle of 

incidence I and is reflected at a diffraction angle D. For strong diffraction the 

diffracted wavefront BD must also be a plane wave. This requirement is that the optical 

path difference of the two rays shown is equal to an integral number of wavelengths. 

 

  mCDAB   

 

The laws of reflection require that the angle of incidence is equal to the angle of 

reflection and this allows us to construct the triangles ABD and ACD 

 

  mDI  sinsin       (6.96) 

 

A convention requires that when a diffracted ray is on the opposite side of the normal 

to the surface (grating ) as the incident ray it is negative. 

 

 ID            (6.97) 

 

  mD  sin2        (6.98) 

 

for strong diffraction. This is the same as the Bragg diffraction condition for X-ray 

diffraction from crystal lattices 

 

Noting that  is the separation of the centre of adjacent reflecting regions which was a 

in the transmission grating 
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c) Rectangular aperture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above diagram shows a generalized aperture in the plane, , illuminated from 

behind by plane waves. The problem is to find the electric field/intensity in the far field 

at some point P. The phase is considered to be constant over the aperture as is the 

amplitude. We consider a differential area dS in this aperture whose dimensions are 

much smaller than . This means that all contributions to the field from dS remain in 

phase at P and therefore interfere constructively. dS is considered to emit a spherical 

wave and therefore all of these considerations remain true independent of . R is the 

distance of the point P from the origin of axes, O, in the aperture plane and r is the 

distance of the element from P. We consider the aperture to have a source strength per 

unit area, A . The contribution to the field from dS at P is 
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Using the exponential notation means we need to choose either the real or the imaginary 

part depending on whether we prefer cosines or sines respectively. The length of r is  

 

 222 )()( zZyYXr        (6.70) 

 

And this distance must approach infinity for the Fraunhofer approximation to remain 

valid. This means we can replace r by R in the amplitude factor but need to be more 

circumspect with the r that appears in the phase factor (the exponential). 

Using 
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In the far field R is much larger than the aperture dimensions leaving 
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We can expand this binomially and use only the first terms to obtain 
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Then the total field, E(P) arriving at P is 
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Now consider a specific configuration, the rectangular aperture as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With a rectangular aperture of dimensions ab and an elemental area dS = dydz we can 

write the integral in a tractable form as two integrals using separation of variables 
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           (6.76) 

 

The integrals can be solved by similar techniques to those used for a slit by defining 

 

 
R

bYk

2

0/    
R

aZk

2

0/       (6.77) 

P0 

 

 

P 

 

Y

,

Z

)  

x 

r 
R 

b 

Z 

Y 
dz 

dy 

z 

a 

y 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 230 

 

The two integrals can be written 
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and 
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The electric field is then 
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and the intensity follows as 
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where I0 is the intensity at P0 (Z = Y = 0). The first sinc
2
 term gives the variation with Z 

and the second the variation with Y, Z and Y being the coordinates on the far field 

screen. This is the familiar intensity variation of a slit now with a two dimensional 

character. Note that the central image is that of the aperture turned through 90
0
. ie. the 

long and short axes of the aperture are swapped over in the image plane. Light is 

diffracted to greater angles for narrower slits and this is the reason that we see this 

inversion. Note also that the diffraction angle 
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Circular aperture. 

Whilst more difficult to deal with than the rectangular aperture, the circular aperture is 

of greater significance in optics as such apertures appear in many applications. The 

behaviour of the circular aperture will have great bearing on the resolution limits of 

instruments containing such apertures. In the diagram below (and others like it that we 

have used previously) the viewing screen at  is to be essentially at infinity in order that 

the Fraunhofer diffraction approximation may be used. Usually this is impractical and a 

converging lens would be used to collimate the light from the aperture which is 

equivalent to focusing at infinity. The screen could then be placed anywhere after the 

lens with the same pattern projected  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The way in which circular apertures are to be understood do not differ in principle from 

the rectangular aperture. The above diagram sets out the geometry of the circular 

aperture. 
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We already have the general expression for obtaining the far field pattern from an 

arbitrary aperture in 6.75. In the case of a circular aperture with its symmetry the use of 

spherical co-ordinates is suggested for the problem as indicated in the diagram; 
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The differential area is  
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Because of the axial symmetry the electric field must be independent of  and because 

of this we have the freedom to set  = 0 in evaluating the integral in order to gain a 

slight simplification. 

