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Abstract

These lecture notes are based on my handwritten notes used in the
academic year 2007/2008. The first chapters mainly follow Mitchell
Berger’s lecture notes who taught this class for many years in the
past. From him I took the idea of introducing the geodesic equa-
tions as early as possible and let students work out Christoffel symbol
components and solve geodesic equations to find improved coordinate
systems. By this I mean writing a flat two dimensional metric in some
funny coordinates and solving the geodesic equations which will reveal
the geodesics to be straight lines etc. Chapter 4–6 cover the standard
material covered by an introductory course on general relativity.

As can be seen in the structure of the course, I am following the
“mathematics first – physics second” (i.e. mathematical physics) school
when introducing differential geometry and general relativity. How-
ever, I do prefer concrete examples and worked out calculations over
abstract concepts only.

Note that figures are still missing in these notes. Please inform me
about typos, flaws or inaccuracies as this is not yet the final version.

∗
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1 Manifolds

1.1 Manifolds

A manifold generalises the idea of a surface or a space.

Definition 1.1 A manifold M :

i M is a set of points which can be mapped into R
n, n ∈ N, where n is

called the dimension of the manifold

ii this mapping must be one-to-one

iii if two mappings overlap, one must be a differentiable function of the
other

Roughly speaking some neighbourhood of each point admits a coordinate
system. Note that this mapping is often called chart in the literature.

use.eps

µ : U → R
n

τ : U → R
n

µ = µ(X1, X2, . . . , Xn)

τ = τ(Y 1, Y 2, . . . , Y n)

µ and τ are the coordinate maps of the respective neighbourhoods, while
X1, X2, . . . , Xn and Y 1, Y 2, . . . , Y n are the local coordinates.
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Example 1.1 M = S
1 (circle) One coordinate φ which can be chosen to

go from −π to π. However, the point mapped to φ = π is also mapped to
φ = −π, hence not single valued and therefore not one-to-one. At least two
coordinate patches are required to cover the circle.

Example 1.2 M = S
2 (sphere) Similar to the circle, spherical coordinates

cannot over the whole sphere. The azimuthal angle φ is many valued at
the poles and moreover not continuous at φ = ±π (Globe of the Earth:
international date line). Not single valued and not one-to-one. At least two
coordinate patches are required to cover the sphere.

Example 1.3 M = S
n (n-sphere) The n-sphere is defined by

R
n = {(X1 . . . , Xn+1)|(X1)2 + · · · + (Xn+1)2 = 1} (1.1)

At least two coordinate patches are required to cover the n-sphere.

Example 1.4 M = T
2 (2-torus) The 2-torus is the surface of an American

doughnut. One possible choice for the coordinates consists of the two angles
θ and φ, representing the and the long way round respectively. These are
not continuous at ±π.

One can cut the torus twice and open it up. Then T
2 can also be repre-

sented as a rectangle.

use.eps

Note that the two lines φ = −π and φ = π are identified (this means are in
fact equal) and likewise for the angle θ.

The torus T
2 is described by two independent circles. This is expressed

by the notation

T
2 = S

1 × S
1 (1.2)
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and is called a product manifold.

Example 1.5 M = Möbius strip or Möbius band

use.eps

Join the end of a strip of paper with a single half twist.
Have a look at this surface! It has only one side and only one boundary

component.
One can even visualise a spinor using the Möbius strip as one a rotation

by 4π is needed to return to the starting point.

1.2 Coordinate transformations

Many physical situations are symmetric; e.g. the gravitational field of the
sun or our Earth are nearly spherically symmetric. In such cases it is useful
to work with coordinates adapted to the symmetry of the system.

Let U be open, and let a point p ∈ U ⊂M have coordinates

X = (X1, . . . , Xn), Y = (Y 1, . . . , Y n) (1.3)

in two respective coordinate systems X and Y . Then the coordinates
Y 1, . . . , Y n must be differentiable functions of the coordinates X1, . . . , Xn,
this means

Y 1 = Y 1(X1, . . . , Xn) (1.4)

Y 2 = Y 2(X1, . . . , Xn) (1.5)

... (1.6)

Y n = Y n(X1, . . . , Xn) (1.7)
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Recall the Jacobi matrix from vector calculus

∂Y a

∂Xb
= Ja

b (1.8)

a : labels the rows (1.9)

b : labels the columns (1.10)

Recall (iii) in definition 1.1 of a manifold.

1.3 Notation and conventions

In differential geometry and consequently in general relativity the placement
of indices is very important. Objects with superscripts are different from
those with subscripts.

To simplify the notation of what follows we use the Einstein summation
convention. Roughly speaking, sum over twice repeated indices.

Definition 1.2 Einstein summation convention. Given two objects, one
indexed with superscripts A = (A1, . . . , An) and the other with subscripts
B = (B1, . . . , Bn), one defines

AcBc =
n

∑

c=1

AcBc (1.11)

which means that we drop the summation symbol whenever possible.

Definition 1.3 Partial derivative. We abbreviate the notation of partial
derivative in the following manner

∂f

∂Xa
= ∂af = f,a (1.12)

Definition 1.4 Coordinate system and coordinates. Coordinate systems
are labelled by either unprimed symbolsX,Y, . . . and primed symbolsX ′, Y ′, . . .
or other capital letters. Later the actual coordinates will be denoted by non-
capital letters.

2 Vectors, tensors and metrics

So far we have defined what is meant by a manifold. We also discussed
coordinate systems and changes of coordinate systems. Now we define and
introduce objects that live on the manifold.
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Advice: We will shortly be defining a vector. For now try to put
everything you know about vectors aside. In differential geometry one should
not think of a vector as a column of numbers.

2.1 Definitions

Definition 2.1 Scalar fields. Scalar fields are functions that assign numbers
to points on the manifold. More precisely, a scalar field is a function f which
maps a manifold M to the set of real numbers (scalars do not transform
under coordinate transformations)

f : M → R (2.1)

Example 2.1 M = surface of the Earth. p ∈ M , let f(p) be the tempera-
ture at p. Watch BBC news for such weather maps.

Definition 2.2 Vector or contravariant vector (this notation is not the
modern mathematicians way, however, it is essential to read books and ar-
ticles on general relativity and gravitation). A vector is an object with one
superscript that transforms under coordinate transformations as follows

V ′a =
∂X ′a

∂Xb
V b (2.2)

Definition 2.3 1-form or covariant vector. A covariant vector is an ob-
ject with one subscript that transforms under coordinate transformations as
follows

W ′
b =

∂Xc

∂X ′b
Wc (2.3)

Definition 2.4 Tensor. A type
(

p
q

)

tensor is an object with p superscripts
and q subscripts. It is said to be of rank p+ q.

Under coordinate transformations a
(

p
q

)

tensor transforms according to

T ′a1...ap

b1...bq
=
∂X ′a1

∂Xc1
. . .

∂X ′ap

∂Xcp

∂Xd1

∂X ′b1
. . .

∂Xdq

∂X ′bq

T c1...cp

d1...dq
(2.4)

Scalars and vectors are special kinds of tensors, scalars are rank 0 tensors
and vectors are rank 1 tensor. A rank 2 tensor can be visualised as a n× n
matrix.

Lemma 2.1 The transformations (2.2) and (2.3) are inverse.
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Proof Consider the product

Aa
c =

∂X ′a

∂Xb

∂Xb

∂X ′c
=
↑

chain rule

∂X ′a

∂X ′c
=

{

1 a = c

0 a 6= c
(2.5)

and therefore we find that Aa
c = δa

c which is the identity. �

In the above we defined the Kronecker δ by

δa
c =

{

1 a = c

0 a 6= c
(2.6)

Note that this Lemma in particular implies that contravariant vectors
(vectors) and covariant vectors (1-forms) have different (inn fact inverse)
transformation laws. Contravariant and covariant vectors are dual objects
(in the Algebra sense), they combine to give a number in R or C. In ele-
mentary matrix algebra row vectors and column vectors multiply to give a
number.

In quantum theory a bra vector and a ket vector (<ψ| and |φ>, respec-
tively) give a complex number <ψ|φ>. This is the inner product defined on
a Hilbert space.

2.2 Tensor algebra

Definition 2.5 Addition. Two tensors of the same type and the same index
structure can be added

Ra
b
c + Sa

b
c = T a

b
c (2.7)

but not Aa +Ba.

Definition 2.6 Composition. Given a type
(

p
q

)

and another type
(

r
s

)

tensor,

these can be combined to a type
(

p+r
q+s

)

tensor.

Example 2.2

V a =

(

1
2

)

Wa =
(

2 3
)

, (2.8)

Ma
b = V aWb =

(

2 3
4 6

)

(2.9)
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Definition 2.7 Contraction. Given a type
(

p
q

)

tensor one can sum over one

upper and one lower index which results in a type
(

p−1
q−1

)

tensor

T a1...d...ap

b1...d...bq
= Ua1...ap

b1...bq
(2.10)

where (a1 . . . ap) contains p− 1 indices and (b1 . . . bq) contains q− 1 indices.

Example 2.3

Ma
a = M1

1 +M2
2 = 2 + 6 = 8 (2.11)

Definition 2.8 Trace. Let Ma
b be a rank 2 tensor of type

(

1
1

)

. The trace
is defined by

trM = Ma
a (2.12)

General advice: Whenever one encounters tensor equations one should
check that the index structure of the left-hand side and the right-hand side
agree.

Definition 2.9 Let T ab be a rank 2 tensor of type
(

2
0

)

. We define sym-
metrisation as follows

T (ab) =
1

2
(T ab + T ba) (2.13)

and anti-symmetrisation by

T [ab] =
1

2
(T ab − T ba) (2.14)

Definition 2.10 T ab is called symmetric if

T ab = T ba ⇔ T ab = T (ab) (2.15)

and a tensor T ab is called anti-symmetric or skew-symmetric if

T ab = −T ba ⇔ T ab = T [ab] (2.16)

Note that according to definition 2.9 any tensor T ab cab always be written
such that

T ab = T (ab) + T [ab] (2.17)
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Definition 2.11 Levi-Civita tensor. The Levi-Civita tensor (actually ten-
sor density) is a completely skew-symmetric tensor of rank n in n dimensions

εab...n =











0 if any two of the indices are equal

+1 if (a, b, . . . , c) is an even permutation

−1 if (a, b, . . . , c) is an odd permutation

(2.18)

Example 2.4 In n = 2 dimensions we have

εab =

(

0 1
−1 0

)

(2.19)

Example 2.5 n = 3. Let M = mathbbE3 be Euclidean 3-space with Carte-
sian coordinates x, y, z. The usual cross or vector product can be defined
by

(~∇× ~A)i = εijk∂jAk (2.20)

Let us for example consider the y-component

(~∇× ~A)y = εyjk∂jAk

= εyxz∂xAz + εyzx∂zAx

= ∂zAx − ∂xAz (2.21)

where in the summation only the non-vanishing terms were taken into ac-
count. Similarly for the other two components.

