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This report outlines the possibility that the motions of particles and ob-
servers, and the description of electromagnetic fields, can take place in a frame-
work of a six-dimensional spacetime. This six-dimensional spacetime comprises
three dimensions of space and three of time. Attention will mainly be con-
fined to obtaining the six-dimensional equivalent of the usual four-dimensional
description of special relativity. The theory in six dimensions will be called
siz-theory, and the usual four-dimensional description will be called four-theory.
Proofs are not given in this account — they can be found in the references listed
at the end of the report.

We can get on very well by using a four dimensional spacetime in our every-
day lives, using only the simplest of theories in order to describe our experiences.
For example, since we move around at speeds which are very much less than
the speed of light, we do not notice relativistic effects such as time dilation
and length contraction. In this case, simple Galilean spacetime transforma-
tions involving a universal time are perfectly adequate for our purpose. Again,
the weak gravitational fields which affect our everyday lives are adequately ex-
plained using simple Newtonian gravitation theory. However, a description of
the behaviour of fast moving particles indicate that the simple Galilean trans-
formations must be replaced by the Lorentz transformations of special relativity,
in which space and time are inextricably linked, and in which time is not uni-
versal. Similarly, the description of strong gravitational fields must be given by
the theory of general relativity which is based on curved spacetime, rather than
by the simple Newtonian theory. Taking these stages further, a five dimensional
relativity proposed by Kaluza [17] and Klein [18] was introduced in order that
gravitational and electromagnetic effects be unified — this theory involves the
introduction of an extra space dimension. More recently, many more dimensions
have been introduced in string theory.

In short, we use an underlying spacetime structure which is as simple as
possible in order to describe the physical processes in which we are interested.
We recognise that the structure we employ is only one of an increasingly more
complex hierarchy of structures, and there is no reason to believe that there is
not an infinite hierarchy leading to a description involving perhaps an increasing
number of dimensions.

In describing six-theory, we do not assert that spacetime is six-dimensional,
only that it can be one element (and a fairly naive one at that) lying at the
lower end of this hierarchy. It merely means, for example, that the physical
processes of vanishing and the observation of apparent superluminal speeds
which are predicted in six-theory is best described by this particular element
of the hierarchy. Needless to say, the physical interpretation of three time
dimensions — how we measure them and why we haven’t noticed them — is
not straightforward.

Status of the assumptions in six-theory

We do not assert that time exists in a three-dimensional form, but we investigate
the consequences of it doing so. The theory that will be developed is simple,



and will be based on a minimum number of assumptions; it does not have the
sophistication of higher order theories. If it predicts consequences which are
directly contradicted by physical reality, then it must be discarded. Although
the theory involves motion in different time directions, it does not predict the
more lurid aspects of what is commonly regarded as ”time travel”. Again, one
criticism levelled at the idea of motion in different time dimensions is based on
the dramatic possibility of going back to kill your maternal grandmother before
she had a chance to give birth to your mother. If the theory proposed here
did predict that possibility, then the theory would rightly have to be discarded.
However, it is demonstrated later that, although it may be possible to go back
to encounter your grandmother, you certainly couldn’t kill her.
The six-theory presented here must be useful and consistent. It must

1. contain the four-theory based on a one-dimensional time as a special case;

2. explain why motion in the extra time dimensions is not a perceived every-
day occurence;

3. predict new and testable physical phenomena.

It is not assumed that there is a preferred time direction. Because time
appears to be one dimensional in our everyday lives, we do not assume that this
direction is especially singled out. Each observer will have his or her own time
direction, and it may be that everyday communication is possible only with
other observers whose time directions are in some sense coordinated with our
own. For example, the theory shows that objects can be seen to vanish from
the sight of an observer if the time paths of these objects differ from that of
the observer, and if other conditions are satisfied. Hence it may be that the
reality we experience is brought about because all of the objects we experience
have time tracks which are very nearly parallel to our own, and that objects
which have appreciably different time tracks will not be observed by us. It
may be that there are other classes of observers and particles whose time lines
are coordinated with each other, but not with ours; in this sense, the current
fashion for considering ”parallel universes” may yet hold some credance except,
of course, that in the context of six-theory it would make more sense to talk of
” non-parallel universes”.