 

The part of the integral involving  is one that is frequently encountered in physical 

problems from solutions of atomic wavefunctions to waves on cylindrical drums and 

intensity distributions in optical fibres. Wherever cylindrical symmetry turns up this 

type of integral may be encountered and has been solved with its own set of tabulated 

functions. 

The solution to the integral 
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is not representable in terms of functions that we are readily familiar with (cos, sin exp 

etc.) and a new function is defined is defined as  
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Where J0(u) is the Bessel function of the first kind of zero order (see notes on optical 

fibres). 

 

And more generally 

 

 )()cosexp(
2

2

0

uJdum
i

m

m

 
 




     (6.87) 

 

Where Jm(u) is the Bessel function of the first kind of m
th

 order. 

Bessel functions are tabulated in the same way as sines or cosines and are available in 

software such as Excel. We just need to know that they are the solution to the integral 

we are interested in. 

Using the Bessel function, 6.84 can be re-written 
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Another property of the Bessel functions, equivalent to the rules of differentiation for 

sines and cosines, is the recurrence relation 
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Where u
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 is a dummy variable 
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6.88 can now be integrated by changing the variable, 
R
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and using the integral form of the recurrence relation given above 
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The irradiance is found from the time average square of the field or *
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A is the area of the circular aperture. To find the intensity at the centre of the pattern we 

set q = 0 and therefore u = 0. 
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Using l’Hopitals rule  
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Intensity distribution in far field after a circular 

aperture
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The intensity at P0 is then 
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Allowing 6.93 to be rewritten 
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and finally, as 
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The graph above shows the intensity distribution in the far field. The intensity does not 

depend on the azimuthal angle , , as there is circular symmetry. Therefore this 
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intensity distribution represents a bright central disc surrounded by a series of 

concentric dark and bright rings of much reduced amplitude. The bright central disc is 

important in many optics applications where there are circular apertures present (most 

lenses for example) and it plays a role in defining the resolution of telescopes for 

instance where the image is collected in the far field, the object is at infinity and the 

focus of the lens is adjusted to account for this. To find the diameter of the central disc 

we need to find the first zero in the intensity distribution. This occurs for J1(kasin) 

= 0 

Looking at the properties of the Bessel functions we find that this occurs when the 

argument of the Bessel function is equal to 3.83 

   83.3sin ka  

 

We may couch this in terms of wavelength, , and diameter of the aperture D = 2a 
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The projected disc by a lens of focal length F on a screen will have a diameter d 
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This disc is known as the Airy disc after an Astronomer Royal and sets the diffraction 

limits to the resolution of instruments such as telescopes. Rayleighs criteria states that 

two stars are just resolved when the bright centre of one disc (star) falls at the first zero 

of the second star. This gives the diffraction limited minimum angular resolution of a 

telescope as 
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Where D is the minimum aperture diameter in the optical system and  is the 

wavelength of light being imaged. The larger the minimum diameter of the optical 

elements forming the telescope (or any other instrument) the better the angular 

resolution. We see now the need for large telescopes. Of course diffraction may not be 

the only limit on resolution and nowadays the platform for the telescope is likely to be 

above the Earths atmosphere in outer space. 

 

One final point to note about this limit on resolution imposed by diffraction from 

circular apertures. Should it be required to take a collimated laser beam of diameter D 

and focus it to a spot size of radius w there is a diffraction limit on how small this spot 

may be or in other words how tightly focused the laser may be.  

This diffraction limit is given by 
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