Many of the well-known 3-vector identities can easily be proved in index
notation.

2.3 Metrics & Geodesics I

The main question we are not going to address is how to measure the distance
of the two points in a manifold. Let us recall how to measure the distance
the distance of two points in Euclidean 2-space

12
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use.eps

s2 = x2 + y2 (2.22)

Next, let us consider small distances ∆s,∆x,∆y

∆s2 = ∆x2 + ∆y2 (2.23)

In the limit of infinitesimal distances we can formally write

ds2 = dx2 + dy2 (2.24)

Definition 2.12 Metric. Let (X1, . . . , Xn) and (X1 +dX1, . . . , Xn +dXn)
be two nearby points. The distance can be defined by introducing the metric
tensor gab. The distance satisfies

ds2 = gabdX
adXb (2.25)

In general gab is an arbritrary function of the coordinates; we also assume
it is non-degenerate and therefore its inverse exists gabg

bc = δc
a. ds

2 is often
called the line element.

Since gab is a symmetric rank 2 tensor, it has n(n + 1)/2 independent
components in n dimensions.

The metric can be used to lower and raise indices. Therefore, the metric
provides us with a one-to-one mapping between contravariant and covariant
vector, dual vectors. Since general relativity is formulated on metric mani-
folds, physicists are happy to drop the distinction between vectors and dual
vectors. It is only the index position that matters.

13
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Definition 2.13 Total differential. Let f be a function of several variables
f = f(X1, . . . , Xn), the total differential is defined by

df = f,adX
a =

n
∑

a=1

∂f

∂Xa
dXa (2.26)

also known as the differential.

Example 2.6 M = E
2 Euclidean 2-space. In Cartesian coordinates (X1, X2) =

(x, y) the line element takes the form

ds2 = dx2 + dy2 gab =

(

1 0
0 1

)

= diag(1, 1) (2.27)

Let us introduce spherical coordinates

x = r cosϕ (2.28)

dx = cosϕdr + r(− sinϕ)dϕ (2.29)

dx2 = cos2ϕdr2 + r2 sin2ϕdϕ2 − 2r sinϕ cosϕdrdϕ (2.30)

y = r sinϕ (2.31)

dy = sinϕdr + r cosϕdϕ (2.32)

dy2 = sin2ϕdr2 + r2 cos2ϕdϕ2 + 2r sinϕ cosϕdrdϕ (2.33)

Adding up both equations we find

ds′2 = dr2 + r2dϕ2 gab = diag(1, r2) (2.34)

Definition 2.14 Signature of the metric. Using results from linear algebra,
one can show that at any point p ∈ M the metric can be diagonalised. In
general one can the diagonal elements ±1 in a suitable basis. However, the
number of + signs and the number of − signs are independent of that choice.
Hence, we call the number of + and − signs occurring the signature of the
metric. Often their sum is used as the signature.

Example 2.7 M = E
3 Euclidean 3-space with Cartesian coordinates

ds2 = dx2 + dy2 + dz2 (2.35)

has signature (+,+,+) or signature 3.

14
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Example 2.8 M = Rindler spacetime

ds2 = −x2dt2 + dx2 (2.36)

with coordinate ranges −∞ < t < ∞ and 0 < x < ∞. This metric has
signature (−,+) or signature 0.

Definition 2.15 Riemannian metric. Let V a 6= 0 be a contravariant, non-
vanishing vector. The metric gab is called Riemannian if

gabV
aV b > 0 ∀ V a 6= 0 (2.37)

A manifold equipped with a Riemannian metric is called a Riemannian man-
ifold.

Lemma 2.2 Let M be a n-dimensional manifold of signature n. Then M
is Riemannian.

Proof Let V a be a non-vanishing vector at some point p ∈ M . Let us
choose coordinates at p such that gab is diagonal. Since gab has signature n,
all diagonal elements are positive and can be made +1 locally. Hence

gabV
aV b = (V 1)2 + · · · + (V n)2 > 0 (2.38)

since V a is non-vanishing. �

Definition 2.16 Pseudo-Riemannian metric. A metric which in not Rie-
mannian is called pseudo-Riemannian.

Example 2.9 Rindler spacetime (2.36) is a pseudo-Riemannian metric.

Example 2.10 M = M
4 Minkowski spacetime is given by the metric

ds2 = dt2 − dx2 − dy2 − dz2 (2.39)

and has signature −2 and is pseudo-Riemannian

Definition 2.17 Lorentzian metrics. Metrics with either of the follow-
ing signatures (−,+, . . . ,+) or (+,−, . . . ,−) are called Lorentzian metrics
(only one sign is different). A manifold with a Lorentzian metric is called
Lorentzian manifold.
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In the above we defined the notion of a scalar field. It maps the manifold
M to the reals R. A curve describes the reverse situation.

Definition 2.18 Curve. A curve is a mapping of the real line (or parts of
the real line, or a circle) into the manifold M

γ : R →M (2.40)

A smooth curve γ on M is a C∞ mapping of R (or parts thereof) into
M . A curve is usually parametrised by τ or lambda.

Let us assume that γ lies is an open region U ⊂M . By definition there
exists a set of local coordinates µ that map U into R

n. Then the curve
provides a set of n coordinate functions of the parameter λ

γ(λ) =







X1(λ)
...

Xn(λ)






= Xa(λ) (2.41)

Definition 2.19 Tangent vector to a curve. Let γ be a smooth curve on
M . The tangent to the curve γ is any coordinate basis is given by

T a dX
a

dλ
(2.42)

Let us assume a curveXa(λ) connects two points on a manifoldM . Since
we know how to measure distances on the manifold, we can also compute
the length of the curve

∫

ds =

∫

ds(λ)

dλ
dλ =

∫ √

gabẊaẊbdλ (2.43)

where we denoted Ẋa = dXa/dλ.
The most natural question to ask then: Which curves are the shortest

curves to connect two points, or the straightest possible lines?

Definition 2.20 Geodesics. Let Xa(λ) be a curve. We define a geodesic to
be a curve whose path extremises the functional

∫

ds =

∫ √

gabẊaẊbdλ (2.44)

16
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Without loss of generality (length is parametrisation independent) we
may assume that the curve is parametrised so that

gabẊ
aẊb = gabT

aT b = 1 (2.45)

which is also called the affine parametrisation.
The functional can be extremised using well-known techniques of La-

grangian mechanics. The geodesic equation can also be obtained (in affine
parametrisation) from the Lagrangian L = gabẊ

aẊb, which simplifies the
calculations.

Lemma 2.3 Geodesic equation. A geodesic satisfies the following equations
of motion

d2Xa

dλ2
+ Γa

bc

dXb

dλ

dXc

dλ
(2.46)

where

Γa
bc =

1

2
gad(gdb,c + gcd,b − gbc,d) (2.47)

Proof Consider the Lagrangian

L = gab(X
c)ẊaẊb (2.48)

The Euler-Lagrange equations are given by

d

dλ

∂L

∂Ẋc
=

∂L

∂Xc
(2.49)

∂L

∂Xc
=
∂gab

∂Xc
ẊaẊb = gab,cẊ

aẊb (2.50)

∂L

∂Ẋc
= gabẊ

aδb
c + gabδ

a
c Ẋ

b = gacẊ
a + gcbẊ

b = 2gcaẊ
a (2.51)

d

dλ

∂L

∂Ẋc
= 2gca,bẊ

bẊa + 2gcaẌ
a (2.52)

Hence, we find the following equations of motion

gab,cẊ
aẊb = 2gcaẌ

a + gca,bẊ
bẊa + gcb,aẊ

bẊa (2.53)

which after sorting the terms leads to

2gcaẌ
a + (gca,b + gcb,a − gab,c)Ẋ

aẊb = 0 (2.54)

17
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Next, we apply gcd to this latter equation and find

2δd
aẌ

a + gcd(gca,b + gbc,a − gab,c)Ẋ
aẊb = 0 (2.55)

Ẍd + gdc(gca,b + gbc,a − gab,c)Ẋ
aẊb = 0 (2.56)

Finally we rename the indices a→ b, b→ c, c→ d, d→ a and arrive at

Ẍa + Γa
bcẊ

bẊc = 0 (2.57)

�

Γa
bc is called Christoffel symbol and is of paramount interest in general

relativity.
The Christoffel symbol is called symbol because it is NOT a tensor. It

does NOT transform like a tensor under general coordinate transformations.

2.4 A glance forward

At the end of the last subsection we derived the geodesic equations of mo-
tions. Geometrically speaking these curves extremise the length between its
endpoints, they are the ‘straightest possible’ lines, intuitively speaking.

The geodesic equation determines the movement of a particle in a grav-
itational field. Let us consider

d2Xa

dλ2
= −Γa

bcẊ
bẊc (2.58)

and compare with the equations of motion of a particle in Newtonian gravity

mr̈ = −m∇Φ(r) (2.59)

where Φ is the gravitational potential and r is the position vector of the
particle.

If for the moment we denote the three components or r by xi, the New-
tonian equations of motion become

d2xi

dt2
= − ∂Φ

∂xi
(2.60)

Since the Christoffel symbol contain first derivatives of the metric tensor, we
can suspect that the metric will contain the gravitational potential. More-
over, there should be a well-defined procedure to obtain the Newton’s equa-
tions from the geometrical equations.
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Besides the equations of motion, Newton’s theory of gravity is described
by the field equation

∆Φ(r) = 4πGρ(r) (2.61)

This is a second order linear partial differential equation. Since we suspect
the metric to contain the gravitational potential, we expect to find second
order equations in the metric tensor as field equations (first derivatives of
the Christoffel symbol).

We will see in Section 4 that the curvature of a manifold contains second
derivatives of the metric.

Before going further into differential geometry let us briefly discuss a few
aspects of special relativity and Maxwell’s theory covariantly formulated.

3 A little special relativity

3.1 Introduction

Special relativity is the study of physics in a universe governed by the
Minkowski metric

ds2 = dt2 − dx2 − dy2 − dz2 (3.1)

Minkowski spacetime has coordinates

(X0, X1, X2, X3) = (t, x, y, z) (3.2)

and therefore the Minkowski metric is given by

ηab =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(3.3)

Conventionally it is denoted by ηab and not gab.
A few notes:

i since space and time should be measured using the same units we have
either X0 = ct or X1 = x/c, X2 = y/c and X3 = z/c. In order to
avoid factors of c we set c = 1
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ii there is another convention for the Minkowski metric, namely

ηab =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(3.4)

both conventions are commonly used

iii the time coordinate is either called X0 = t but sometime, especially
in the older literature, one finds X4 = t in which case the metric is
often presented as

ds2 = dx2 + dy2 + dz2 − dt2 (3.5)

Special relativity is based on the principle of the constancy of the speed
of light.