Of course, the theory presented here would be toothless if it could not demon-
strate how an observer would be able to detect that an object moves in a different
time direction to his or her own time direction. The theory shows how an ob-
server can use the transmission to, and reception of reflected light signals from,
an object in order to measure the angle between his or her own time direction
and that of the object.

1 Overview of six-theory

Certain aspects of four-theory can be generalised into a six-theory description.
In particular,



e An observer is able to describe the motion of an object in terms of its
relative velocity and its time direction relative to that of the observer. Of
course, since velocity is a measure defined as a rate of change relative to
a time, we have to specify carefully what this particular time is.

e The nature of an inertial frame in six-theory must be carefully considered,
and transformation equations between the six spacetime coordinates used
by each inertial observer must be derived.

e A description can be given of the phenomenon of a particle vanishing
from the sight of an observer if its velocity relative to the observer is
adjusted appropriately. It can be shown that if O and O’ are two inertial
observers who are permanently visible to each other, then there will be at
least one particle P which is permanently visible to one of the observers
but permanently invisible to the other. This phenomenon of differential
vanishing could possibly lead to a description of dark matter in six-theory.

e It can be shown how the energy of a particle is now a wvector quantity,
and that an enormous quantity of energy must be supplied to an everyday
particle in order that its time direction can be changed by an appreciable
amount.

e All of the relative velocities described in the first point will be less than the
speed of light ¢. However, it can be shown how particles can be made to
behave as though they had travelled with apparent superluminal velocities
under certain experimental circumstances: particles must leave a source
and follow a time path which differs from that of the observer, only to
re-unite with that of the observer at a detector. This will necessitate the
use of a form of lens action at some point between the source and detector.
This lens would be localised in space, but would have an extent in the time
subspace. In the circumstances of such an experiment, six-theory predicts
a specific relation between the magnitude of the particle energy and the
apparent superluminal speed, and information taken from the plot of this
relation can be used to calculate the mass of the particle. This relationship
could be tested experimentally.

e Particle mechanics and decays can be discussed; it can be shown how some
interactions are allowed in six-theory on energetic grounds, which are not
allowed in four-theory without recourse to the uncertainty principle of
quantum mechanics.

e It can be shown how new electromagnetic fields can be defined.
e It can be shown how the Dirac equation can be extended into six-theory

We must start by discussing the difficult issue of the arrow of time.



1.1 The arrow of time

The concept of the arrow of time is central to the study of a six-dimensional rela-
tivity in which time is three-dimensional. More correctly, in the six-dimensional
relativity which is described in this text, the concept must be studied as a two
part process: (i) that we must allow for a non-zero angle in the time subspace
between the time tracks of the observer and an observed object, and (ii) that
we can associate directions to these time tracks.

The first process follows naturally if we make the assumption that time is
three-dimensional. Without attaching any directions to the time tracks at the
moment, the angle between the track of the observer and the observed object can
be characterised by a non-obtuse angle whose value will be observer-dependent.

A discussion of the second process — attaching an arrow to the time track of
an object — carries with it all of the baggage and angst that has accompanied
discussions of time’s arrow in four-theory. This discussion has centred on several
processes which have gone into a study of time’s arrow [22, 24], involving the
psychological arrow, the biological arrow, the thermodynamic arrow, the cosmo-
logical arrow, and the radiative arrow. It is widely considered to be the case
that all of these arrows point in the same direction.

We can use the entropy change of a system to associate an arrow of time to
a system, but we must also be able to attach an arrow of time to entities which
seem to have no internal structure. This comes about because, as we shall see,
the energy of an entity will be a vector quantity whose direction lies in the time
subspace. The conservation of energy as a vector in interactions will require
that all participants in the interaction have their own time direction.