The purely spatial part of the metic is Euclidean 3-space. Hence this
part is invariant under translations and spatial rotations. However, since
we consider the four (space + time) dimensional manifold, in principle there
are rotations involving both space and time coordinates.

Definition 3.1 Boost. A boost is a transformation to a coordinate system
moving at constant relative velocity with respect to the original one.

Definition 3.2 Inertial reference frame. An inertial reference frame is a
coordinate system with Cartesian coordinates, and where there exists no
inertial (fictitious) forces.

Definition 3.3 Einstein’s axioms of special relativity:

i The laws of physics are invariant to translations, rotations and boosts.

ii The speed of light is equal in all inertial reference frames.
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3.2 Spacetime diagrams

use.eps

Definition 3.4 World-line. The world-line of an object is the path it traces
in spacetime.

Consider one space dimension, the velocity of an object is dx/dt. So the
slope of the world-line is the velocity. Since photon move with the speed of
light c = 1, light in spacetime diagrams moves at an angle of π/4.

Definition 3.5 Proper time. Choose a point p on an object’s world-line to
be at τ = 0. Let τ be the arc-length away from p

τ =

∫

√

gabdXadXb (3.6)

The arc-length τ along a world-line is called proper time.

Definition 3.6 Event. A spacetime event p is a point in spacetime.

Suppose at an event p a light signal is sent. This signal corresponds to
an expanding sphere of light in space. In a spacetime diagram this looks as
follows:
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use.eps

In a spacetime diagram the expanding sphere traces out a cone, the light
cone.

Definition 3.7 Let p and q be two events. The interval pq is called light-
like if ∆τ2 = 0, q is on the past light cone of p. The interval pq is space-like
is ∆τ2 < 0 and time-like if ∆τ2 > 0.

Since all massive objects move slower than c, they travel within the
future light cone. They can only reach time-like parts.

A particle with 3-velocity v = (dx/dt, dy/dt, dz/dt) satisfies

|v|2dt2 = dx2 + dy2 + dz2 (3.7)

For a photon, on the other hand, we have |v| = 1 and hence

dt2 = dx2 + dy2 + dz2 ⇔ dt2 − dx2 − dy2 − dz2 = 0 (3.8)

If we define an interval between two points by dτ , we have

dτ2 = dt2 − dx2 − dy2 − dz2 = 0 (3.9)

Note that dτ2 is precisely the line element.
Let Xa(τ) be a world-line and τ proper time. Let T a = dXa/dτ be the

tangent vector to the world-line. Then we find

ηabX
aXb =

(

dt

dτ

)2

−
(

dx

dτ

)2

−
(

dy

dτ

)2

−
(

dz

dτ

)2

(3.10)

=
dt2 − dx2 − dy2 − dz2

dτ2
=
ds2

dτ2
= 1 (3.11)
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3.3 Lorentz transformations

Consider Minkowski spacetime M
4

ds2 = ηabdX
adXb (3.12)

There exit coordinate transformation that leave the line element invariant

X ′a = La
bX

b +Aa (3.13)

These are called Poincare transformations or inhomogeneous Lorentz trans-
formations. The vector Aa changes the origin, translations, while La

b leaves
the origin unchanged, rotations. When Aa = 0 these are called the homoge-
neous Lorentz transformations.

The set of all ηab preserving transformations is called the Poincare group.
Likewise, the group of ηab preserving transformations which leave the origin
fixed is called Lorentz group. If we consider

ηab = Lc
aL

d
bηcd (3.14)

and take the determinant of both sides, we get

(detL)2 = 1 (3.15)

and therefore detL = ±1.

Definition 3.8 Proper and improper Lorentz transformations. The proper
Lorentz transformations satisfy detL = +1, while the improper ones are
defined by detL = −1.

3.4 Lorentz boosts

Suppose a spaceship moves with velocity v in the x-direction with respect
to the Earth. We have the ship’s rest frame S and Earth’s rest frame E.
We assume their origins coincide at an event p. What is the form of the
transformation

(

t
x

)

S

=

(

γ δ
µ ν

)(

t
x

)

E

(3.16)

(i) speed of light is an absolute constant
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use.eps

the right moving photon passes through (t, x) = (t, t) while the left moving
photon passes through (t, x) = (t,−t).

Suppose in the Earth frome a photon passes through the event

(

t
x

)

E

=

(

t0
t0

)

E

(3.17)

In the coordinates of the ship

(

t
x

)

S

=

(

t
t

)(

γ δ
µ ν

)(

t0
t0

)

E

(3.18)

⇒ γ + δ = µ+ ν (3.19)

This must also hold for the left moving photons and hence

(

t
x

)

S

=

(

t
−t

)(

γ δ
µ ν

)(

t0
−t0

)

E

(3.20)

⇒ γ − δ = ν − µ (3.21)

Both results combine to γ = ν and δ = µ.
(ii) Follow the spatial origin in the ship’s coordinates. On the ship

(t, x)S = (t, 0)S . However, from Earth we see it move with velocity v and so
(t, vt)E , hence

(

t
0

)

S

=

(

γ δ
δ γ

) (

t
vt

)

E

(3.22)

⇒ δ = −γv (3.23)
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and so the transformation matrix takes the form
(

γ −γv
−γv γ

)

(3.24)

(iii) Finally we assume proper Lorentz transformations

det

(

γ −γv
−γv γ

)

= γ2 − γ2v2 = γ2(1 − v2) = 1 (3.25)

which results in the famous γ factor

γ =
1√

1 − v2
(3.26)

Note that we are working with units where c = 1.

3.5 Relativistic dynamics

The 3-momentum of a particle is defined as p = mv. For an object travelling
at speed v a Lorentz transformation from the rest frame of the object gives

ua =

(

γ
γv

)

(3.27)

One verifies that uaua = 1. In classical mechanics the 3-momentum is
conserved, and the energy is conserved.

Definition 3.9 4-momentum. The 4-momentum pa (its covariant form) is
defined by

pa = mua = (E,−p) (3.28)

and therefore

pa =

(

γm
γmv

)

(3.29)

Let us consider the energy E for velocities satisfying v ≪ 1 (v ≪ c)
which we call non-relativistic

E = p0 = γm = m
1√

1 − v2
= m+

1

2
mv2 +O(v4) (3.30)

which encodes Einstein’s famous equation

E = mc2 (3.31)

For massive particles one finds E2 = |p|2 +m2.
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Definition 3.10 Newton’s force law. In special relativity Newton’s force
law becomes

f b = mab (3.32)

where ab is the 4-acceleration defined by

ab =
dT b

dτ
=
d2Xb

dτ2
(3.33)

Lemma 3.1

abT
b = 0 (3.34)

Proof

abT
b = ηbca

bT c = ηbc
dT b

dτ
T c = ηbc

1

2

d

dτ
(T bT c) =

1

2

d

dτ
(ηbcT

bT c) =
1

2

d

dτ
(1) = 0

(3.35)

�

In the limit v → 1 the γ factor diverges. However, since photons are
massless one still has a well defined 4-momentum. Let v → 1 while m→ 0,
keeping E = γm constant

pa = (γm,−γmv) = (E,−Ev) (3.36)

Note that for massless particles |p|2 = m2. The 3-vector v is now a unit
vector determining the direction of the travelling photon.

Important: The world line of a photon cannot be parametrised by
proper time τ since proper time down not exits for a photon. Along the
path of a photon dτ = 0. However, other parameters can be used, for
example the coordinate time t is some reference frame.

3.6 Maxwell’s equations

The internal structure equations are given by

∇ · B = 0 (3.37)

∇× E + ∂tB = 0 (3.38)
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while the source equations read

∇ · E = 4πρ (3.39)

∇× B − ∂tE = J (3.40)

The Lorentz force equation reads

F = q(E + v × B) (3.41)

Recall the electric potential φ and the vector potential A can be used to
define the electric and magnetic fields respectively

E = −∇φ− ∂tA (3.42)

B = ∇× A (3.43)

In order to define Maxwell’s equations in tensor form, we firstly define
the Faraday tensor

Fab =









0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0









(3.44)

The Faraday tensor is a skew-symmetric tensor of type
(

0
2

)

.

A skew-symmetric tensor of type
(

0
2

)

is often called a 2-form. Likewise,

a totally skew-symmetric tensor of type
(

0
p

)

is called p-form, more precisely
the components of a p-form. We will not use this terminology throughout
the lectures.

In tensor form, or covariant form, the structure equations are given by

∂aFbc + ∂bFca + ∂cFab = 0 (3.45)

while the source equations can be written

∂bF
ab = ja (3.46)

where

ja =

(

ρ
J

)

(3.47)

and F ab = ηacηbdFcd, in special relativity. On a generic manifold M we raise
and lower indices with the metric gab.
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The charge conservation equation immediately follows from (3.46)

∂a∂bF
ab = 0 = ∂aj

a (3.48)

where the first terms vanished because a symmetric and a skew-symmetric
tensor come together.

In tensor notation the Lorentz force law becomes

fa = qubF
ba (3.49)

As above, it easily follows that force and velocity are orthogonal

uaf
a = quaubT

ba = 0 (3.50)

By defining the 4-potential

Ab =

(

φ
M

)

or Ab =

(

φ
−M

)

(3.51)

the Faraday tensor simply becomes

Fab = Aa,b −Ab,a (3.52)

Note that there are two different conventions, the other being

Fab = ∂aAb − ∂bAa (3.53)

Maxwell’s equations are invariant under gauge transformations

Ab 7→ Ab + ∂bψ (3.54)

3.7 Stress-energy-momentum tensors

Continuous matter distributions in spacial relativity are described by a
symmetric tensor Tab called the stress-energy-momentum tensor, or energy-
momentum tensor or stress-energy tensor.

Definition 3.11 The stress-energy tensor of the electromagnetic field is
given by

Tab =
1

4π

(

FacFb
c − 1

4
ηabFmnF

mn

)

(3.55)

Note that ∂aTab = 0 by virtue of Maxwell’s equations.
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Let an observer have 4-velocity V a, the quantity

TabV
aV b (3.56)

is interpreted as the energy density. For normal matter this quantity will
be non-negative

TabV
aV b ≥ 0 (3.57)

If W a is orthogonal to V a, the quantity

−TabV
aW b (3.58)

is interpreted as the momentum density of the matter in the W b direction.

Definition 3.12 Perfect fluid. A perfect fluid is defined to be a continuous
distribution of matter with energy-momentum tensor

Tab = ρuaub − p(ηab − uaub) (3.59)

where ua is a unit time-like vector representing the 4-velocity of the fluid.
ρ is the energy density of the fluid and p is its pressure as measured in its
rest frame. It satisfies the equations of motion

∂aTab = 0 (3.60)

Although no scalar field has been observed so far in nature, it is often
instructive to consider a scalar field φ satisfying the Klein-Gordon equations

∂a∂aφ+m2φ = 0 (3.61)

Definition 3.13 The energy-momentum tensor of a scalar field is given by

Tab = −∂aφ∂bφ+ ηab
1

2

(

ηcd∂cφ∂dφ−m2φ2
)

(3.62)

To finish this section, we will work out explicitely the equations of motion
of the perfect fluid and consider its non-relativistic limit.

Let us write out equations (3.60) explicitely

∂aρuaub + ρua∂
aub + ρub∂

aua

− ∂ap(ηab − uaub) + pua∂
aub + pub∂

aua = 0 (3.63)
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We multiply this equation by ub which yields

ua∂aρ+ (ρ+ p)∂aua = 0 (3.64)

The terms that vanish after multiplication are orthogonal to the other terms
and hence must vanish separately

(ρ+ p)ua∂
aub − (ηab − uaub)∂

ap = 0 (3.65)

Now we consider the non-relativistic limit

v ≪ 1 p≪ ρ ua =

(

1
v

)

|v|dp
dt

≪ |∇p| (3.66)

Then equation (3.64) becomes

ua∂aρ+ ρ∂aua = ∂tρ+ v · ∇ρ+ 0 + ρ∇ · v = ∂tρ+ ∇ · (ρv) = 0 (3.67)

which is the hydrodynamical conservation equation of mass, well known in
the mechanics of fluids.

The second equation (3.65) in the non-relativistic limit is

ρua∂aub − (δa
b − ubu

a)∂ap = 0 (3.68)

The time component is identically satisfied, so we consider the spatial com-
ponents

ρ∂t(−v) + ρv · ∇(−v) −∇p+ (−v)[∂tp+ v · ∇p] = 0 (3.69)

Since the last two terms are of higher order, we are left with

ρ (∂tv + (v · ∇)v) + ∇p = 0 (3.70)

which is Euler’s equation of hydrodynamic.

4 Curvature

4.1 Covariant derivative ad parallel transport

Definition 4.1 Covariant derivative. A covariant derivative ∇a (sometimes
called derivative operator) on a manifold M is a map which takes a type

(

p
q

)

tensor to a type
(

p
q+1

)

tensor. It satisfies the following properties:
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i linearity: for all α, β ∈ R

∇c(αA
a1...am

b1...bn
+ βBa1...am

b1...bn
) = α∇cA

a1...am

b1...bn
+ β∇cB

a1...am

b1...bn

(4.1)

ii Leibnitz rule:

∇c(A
...

...B
...

...) = B...
...∇cA

...
... +A...

...∇cB
...

... (4.2)

iii commutativity with contraction:

∇c(αA
a1...k...am

b1...k...bn
) = ∇cαA

a1...k...am

b1...k...bn
(4.3)

iv torsion free: for all f ∈ C∞(M)

∇a∇bf = ∇b∇af (4.4)

In general relativity the covariant derivative is always assumed to be tor-
sion free. In Einstein-Cartan theory for example this assumption is dropped.

In Euclidean 3-space with Cartesian coordinates, the covariant deriva-
tive should correspond to the familiar partial derivative. Moreover, for any
smooth function f , the covariant derivative should coincide with the partial
derivative

∇af = ∂af = f,a (4.5)

One easily verifies that ∂af transforms like a tensor.
Given a covariant derivative ∇a, its action on a vector Aa (or on any

tensor Aa1...am
b1...bn

) should depend only on the value of quantities at some
point p. Let us consider

∇aA
b (4.6)

We know that ∂aA
b does not transform as a tensor. Together with the

above locality assumption, the difference between ∇aA
b and ∂aA

b must be
expressible in terms of Aa, therefore let us write

∇aA
b − ∂aA

b = Cb
acA

c (4.7)

Property (iv) of the covariant derivative implies that Cb
ac is symmetric in

the lower pair of indices

Cb
ac = Cb

ca (4.8)
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Moreover, since ∇aA
b is a tensor by definition, however ∂aA

b does not trans-
form like a tensor, we conclude that Cb

ac cannot be a tensor.
Rewriting (4.7) as follows

∇aA
b = ∂aA

b + Cac
b A

c (4.9)

implies that the right-hand side must transform like a tensor. The inhomo-
geneous parts of the individual transformations must cancel each other.

Since ∇a when acting on scalars equals the partial derivative, let us
consider the scalar AbA

b

∇a(AbA
b) = Ab∇aA

b + ∇aAbA
b

= Ab(∂aA
b + Cac

b A
c) + ∇aAbA

b = ∂a(AbA
b) = Ab∂aA

b + ∂aAbA
b (4.10)

Now we rewrite this equation

Cb
acA

cAb +Ab∇aAb = Ab∂aAb (4.11)

Ab∇aAb = Ab∂aAb − Cb
acA

cAb (4.12)

Ab∇aAb = Ab∂aAb − Cc
abA

bAc (4.13)

and therefore we arrive at

∇aAb = ∂aAb − Cc
abAc (4.14)

Since we now know how ∇a acts on a contravariant and on a covariant
index, we can compute the covariant derivative on any type

(

p
q

)

tensor

∇cA
a1...ap

b1...bq
= ∂cA

a1...ap

b1...bq

+ Γa1

ckA
k...ap

b1...bq
+ · · · + Γ

ap

ckA
a1...k

b1...bq

− Γk
cb1A

a1...ap

k...bq
− · · · − Γk

cbq
Aa1...ap

b1...k (4.15)

Theorem 4.1 Let M be a manifold and gab be a metric. Then there exists
a unique covariant derivative operator satisfying

∇agbc = 0 (4.16)

which is called the metricity condition.
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Proof Idea of the proof. Use the action of ∇a on gbc and try to solve the
resulting equation for Ca

bc.

∇agbc = gbc,a − Cd
abgdc − Cd

acgbd = 0 (4.17)

∇cgab = gab,c − Cd
cagdb − Cd

cbgad = 0 (4.18)

∇bgca = gca,b − Cd
bcgda − Cd

bagcd = 0 (4.19)

Let us consider the following combination (4.17) + (4.17) − (4.17) of the
metricity conditions

gbc,a + gab,c − gca,b − 2Cd
cagdb = 0 (4.20)

Apply gbm to this equation and we find

δm
d C

d
ca =

1

2
gmb(gbc,a + gab,c − gca,b) (4.21)

Finally we rename indices c→ b, a→ c,m→ a, b→ d and arrive at

Ca
bc = Γa

bc =
1

2
gad(gdb,c + gcd,b − gbc,d) (4.22)

Hence, Ca
bc is uniquely fixed to be the Christoffel symbol and therefore ∇a

is unique. Note that Γa
bc is often called connection. �

Definition 4.2 Parallel transport. Let ∇a be a covariant derivative and γ
be a curve with tangent vector T a. A vector V a at each point on the curve
is said to be parallelly transported along γ if

T a∇aV
b = 0 (4.23)

is satisfied along the curve. Parallel transport of an arbitrary type
(

p
q

)

tensor
is defined by

T a∇aA
a1...ap

b1...bq
= 0 (4.24)

Using the definition of the covariant derivative we find explicitely

T a∂aV
b + T aΓb

acV
c = 0 (4.25)

If the curve γ is parametrised by τ so that we have Xa = Xa(τ), then the
tangent vector is given by T a = dXa/dτ . Hence, we can write

T a∂aV
b =

dXa

dτ

dV b

dXa
=
dV a

dτ
(4.26)
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and therefore

dV b

dτ
+ T aΓb

acV
c = 0 (4.27)

This is a first order ordinary differential equation and has a unique solution
for given initial value of V a. Thus, a vector at one point on γ uniquely
defines the parallelly transported vector everywhere else on the curve.

Lemma 4.1 Let V a and W a be two vectors parallelly transported along a
curve γ. Then the scalar VaW

a remains unchanged if parallelly transported
along γ.

Proof To show that VaW
a is constant along the curve, let us consider the

quantity

T a∇a(VbW
b) (4.28)

We can rewrite this as follows

T a∇a(gbcV
bW c) = T aV bW c∇agbc + T agbcW

c∇aV
b + T agbcV

b∇aW
c

(4.29)

We order the terms such that

T aV bW c∇agbc + gbcW
cT a∇aV

b + gbcV
bT a∇aW

c !
= 0 (4.30)

The first term vanishes in view of Theorem 4.1, the second term and the
third term both vanish since we assume that V a and W a are parallelly
transported. Hence VbW

b is constant along the curve. �

4.2 Riemann curvature tensor

From the definition of the covariant derivative it follows that ∇a∇b com-
mutes when acting on scalars

(∇a∇b −∇b∇a)f = 0 (4.31)

However, it does not commute, when acting on vectors. Let us work out
this commutator

∇a∇bA
c = ∇a(∂bA

c + Γc
bdA

d)

= ∂abA
c − Γd

ab∂dA
c + Γc

ad∂bA
d

+ ∂a(Γ
c
bdA

d) − Γe
abΓ

c
edA

d + Γc
aeΓ

e
bdA

d (4.32)
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Exchange the indices a and b

∇b∇aA
c = ∂baA

c − Γd
ba∂dA

c + Γc
bd∂aA

d

+ ∂b(Γ
c
adA

d) − Γe
baΓ

c
edA

d + Γc
beΓ

e
adA

d (4.33)

Since we wish to compute (∇a∇b −∇b∇a)A
c we note that terms 1, 2 and 5

cancel each other. Let us collect the remaining terms and expand the partial
derivatives

(∇a∇b −∇b∇a)A
c = Γc

ad∂bA
d + ∂aΓ

c
bdA

d + Γc
bd∂aA

d

− Γc
bd∂aA

d − ∂bΓ
c
adA

d + Γc
ad∂bA

d

+ Γc
aeΓ

e
bdA

d − Γc
beΓ

e
adA

d (4.34)

Terms 1 and 6 cancel each other and so do terms 3 and 4, hence we have

(∇a∇b −∇b∇a)A
c = (∂aΓ

c
bd − ∂bΓ

c
ad + Γc

aeΓ
e
bd − Γc

beΓ
e
ad)A

d

= (Γc
bd,a − Γc

ad,b + Γe
bdΓ

c
ea − Γe

adΓ
c
eb)A

d (4.35)

and we define

(∇a∇b −∇b∇a)A
c = Rbad

cAd (4.36)

Rbad
c := Γc

bd,a − Γc
ad,b + Γe

bdΓ
c
ea − Γe

adΓ
c
eb (4.37)

where Rbad
c is called the Riemann curvature tensor.