1.2 Imertial frames

The use of inertial frames is essential to the study of special relativity, and
these must be discussed before the properties of the spacetime transformations
are derived. In order to set the scene for a discussion in six-theory, it is necessary
to give a brief account of the situation in four-theory.

Inertial frames in four-theory

In four-theory, each observer will make measurements in three spatial dimen-
sions, and will use a clock which measures a single time coordinate. The defini-
tion of an inertial frame makes reference to Newton’s first law of motion:

Newton’s first law of motion in four-theory: A free particle remains at
rest or moves with constant speed in a straight line.

Based on this law, an inertial frame in four-theory is defined in the following
way:

Definition (Inertial frame in four-theory). An inertial frame in four-
theory is a frame of reference used for measuring the spatial and time coordinates
of events such that

(i) rigid spatial scales determine spatial relations which are Euclidean,



(ii) a universal time exists at each point of the frame, and
(iii) Newton’s first law of motion holds when velocities are measured using this
universal time.

Part (i) of this definition must be qualified by realising that the notion of
rigidity is a property which is frame-dependent.

Part (ii) of the definition relates to a universal time. The idea here is that
we can imagine clocks at rest at each spatial point of the frame, and that each
clock tells the same time and runs at the same rate as all the others. This idea
of a universal time is weaker than that envisaged by Newton, who regarded time
as being universal for all observers; now, we regard the universality of time as a
frame-dependent property. In fact, it turns out that, according to the theory of
special relativity, time is not universal for all observers. The clocks which are at
rest at different points of an inertial frame can be synchronised by transmitting
light signals to them from a standard clock situated at the spatial origin O of
the frame.

Part (iii) of the definition then states that Newton’s first law holds when
velocities are defined in terms of Euclidean spatial displacements and the uni-
versal time which is supposed to exist throughout the frame. It follows that
if S is an inertial frame, then any other frame S’ is inertial if and only if it is
moving relative to S with constant velocity and without rotation.

Inertial frames are central to the description of special relativity. However,
they do not exist: they can be realised only approximately, in regions in which
gravity is considered negligible.

Ezperimental determination of v in four-theory

A particle moves in a straight line with a constant speed v in the inertial
frame S. For simplicity, we will consider the special case in which the particle
is moving radially relative to the observer who is at rest at the spatial origin
O of S. The situation is shown in Figure 1, in which the worldline DD’ of the
particle has slope v in the ¢t — 2 plane. It starts at a distance x = x¢ at time
t = 0. A light pulse is sent from the observer at event A, reaches the particle
at the event D, and is then immediately reflected back to reach the observer
at the event B. Let the times T4 and Ty correspond to the events A and B
respectively. Then the pulse can be characterised by the two quantities

T = %(TA + TB) and AT = %(TB — TA)

where T is the mid-time of the pulse, and AT is the half-width of the pulse.
Both of these quantities can be calculated once the times T4 and Tg have been
recorded. Then the pulse will reach the particle at the time 7', and the distance
ED of the particle from the observer at this time will be ¢AT. Hence it follows
that

zg +vT = cAT. (1)

Note that there are two unknown quantities xg and v in this equation, and
hence we must make measurements on at least two such pulses. Applying this
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Figure 1: The worldline DD’ of a particle moving with speed v in the ¢t — x
plane of the inertial frame S. The slope of this line is v, and it passes through
the point given by ¢t = 0 and z = z¢. A light pulse is sent from the observer at
the event A, received at the particle at the event D, and immediately reflected
back to reach the observer at the event B. The observer records the times of
transmission and reception as T4 and T’ respectively.

formula to two pulses whose measurements are characterised by suffices 1 and
2, we have

pulse 1 zo + v = cATy
pulse 2 zo + V15 = cAT.