Likewise, when acting on a covariant vector we find

(∇a∇b −∇b∇a)Vc = Rabc
dAd (4.38)

To calculate Rabc
d starting from the metric gab, we first calculate the

Christoffel symbol components Γc
ab, and from there one computed the the

Riemann curvature tensor. Before further discussing the Riemann curvature
tensor, we show its geometrical significance.

Let us consider a parallelly displaced vector Y c along a curve γ
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use.eps

For infinitesimal displacements we find Y c(Xa) at the point p, while at
the point q we have

Y c(Xa + dXa) = Y c(Xa) + dXa ∂Y
c

∂Xa
(Xa) +O(dXa)2

= Y c(Xa) + dXa∇aY
c − dXaΓc

abY
b +O(dXa)2 (4.39)

The second term vanished because of our parallel transport assumption and
hence

δY c = Y c
(q) − Y c

(p) = −dXaΓc
abY

b (4.40)

in lowest order approximation.
Let us now consider parallelly transporting a vector Aa around a small

closed loop.

use.eps

36



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

Let us firstly transport the vector Ab from p0 to p1. At p1 the displaced
vector is given by

Ab + δAb = Ab
p0

− dXaΓb
acA

c
p0

(4.41)

Next, parallel transport of the transported vector to p̄, along the direction
dX̄a

δĀb = −dX̄aΓb
ac (p1)(A

c + δAc) ≃ −dX̄a(Γb
ac + Γb

ac,ddX
d)(Ac + δAc)

≃ −dX̄aΓb
acA

c − dX̄aΓb
ac,ddX

dAc + dX̄adXdΓb
acΓ

c
deA

e (4.42)

where we kept terms to second order only. If we now consider the other way
to reach the point p̄ we obtain

δÃb ≃ −dXaΓb
acA

c − dXaΓb
ac,ddX̄

dAc + dXadX̄dΓb
acΓ

c
deA

e (4.43)

Finally, we are interested in the difference between the vector transported
the one or the other way

∆Ab = (Ab + δĀb) − (Ab + δÃb) = (dXa − dX̄a)Γb
acA

c

−dX̄adXdAe
[

Γb
ae,d − Γb

de,a + Γb
acΓ

c
de − Γb

dcΓ
c
ae

]

(4.44)

The term in the square bracket is again the Riemann curvature tensor and
therefore we can write

∆Ab = (dXa − dX̄a)Γb
acA

c − dX̄adXdRade
bAe (4.45)

Assume we transport dXa along dX̄a and vice versa. Then for the term we
find

dXaΓb
acdX̄

c − dX̄aΓb
acdX

c = dXadX̄c(Γb
ac − Γb

ca)
!
= 0 (4.46)

because the connection is assumed to be symmetric. This means that in-
finitesimal parallelograms always close! On manifolds with torsion this no
longer holds.

Therefore we have obtained that the Riemann curvature tensor measures
the path dependence of parallel transport. This path dependence allows to
define an intrinsic notion of curvature. The failure of a parallel transported
vector around a closed loop coinciding with the original vector measures the
curvature (the failure of pointing in the same direction after transport).

The definition of the Riemann curvature tensor implies symmetry prop-
erties which are if great importance. In particular the twice contracted
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Bianchi identities yield the left-hand side (geometrical side) of the field equa-
tions of general relativity.

In n dimensions the Riemann curvature tensor has

1

12
n2(n2 − 1) (4.47)

independent components.

Lemma 4.2 The Riemann curvature tensor has the following properties:

i Rabcd = −Rbacd,

ii Rabcd +Rcabd +Rbcab = 0,

iii Rabcd = −Rabdc,

iv ∇eRabcd+∇dRabec+∇cRabde = 0. This is the famous Bianchi identity.

Proof These identities can be proved more or less straightforwardly

i trivial by definition

ii To prove this identity we consider the permutations of ∇a∇bWc and
write

∇a∇bWc −∇b∇aWc = Rabc
dWd (4.48)

∇c∇aWb −∇a∇cWb = Rcab
dWd (4.49)

∇b∇cWa −∇c∇bWa = Rbca
dWd (4.50)

and add these three equations up. Firstly, observe that

∇a∇bWc −∇a∇cWb = ∇a(∂bWc − ∂cWb) (4.51)

and let us denote Tbc = ∂bWc − ∂cWb. Then the left-hand side of the
added up equations becomes

∇aTbc + ∇bTca + ∇cTab (4.52)

Due to the skew-symmetry of Tab the Christoffel symbols drop out the
the covariant derivative become partial derivative. As these commute,
we find that the left-hand side vanished and so the identity follows.
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iii We can use the fact that ∇agbc = 0 and write

0 = (∇a∇b −∇b∇a)gcd = Rabc
eged +Rabd

egce

= Rabcd +Rabdc (4.53)

iv no proof for now

�

Properties (i)–(iii) imply another symmetry, namely

Rabcd = Rcdab (4.54)

4.3 Ricci, Weyl and Einstein tensor

The Riemann tensor can be decomposed in a ‘trace part’ and a ‘trace-free
part.’ Since the Riemann tensor is skew-symmetric in the first and second
pair of indices, we can trace over the first and third (or second and fourth)
index. This defined the

Definition 4.3 Ricci tensor

Rab = Racb
c (4.55)

Note that the symmetry properties of the Riemann tensor imply that the
Ricci tensor is symmetric.

Definition 4.4 Scalar curvature. The trace of the Ricci tensor is the scalar
curvature or the Ricci scalar

R = Ra
a (4.56)

Definition 4.5 Weyl tensor. The ‘trace-free part’ of the Riemann tensor if
the so called Weyl tensor. For manifold of dimension n ≥ 3 it is defined by

Cabcd = Rabcd −
2

n− 2
(ga[cRd]b − gb[cRd]a) +

2

(n− 1)(n− 2)
Rga[cgd]b

(4.57)

The Weyl tensor is also called conformal tensor because it is invariant under
conformal transformations of the metric gab 7→ Ω2(Xa) gab
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Let us consider the contracted (apply the metric once) Bianchi identity

∇aRbcd
a + ∇bRcd −∇cRbd = 0 (4.58)

and apply gbd to that equation

∇aRc
a + ∇bRc

b −∇cR = 0 (4.59)

2∇aRc
a −∇cR = 0 (4.60)

∇aRca −
1

2
∇bgbcR = 0 (4.61)

∇a(Rca −
1

2
Rgca) = 0 (4.62)

Definition 4.6 Einstein tensor. The tensor Gab defined by

Gab = Rab −
1

2
gabR (4.63)

is called the Einstein tensor. Its covariant derivative vanishes.
Using the definition of the Riemann and Ricci tensors, the Ricci tensor

can be calculated directly from the Christoffel symbols

Rmr = Γn
mr,n − Γn

nr,m + Γa
mrΓ

n
an − Γa

nrΓ
n
am (4.64)

4.4 Geodesics II

As already discussed in Subsection 2.3, geodesics are the ‘straightest pos-
sible’ line, they ‘curve as little as possible.’ Using the notion of parallel
transport, we can give a very geometrical definition of geodesics.

Lemma 4.3 Let ∇a be a covariant derivative. A geodesic is a curve whose
tangent vector is parallelly transported along itself, this means the tangent
vector T a satisfies

T a∇aT
b = 0 (4.65)

Proof Let γ be a curve with affine parametrisation Xa(λ). The tangent
vector to γ is given by T a = dXa/dλ. Moreover, ∇aT

b can be written as
follows

∇aT
b = ∂aT

b + Γb
acT

c (4.66)

T a∂aT
b = T a ∂T

b

∂Xa
=
∂Xa

∂λ

∂T b

∂Xa
=
∂T b

∂λ
=
∂2Xb

∂λ2
(4.67)
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and therefore the equation of parallel transport becomes

∂2Xb

∂λ2
+ Γb

acT
aT c =

∂2Xb

∂λ2
+ Γb

ac

∂Xa

∂λ

∂Xc

∂λ
= 0 (4.68)

which is the geodesic equation. �

Another way to interpret the Riemann tensor is by considering a family
of geodesics which span a surface Xa = Xa(τ, λ)

use.eps

The λ = const. curves are geodesics parametrised by the affine parameter
τ . Let Ua = dXa/dτ be the tangent vector to the geodesic and let Na =
dXa/dλ be the displacement vector to an infinitesimally nearby geodesic.
We can choose UaU

a = 1, Na and Ua are orthogonal gabU
aN b = 0.

Since partial derivatives commute, we have

∂2Xa

∂τ∂λ
=
∂2Xa

∂λ∂τ
(4.69)

and hence we find

UaN b
,a = NaU b

a (4.70)

Since the connection is symmetric this can re-written such that

Ua∇aN
b = Na∇aU

b (4.71)

The quantity va = U b∇bN
a gives the rate of change along a geodesic of

the displacement to a nearby geodesic. One can regards va as the relative
velocity. Similarly

aa = U c∇cu
a (4.72)
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can be interpreted as the relative acceleration of an infinitesimal nearby
geodesic.

aa = U c∇c(U
b∇bN

a) = U c∇c(N
b∇bU

a) (4.73)

= U c∇cN
b∇bU

a + U cN b∇c∇bU
a (4.74)

= N c∇cU
b∇bU

a +N bU c∇b∇cU
a −Rcbd

aN bU cUd (4.75)

= N c∇c(U
b∇bU

a) −Rcbd
aN bU cUd (4.76)

The first term vanishes as we are dealing with geodesics and hence

aa = −Rcbd
aN bU cUd (4.77)

which is the geodesic deviation equation.
The acceleration vanishes for all families of geodesics if and only if

Rabcd = 0. Some geodesics will accelerate toward or away from each other
if and only if Rabcd 6= 0.

4.5 Einstein’s field equations

In Newtonian gravity, the gravitational field may be represented by the
potential Φ. The total acceleration of two nearby particles if given by

−(x · ∇)∇Φ (4.78)

where x is the separation vector. Comparison with the geodesic deviation
equation suggests

Rcbd
aU cUd ↔ ∂b∂

aΦ (4.79)

However, Poisson’s equation read

∆Φ = 4πρ (4.80)

Recalling the discussion of the energy-momentum tensors, we defined
the energy density to be

TabU
aU b = ρ (4.81)

which seems to suggest

Rcad
aU cUd = 4πTcdU

cUd (4.82)
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and would indicate Rcd = 4πTcd as field equations. This was indeed orig-
inally suggested by Einstein, however is not divergence free. The energy-
momentum tensor must satisfy ∇aTab = 0. However, the contracted Bianchi
identities yielded such a tensor, namely the Einstein tensor. Hence, the field
equations of general relativity are given by

Gab := Rab −
1

2
Rgab = 8πTab (4.83)

Matter tells spacetime how to curve and
spacetime tells matter how to move.

Since the covariant divergence of the Einstein tensor vanishes identically,
these equations imply

∇aTab = 0 (4.84)

This is equivalent to saying that world liner of test bodies are geodesics. It
is also a direct consequence of the field equations.

From now on we study the field equations.
Taking the trace of the Einstein equations (apply gab) yields

gab(Rab −
1

2
Rgab) = R− 1

2
· 4R = −R (4.85)

gabTab = T (4.86)

and therefore we find

Rab −
1

2
Rgab = 8πTab (4.87)

Rab = 8π(Tab −
1

2
Tgab) (4.88)

In the absence of matter Tab = 0 and the vacuum field equations reduce to

Rab = 0 (4.89)

Manifolds satisfying the vacuum field equations are often called Ricci flat.
This is very different from Riemann flat, where the full Riemann tensor van-
ishes. In general, solutions of the vacuum field equations are not Riemann
flat.

As stated above, the field equations imply that test bodies follows geodesics

d2Xa

dλ2
+ Γa

bc

dXb

dλ

dXc

dλ
= 0 (4.90)
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Recall that these equations were obtained from the Lagrangian

L = gab
dXa

dλ

dXb

dλ
(4.91)

Note that for massive particles the affine parametrisation means we can
choose

L = gab
dXa

dλ

dXb

dλ
= ±1 (4.92)

For massless particles moving with the speed of light we have L = 0 (null
geodesics or null curves). In summary we have

L =

{

±1 m 6= 0

0 m = 0
(4.93)

±1: the sign depends on the signature of the metric one works with

signature (−,+,+,+) − 1 (4.94)

signature (+,−,−,−) + 1 (4.95)

5 The Schwarzschild solutions

In order to test general relativity we are interested to find solutions of the
vacuum field equations which describe the exterior gravitational field of a
static and spherically symmetric body, like for example the Earth or our
Sun.

The Schwarzschild solutions is the most important known exact solutions
of the field equations.

5.1 Metric ansatz and Christoffel symbols

We want to find all 4-dimensional metrics with Lorentzian signature whose
Ricci tensor vanishes and which are static and spherically symmetric. The
most general static and spherically symmetric metric has the form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dθ2 + r2 sin2θdφ2 (5.1)

which contains two unknown quantities ν and λ that are functions of the
radial coordinate r.
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The most efficient way to compute Christoffel symbol components is via
the Lagrangian and the geodesic equation. We have Xa = (t, r, θ, φ) with
the Lagrangian given by L = gabẊ

aẊb, which yields

L = −eν ṫ2 + eλṙ2 + r2θ̇2 + r2 sin2θφ̇2 (5.2)

Recall that the dot denotes differentiation with respect to an affine param-
eter and NOT differentiation with respect to time t. Also note that the
four coordinates are functions of this affine parameter. The Euler-Lagrange
equations read

d

dλ

∂L

∂q̇
=
∂L

∂q
(5.3)

q = t :
∂L

∂t
= 0

∂L

∂ṫ
= −2eν ṫ (5.4)

d

dλ

∂L

∂ṫ
= −2ν ′eν ṙṫ− 2eν ẗ (5.5)

⇒ ẗ+ ν ′ṙṫ = 0 (5.6)

⇒ Γt
tr =

1

2
ν ′ (5.7)

and all other components of the form Γt
ab vanish. The prime denote differ-

entiation of the function with respect to its argument, so ν ′ = dν/dr.

q = φ :
∂L

∂φ
= 0

∂L

∂φ̇
= 2r2 sin2θφ̇ (5.8)

d

dλ

∂L

∂ṫ
= 4rṙ sin2θφ̇+ 2r22 sin θ cos θθ̇φ̇+ 2r2 sin2θφ̈ (5.9)

⇒ φ̈+ 2 cot θθ̇φ̇+
2

r
ṙφ̇ = 0 (5.10)

⇒ Γφ
φr =

1

r
Γφ

θφ = cot θ (5.11)

all other components of the form Γφ
ab vanish.

q = θ :
∂L

∂φ
= r22 sin θ cos θφ̇2 ∂L

∂φ̇
= 2r2θ̇ (5.12)

d

dλ

∂L

∂θ̇
= 4rṙθ̇ + 2r2θ̈ (5.13)

⇒ θ̈ +
2

r
ṙθ̇ − sin θ cos θφ̇2 = 0 (5.14)

⇒ Γθ
θr =

1

r
Γθ

φφ = − sin θ cos θ (5.15)
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all other components of the form Γθ
ab vanish.

Finally we consider q = r

q = r :
∂L

∂r
= −ν ′eν ẗ2 + λ′eλṙ2 + 2rθ̇2 + 2r sin2θφ̇2 (5.16)

∂L

∂ṙ
= 2eλṙ (5.17)

d

dλ

∂L

∂ṙ
= 2λ′eλṙ2 + 2eλr̈ (5.18)

⇒ r̈ +
1

2
λ′ṙ2 +

1

2
ν ′eν−λṫ2 − e−λrθ̇2 − r sin2θe−λφ̇2 = 0 (5.19)

⇒ Γr
rr =

1

2
λ′ Γr

tt =
1

2
ν ′eν−λ (5.20)

Γr
θθ = −re−λ Γr

φφ = −r sin2θe−λ (5.21)

all other components of the form Γr
ab vanish.

In order to compute the Ricci tensor we also need trace terms of the
Christoffel symbol Γc

ac. Using the non-vanishing components we find

Γc
tc = 0 (5.22)

Γc
rc = Γt

rt + Γr
rr + Γθ

rθ + Γφ
rφ =

2

r
+

1

2
(ν ′ + λ′) (5.23)

Γc
θc = cot θ (5.24)

Γc
φc = 0 (5.25)

5.2 Ricci tensor components

The Ricci tensor is defined by

Rab = Γn
ba,n − Γn

bn,a + Γm
baΓ

n
nm − Γm

bnΓn
am (5.26)

and for its components we find

Rtt = Γn
tt,n − Γn

tn,t + Γm
tt Γ

n
nm − Γm

tnΓn
tm (5.27)

Γn
tt,n = Γr

tt,r = (ν ′eν−λ/2),r =
1

2
ν ′′eν−λ +

1

2
ν ′(ν ′ − λ′)eν−λ (5.28)

Γn
nt,t = 0 (5.29)

Γm
tt Γ

n
mn = Γr

ttΓ
n
rn =

1

2
ν ′eν−λ

(

2

r
+ (ν ′ + λ′)/2

)

(5.30)

Γm
tnΓn

mt = Γt
tnΓn

tt + Γr
tnΓn

rt = Γt
trΓ

r
tt + Γr

ttΓ
t
rt =

1

2
(ν ′)2eν−λ (5.31)
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All of the above terms are proportional to eν−λ, putting them together we
get

Rtt = eν−λ

[

1

2
ν ′′ +

1

2
(ν ′)2 − 1

2
ν ′λ′ +

1

r
ν ′ +

1

4
(ν ′)2 + +

1

4
ν ′λ′ − 1

2
(ν ′)2

]

= eν−λ

[

1

2
ν ′′ +

1

4
(ν ′)2 +

1

r
ν ′ − 1

4
ν ′λ′

]

(5.32)

The other components of the Ricci tensor can be calculated following the
same routine, and are given by

Rrr = −1

2
ν ′′ − 1

4
(ν ′)2 +

1

4
ν ′λ′ +

1

r
λ′ (5.33)

Rθθ = 1 − e−λ +
1

2
rλ′e−λ − 1

2
rν ′e−λ (5.34)

Rφφ = sin2θRθθ (5.35)

5.3 The Schwarzschild solution

The vacuum field equations are

Rab = 0 (5.36)

Since we have two unknown functions and three equations one should check
that only two equations are independent. Let us firstly consider

(tt) :
1

2
ν ′′ +

1

4
(ν ′)2 +

1

r
ν ′ − 1

4
ν ′λ′ = 0 (5.37)

(rr) : −1

2
ν ′′ − 1

4
(ν ′)2 +

1

4
ν ′λ′ +

1

r
λ′ = 0 (5.38)

Adding both equations yields

1

r
(ν ′ + λ′) = 0 (5.39)

which is easily integrate and to give ν + λ = C̃ where C̃ is a constant of
integration. Exponentiating both sides leads to

eν = Ce−λ (5.40)

where C is another constant of integration C = exp C̃. The constant of
integration can be set to one by rescaling the time coordinate t 7→

√
Ct

which results in

eν = e−λ (5.41)
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Let us put this into the (θθ) equation

1 − eν − 1

2
rν ′eν − 1

2
rν ′eν = 1 − eν − rν ′eν = 0 (5.42)

Note that

d

dr
(reν) = eν + rν ′eν (5.43)

and therefore we have to solve

d

dr
(r − reν) = 0 (5.44)

which is easily integrated and results in r − reν = C which leads to

eν = 1 − C
r

(5.45)

This solves the vacuum field equations and describes the exterior of a
static and spherically symmetric object. This solution was first discovered
by Karl Schwarzschild in 1916. The complete line element now reads

ds2 = −
(

1 − C
r

)

dt2 +

(

1 − C
r

)−1

dr2 + r2dΩ2 (5.46)

where we denoted dΩ2 = dθ2 + sin2θdφ2.
In the limit r → ∞ the metric component of the Schwarzschild solu-

tion approach those of Minkowski spacetime in spherical coordinates. This
supports the interpretation of the Schwarzschild metric as the exterior grav-
itational field of an isolated body.

In physical units, this means reinserting the speed of light c and the grav-
itational constant G, we firstly observe that 1−C/r should be dimensionless.
If we write GC/c2 for C, then the constant C should have dimensions of mass.

Now, let consider the metric

ds2 = −
(

1 − GC
c2r

)

dt2 +

(

1 − GC
c2r

)−1

dr2 + r2dΩ2 (5.47)

and compute the non-vanishing Christoffel symbol components. Next, con-
sider the limit c2 → ∞ or 1/c2 → 0. Only one of the non-vanishing Christof-
fel symbol components contains the constant C, namely

lim
c2→∞

Γr
tt =

GC
2r2

(5.48)

48



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

Compare this with Newton’s law per unit mass

∇Φ =
GM

r2
(5.49)

Therefore, we interpret C/2 as the total mass of the body (or of the Schwarzschild
field). We finally write the the Schwarzschild metric in the following form

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2dΩ2 (5.50)

5.4 Newtonian limit, weak field limit and equations of mo-

tion

The Newtonian equations of motions of a particle in a gravitational field are

mr̈ = −m∇Φ (5.51)

which in index notation reads

d2Xi

dt2
= − ∂Φ

∂Xi
(5.52)

Let us consider the metric given by

gab = ηab − hab (5.53)

where etaab is the Minkowski metric. By weak fields we mean

|hab| ≪ 1 (5.54)

Note that in Lorentzian manifolds there is no positive norm and therefore
there is no natural ‘smallness’. We assume that all components of hab are
smaller than one.

In first order approximation the inverse metric is given by

gab = ηab + hab (5.55)

To see this:

δc
a = gabg

bc = (ηab − hab)(η
bc + hbc)

= δc
a − habη

bc + ηabh
bc − habh

bc

= δc
a − ha

c + ha
c +O(h2) = δc

a (5.56)
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where the indices of hab are raised and lowered by ηab. �

Let us consider coordinates Xa = (ct, x, y, z). If we consider the move-
ment of a particle described by a geodesic parametrised by λ, its equations
of motion are

d2Xa

dλ2
+ Γa

bc

dXb

dλ

dXc

dλ
(5.57)

The tangent vector to this curve , or its 4-velocity is Ua = dXa/dλ. Let
us assume small velocities

dXa

dλ
≪ dXt

dλ
i = 1, 2, 3 (5.58)

Now the geodesic equation becomes

d2Xa

dλ2
= −Γa

bc

dXb

dλ

dXc

dλ
≃ Γa

tt

dt

dλ

dt

dλ
(5.59)

By definition of the Christoffel symbol we have

Γa
tt =

1

2
gad(gdt,t + gtd,t − gtt,d) (5.60)

which if we consider weak, static gravitational fields leads to

Γa
tt = −1

2
gadgtt,d (5.61)

Γt
tt ≃ −1

2
(ηtd + htd)(ηtt,d − htt,d) = 0 (5.62)

Γt
tt ≃ −1

2
(ηid + hid)(ηtt,d − htt,d) ≃

1

2
ηiihtt,i =

1

2

∂htt

∂Xi
(5.63)

Hence, the time component satisfies

d2t

dλ2
= 0 ⇒ dt = Cdλ (5.64)

where C is some constant of integration. Next, ket us consider the spatial
part of the geodesic equations

d2Xi

dλ2
≃ −1

2

∂htt

∂Xi

cdt

dλ

cdt

dλ
(5.65)

which can be rewritten using Eq. (5.64) and leads to

d2Xi

dt2
= −c2 1

2

∂htt

∂Xi
(5.66)
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Comparison with the Newtonian equations yields

−c2 1

2

∂htt

∂Xi
= − ∂Φ

∂Xi
(5.67)

and therefore htt = 2Φ
c2

which in turn gives

gtt = ηtt − htt = −1 − 2Φ

c2
= −

(

1 +
2Φ

c2

)

(5.68)

For a spherically symmetric mass distribution in Newtonian gravity we
have

Φ(r) = −GM
r

(5.69)

which then corresponds to

gtt = −
(

1 − 2GM

c2r

)

(5.70)

Using gab = ηab + hab and its inverse one can in principle compute the
linearised Ricci and Einstein tensor and consequently one can study the
linearised field equations. This is for instance important when gravitational
waves are discussed.

5.5 Significance of the Schwarzschild solution

The Schwarzschild solution

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2dΩ2 (5.71)

is the most important known exact solution of the vacuum field equations.
An important feature of the components of the metric is that they be-

come singular at r = 2m and also at r = 0. This indicates that either we
used bad coordinates or there is a true geometrical singularity. It turns out
that the r = 2m hypersurface is well defined geometrically and one can con-
struct improved coordinates regular at r = 2m. On the other hand, r = 0
is a physical singularity where the notion of spacetime breaks down.

Let us consider the numerical value of the r = 2m surface’s radius in
physical units. One finds

rs =
2GM

c2
≈ 3

(

M

M⊙

)

km (5.72)
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where M⊙ ≈ 2 × 1030kg is the mass of the Sun. Hence, for ‘normal’ bod-
ies of astrophysical interest like the Sun, the Earth or a neutron star, the
Schwarzschild radius rs is well inside the radius of the body where the vac-
uum solution is no longer valid.

However, if a body undergoes complete gravitational collapse, its sur-
face will eventually disappear and be inside its Schwarzschild radius. Such
a situation is then described by the Schwarzschild solutions and the r = 2M
hypersurface will be of physical importance. Such an astrophysical object is
called a black and has many interesting properties. The r = 2M hypersur-
face of a black hole of mass M is called the event horizon.

Since the Schwarzschild solution describes the exterior of a spherical
mass distribution it is also the basis to predict deviations from Newtonian
gravity around the Sun or the Earth.

The three classical tests of general relativity are the perihelion precession
of Mercury, the deflection or bending of light by the Sun and gravitational
redshift of light. These three tests are based on solving or approximating
the geodesics of the Schwarzschild spacetime. Geodesics of the Schwarzschild
spacetime will be discussed in Section 6.

5.6 The Schwarzschild interior solution

As already discussed, the Schwarzschild solution describes the exterior space-
time of a spherical body. Next we are interested in modelling a general
relativistic star, an interior solution.

5.6.1 Field equations and conservation equation

Let us assume the star’s interior is described by a perfect fluid with energy-
momentum tensor

Tab = ρuaub + p(gab + uaub) (5.73)

where ρ and p are functions of r only. Note the sign difference to Section 3.7
because we now work with signature (−,+,+,+).

The static and spherically symmetric metric reads

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dθ2 + r2dΩ2 (5.74)

The fluid’s 4-velocity is given by

ut = e−ν/2 (5.75)
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and all others vanish, which yields gabu
aub = −1.

The components of the energy-momentum tensor are therefore

Ttt = ρ(−eν/2)2 + p(−eν + (−eν/2)2) = ρeν (5.76)

Tii = pgii i = r, θ, φ (5.77)

and therefore

Tab = diag(ρeν , peλ, pr2, pr2 sin2θ) (5.78)

By raising one index of the energy-momentum tensor, the metric functions
will disappear and we find

T a
b = diag(−ρ, p, p, p) (5.79)

Let us also compute the trace of the energy-momentum tensor

T = gabTab = T a
a = −ρ+ p+ p+ p = −ρ+ 3p (5.80)

Since we already computed the Ricci tensor components, it is useful to
use the field equations in the form

Rab = 8π(Tab −
1

2
Tgab) (5.81)

eν−λ

[

1

2
ν ′′ +

1

4
(ν ′)2 +

1

r
− 1

4
ν ′λ′

]

= 8π

[

ρeν +
1

2
eν(−ρ+ 3p)

]

(5.82)

−1

2
ν ′′ − 1

4
(ν ′)2 +

1

4
ν ′λ′ +

1

r
λ′ = 8π

[

peλ − 1

2
eλ(−ρ+ 3p)

]

(5.83)

1 − e−λ +
1

2
rλ′e−λ − 1

2
rν ′e−λ = 8π

[

ρr2 +
1

2
r2(−ρ+ 3p)

]

(5.84)

which are the (tt), (rr) and (θθ) components of the field equations, respec-
tively.

Before solving these equations, recall that the twice contracted Bianchi
identities imply the conservation of the energy-momentum tensor ∇aT

ab. In
our case this yields

∂aT
ab + Γa

acT
cb + Γb

acT
ac = 0 (5.85)

Of these four equations, only the b = r equation gives a non-trivial result

∂aT
ar + Γa

acT
cr + Γr

acT
ac = 0 (5.86)
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The first two terms are quickly computed

∂aT
ar = ∂rT

rr = ∂r(pe
−λ) = p′e−λ − pλ′e−λ (5.87)

Γa
acT

cr = Γa
arT

rr =

(

2

r2
+

1

2
(ν ′ + λ′)

)

pe−λ (5.88)

while the last term is

Γr
acT

ac = Γr
ttT

tt + Γr
rrT

rr + Γr
θθT

θθ + Γr
φφT

φφ

=
1

2
ν ′eν−λρe−ν +

1

2
λ′Pe−λ − re−λp

1

r2
− r sin2θe−λp

1

r2
1

sin2θ
(5.89)

Adding up these three terms lead to the conservation equation of a static
and spherically perfect fluid

p′ +
1

2
ν ′(ρ+ p) = 0 (5.90)

5.6.2 Tolman-Oppenheimer-Volkoff equation

Let us start solving the field equations by considering the combination
(5.82) + (5.83) + 2 × (5.84) which gives

e−λ

[

1

r
ν ′ +

1

r
λ′ + (2eλ − 2)/r2 +

1

r
λ′ − 1

r
ν ′

]

= 8π[4ρ]
1

2
(5.91)

Simplify this expression and multiply by r2 yields

e−λ
[

λ′r + eλ−
]

= 8πρr2 (5.92)

1 − e−λ + rλ′e−λ = 8πρr2 (5.93)

d

dr
(r − re−λ) = 8πρr2 (5.94)

Let us define the mass up to r by

m(r) =

∫ r

0
4πρ(r′)r′2dr′ (5.95)

and hence Eq. (5.94) becomes

r − re−λ = 2m(r) + C (5.96)
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where C is a constant of integration. Assuming a regular centre of the
perfect fluid sphere we set C = 0 and find

e−λ = 1 − 2m(r)

r
(5.97)

The combination (5.82) + (5.83) leads to

e−λ

[

1

r
(ν ′ + λ′)

]

= 8π(ρ+ p) (5.98)

Let us use

λ′e−λ =
2m′r − 2m

r2
= 8πρr − 2m

r2
(5.99)

which yields

e−λν ′ = 8π(ρ+ p)r +
2m

r2
− 8πrhor (5.100)

and finally we can solve by ν ′ and obtain

ν ′

2
=

1

r2
m+ 4πpr3

1 − 2m/r
(5.101)

Recall the conservation equation

ν ′

2
= − p′

ρ+ p
(5.102)

Combining both results yields a differential equation for the star’s pressure

p′ = − 1

r2
(4πpr3 +m)(ρ+ p)

1 − 2m
r

(5.103)

Collecting results:

p′ = − 1

r2
(4πpr3 +m)(ρ+ p)

1 − 2m
r

(5.104)

m′ = 4πρr2 (5.105)

e−λ = 1 − 2m

r
(5.106)

ν ′ = − 2p′

ρ+ p
(5.107)
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The differential equation for the pressure is known as the Tolman-Oppenheimer-
Volkoff (TOV) equation of hydrostatic equilibrium. Note that there are four
unknown functions, namely ν ,λ, ρ and p but only three independent equa-
tions. Likewise Eqs. (5.104) and (5.105) determine p(r) andm(r) but contain
three unknowns m, ρ and p. One further condition needs to be imposed to
close the system of equations.

From an astrophysical point of view it were natural to prescribe the
matter distribution ρ = ρ(r). This, however, often leads to a divergent
pressure near the centre. The most physical is to specify an equation of
state ρ = ρ(p) or p = p(ρ). For realistic equations of state, these equations
can in general not be integrated analytically.

5.6.3 Constant density stars

Let us assume the special case ρ(r) = ρ0 = const. which approximates a
very dense object like a neutron star or a white dwarf

m(r) = intr04πρ0r
′2dr′ =

4π

3
ρ0r

3 (5.108)

e−λ = 1 − 2m(r)

r
= 1 − 8π

3
ρ0r

2 (5.109)

Next, consider the TOV equation

p′ = −r4πp+ (4π
3 ρ0)(ρ0 + p)

1 − 8π
3 ρ0r2

(5.110)

Separation of variables yields

dp

(p+ ρ0/3)(p+ ρ0)
= − 4πrdr

1 − 8π
3 ρ0r2

(5.111)

The left-hand side can be integrated using partial fractions

∫

dp

(p+ ρ0/3)(p+ ρ0)
=

9

2ρ0

∫

dp

ρ0 + 3p
− 3

2ρ0

∫

dp

ρ0 + p

=
3

2ρ0
log(2ρ0(ρ0 + p)) − 3

2ρ0
log(ρ0 + p) (5.112)

while the right-hand side gives

−
∫

4πrdr

1 − 8π
3 ρ0r2

=
3

4ρ0
log

(

3(1 − 8π

3
ρ0r

2)

)

(5.113)
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Putting both terms together and adding a constant of integration gives

3

2ρ0
log

(

2ρ0(ρ0 + p)

ρ0 + p

)

=
3

4ρ0
log

(

3(1 − 8π

3
ρ0r

2)

)

+ C (5.114)

log

(

2ρ0(ρ0 + p)

ρ0 + p

)

= log

√

3(1 − 8π

3
ρ0r2) + C̃ (5.115)

2ρ0(ρ0 + p)

ρ0 + p
= C̄

√

3(1 − 8π

3
ρ0r2) (5.116)

Let us fix the constant of integration by

p(r = 0) = pc (5.117)

where pc denotes the central pressure and we get

2ρ0(ρ0 + pc)

ρ0 + pc
= C̄

√
3 (5.118)

Now insert the value of C̄ into Eq. (5.116) yields

2ρ0(ρ0 + p)

ρ0 + p
=

√

1 − 8π

3
ρ0r2

2ρ0(ρ0 + pc)

ρ0 + pc
(5.119)

This equation we now solve for the pressure

p = ρ0

(ρ0 + 3pc)
√

1 − 8π
3 ρ0r2 − (ρ0 + pc)

3(ρ+ pc) − (ρ0 + 3pc)
√

1 − 8π
3 ρ0r2

(5.120)

which is the star’s pressure as a function of the radius.
We define the surface of the star to be the vanishing pressure surface

p(R) = 0

(ρ0 + 3pc)

√

1 − 8π

3
ρ0R2 − (ρ0 + pc) = 0 (5.121)

√

1 − 8π

3
ρ0R2 =

ρ0 + pc

ρ0 + 3pc
(5.122)

which can be solved for R.
An important relation follows if we express the central pressure pc in

terms of the radius R, the energy density ρ0 and the mass of to R, the total
mass M

M = m(R) =

∫ R

0
4πr′2dr′ =

4π

3
ρ0R

3 (5.123)
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From Eq. (5.122) we find

√

1 − 2M

R
=

ρ0 + pc

ρ0 + 3pc
(5.124)

which we solve for the central pressure

pc = ρ0

1 −
√

1 − 2M
R

3
√

1 − 2M
R − 1

(5.125)

Since we are interested in astrophysical objects with finite central pressure
(regular centre), we find

pc <∞ ⇒
√

1 − 2M

R
>

1

3
⇔ 2M

R
<

8

9

!
< 1 (5.126)

A uniform density star with M > 4R/9 cannot exist in general relativity.
This result holds independently of the pressure p throughout the star. It in
particular implies that the radius of a static perfect fluid sphere exceed the
corresponding Schwarzschild radius.

We defined the mass up to r by

m(r) =

∫ r

0
4πρ(r′)r′2dr′ (5.127)

which is formally related to the mass in Newton’s theory of gravity. This
formal analogy must be read with care since the proper volume element is

√

3gd3x = eλ/2r2 sin θdrdθdφ (5.128)

where 3g denotes the determinant of the spatial part of the metric.
Hence, the proper mass up to r is

mp(r) =

∫ r

0
4πρ(r′)r′2

(

1 − 2m(r′)

r′

)−1/2

dr′ (5.129)

The difference between m and mp of the total masses (integration up to the
surface) can be interpreted as the gravitational binding energy. If R is the
surface of the star (p(R) = 0), then

Eb = mp(R) −m(R) (5.130)

which is strictly positive since mp > m.
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Finally, let us consider the Newtonian limit of the TOV equation p≪ ρ
and m(r) ≪ r. Then we find

p′ = −ρ(r)m(r)

r2
(5.131)

m′ = 4πρ(r)r2 (5.132)

which are the structure equations of Newtonian astrophysics. Their solutions
describe Newtonian stars.

6 Geodesics of the Schwarzschild solutions

6.1 Geodesic equations

Without loss of generality we can assume motion in the equatorial plane
θ = π/2, θ̇ = 0. The motion of massive and massless particles follows from
the Lagrangian

L = −
(

1 − 2M

r

)

ṫ2 +

(

1 − 2M

r

)−1

ṙ2 + r2φ̇2 (6.1)

with

L =

{

−1 m 6= 0 time-like geodesics

0 m = 0 null geodesics
(6.2)

Since the Lagrangian is independent of t and φ, there will be two con-
stants of motion, namely E (energy) and ℓ (angular momentum)

d

dλ

∂L

∂ṫ
=
∂L

∂t
= 0 ⇒ ∂L

∂ṫ
= const. (6.3)

and we write

−2

(

1 − 2M

r

)

ṫ = −2E (6.4)

E =

(

1 − 2M

r

)

ṫ (6.5)

Likewise

d

dλ

∂L

∂φ̇
=
∂L

∂φ
= 0 ⇒ ∂L

∂φ̇
= const. (6.6)
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2r2φ̇ = 2ℓ (6.7)

ℓ = r2φ̇ (6.8)

Substituting both constants of motion back into the Lagrangian we find

L = −
(

1 − 2M

r

)

E2

(

1 − 2M
r

)2 +
ṙ2

(

1 − 2M
r

) + r2
ℓ2

r4
(6.9)

which can be rewritten in the following way

1

2
ṙ2 +

1

2

(

1 − 2M

r

)(

ℓ2

r2
− L

)

=
1

2
E2 (6.10)

This equation shows that the radial motion of a geodesic is analogous to the
equations of motion of a test particle with unit mass and energy E2/2. The
motion is determined by the effective potential

Veff =
1

2

(

1 − 2M

r

)(

ℓ2

r2
− L

)

(6.11)

One can think of ordinary 1-dimensional non-relativistic mechanics

Veff =
ℓ2

2r2
− Mℓ2

r3
+ L

M

r
− L

1

2
(6.12)

ℓ2

2r2
centrifugal barrier term (6.13)

−Mℓ2

r3
new term: dominates over barrier term for small r (6.14)

L
M

r
normal Newtonian term −M/r (6.15)

Another useful quantity to consider is the spatial orbit parametrised by
the radius r. This means the curve φ = φ(r)

dφ

dr
=
dφ

dλ

dλ

dr
=
φ̇

ṙ
=

ℓ

r2
1

ṙ
(6.16)

From Eq. (6.10) we have

ṙ2 = E2 −
(

1 − 2M

r

) (

ℓ2

r2
− L

)

(6.17)

and therefore

dφ

dr
=

ℓ

r2

[

E2 −
(

1 − 2M

r

) (

ℓ2

r2
− L

)]−1/2

(6.18)
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6.2 Light deflection

use.eps

The deflection angle is given by

∆φ = φ+∞ − φ−∞ − π = 2φ(∞) − π (6.19)

For light rays, massless particles, we have L = 0 and we find

dφ

dr
=

ℓ

r2

[

E2 −
(

1 − 2M

r

)

ℓ2

r2

]−1/2

(6.20)

Since r(φ) is minimal at r0 we have

dr

dφ
(r = r0) = 0 (6.21)

E2 =

(

1 − 2M

r0

)

ℓ2

r20
(6.22)

Therefore

φ(r) =

∫ r

r0

ℓ

r′2

[(

1 − 2M

r0

)

ℓ2

r20
−

(

1 − 2M

r′

)

ℓ2

r′2

]−1/2

dr′ (6.23)

Note that all ℓ cancel. To find the deflection angle, we need to find φ(∞),
and therefore we have to evaluate

φ(∞) =

∫ ∞

r0

dr′
√

(

1 − 2M
r0

)

r′4

r2

0

− (r′2 − 2Mr′)

(6.24)
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Let us perform a change of variables u = 1/r′, du = −1/r′2 dr

φ(0) =

∫ 1/r0

0

du
√

(

1 − 2M
r0

)

1
r2

0

− u2 − 2Mu3

(6.25)

To first order in the mass M one can use the following trick to evaluate
this integral (like a Taylor expansion)

φ(0) = φ(0)[M = 0] +
∂φ(0)

∂M
[M = 0] ·M +O(M2) (6.26)

φ(0)[M = 0] =

∫ 1/r0

0

du
√

1/r20 − u2
=
π

2
(6.27)

∂φ(0)

∂M
[M = 0] =

∫ 1/r0

0

1/r30 − u3

1/r20 − u2
du

= −2 + r0u

1 + r0u

√

1/r0 − u2

∣

∣

∣

∣

1/r0

0

=
2

r0
(6.28)

which leads to

∆φ = 2φ(∞) − π = π +
4M

r0
− π +O(M2) ≃ 4M

r0
(6.29)

For a light ray passing nearby the Sun we have

r0 ≃ R⊙ ≃ 7 × 105 km (6.30)

M =
GM⊙

c2
≃ 1.5 km (6.31)

Using that π = 180 · 3600′′ we find

∆φ1.75′′ (6.32)

The deflection or bending of light has been observed during solar eclipses
beginning with the 1919 expedition of Eddington. This confirmed an im-
portant prediction of general relativity.

Newtonian theory predicts an angle of

∆φN =
2M

r0
=

1

2
∆φGR (6.33)

and hence experiments rule out Newtonian gravity.
Modern experiments analyse radio waves emitted by quasars; there is no

need to wait for solar eclipses using radio signals.
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