On eliminating the quantity zo between these two equations, we eventually find

v ATQ — ATl

e )

C T2 — T1
Hence by measuring the transmission and reception times T4 and T for each
pulse, the speed v of the particle can be determined by the observer through
Equation (2). In particular, if g = 0, then this result becomes

v AT

and the condition zy = 0 ensures that the quantity AT/T is independent of
which pulse is used.

In the more general case in which the motion is not necessarily radial, then
further pulses must be recorded in order to provide further equations from which
the extra offset factors can be determined.

Inertial frames in siz-theory

The definition of an inertial frame in four-theory must be modified in six-theory,
since time is now described by three independent coordinates. There is clearly



no problem in retaining part (i) of the definition when a three dimensional time
is used. The main change must be made to part (ii), and this change will
be accomplished in the following way. There will be three standard clocks at
the spatial origin O of the inertial frame .S, one for each time direction. At any
other spatial point in the frame, there will also be three clocks, one for each time
direction. Each of these clocks is then synchronised with the corresponding clock
at O by sending appropriate pulses of light. Time displacements obey Euclidean
relations in the time subspace, and universal time displacements will then exist
in the frame. Part (iii) is considered to hold when velocities are measured
relative to this universal time; of course, we must now describe carefully how
the velocity of a particle is defined in terms of a particular time direction which
is associated with the particle.

Since displacements can now be made in different time directions, Newton’s
first law of motion must be modified. It will be replaced with

Newton’s first law of motion in six-theory: A free particle remains at rest
or moves with constant speed in a straight line in space, and moves in a straight
line in time.

Based on this modified form of the law, an inertial frame in six-theory is defined
in the following way:

Definition (Inertial frame in six-theory). An inertial frame in six-theory
is a frame of reference used for measuring the spatial and time coordinates of
events such that

(i) rigid spatial scales determine spatial relations which are Euclidean,

(ii) a universal time exists in each time direction at each point of the frame, and
time relations are Euclidean,

(iii) Newton’s first law of motion holds when the velocity of each particle is
measured using a universal time along a time track which is associated with the
particle.

Ezperimental determination of v and time direction in siz-theory

The process of determining the speed and time direction of a particle in the
inertial frame of an observer is necessarily more complicated than in the four-
theory case. But the process can again be carried out by the observer sending
light signals to, and receiving reflections from, the particle.

1.3 Postulates of six-theory
The following list of postulates will form the basis of our six-theory.

1. Time is three dimensional.

2. The worldline of any particle is directed.

[Note: the projection of the worldline of the particle into the time sub-
space is directed by attaching an arrow of time, and this direction is then
projected upwards onto the worldline.]



3. There exists a limiting speed ¢ such that if a particle is seen to be travelling
with speed ¢ in one inertial frame then it will be seen to be travelling with
speed c in any other inertial frame.

[Notes: (i) experiment identifies the value of ¢ = 2.998 x 103ms~! to be the
speed of light in a vacuum, (ii) speed is determined as the rate of change of
distance with a time parameter; in the framework of a three-dimensional
time, this time parameter will be measured along the projection of the
particle’s worldline into the time subspace.]

4. Einstein’s special principle of relativity: all inertial frames are equivalent
for the formulation of all physical laws.

1.4 From six-theory to four-theory: the four-theory limit

Generally speaking, four-theory involves the use of 4 x 4 matrices and four-
component vectors, while six-theory involves the use of 6 x 6 matrices and
six-component vectors. Six-theory will also make use of vector displacements in
the time subspace, which is now three-dimensional. Hence many of the normal
scalar equations of four-theory will be replaced by vector equations in six-theory.
Further, results will often be obtained which explicitly contain angles between
time vectors. If our six-theory is to be viable, it must contain four-theory as a
special case.

The four-theory limit enables the standard results of four-theory to be ob-
tained from those of six-theory. In practical terms, we will see that this limit
can be obtained when

e the time vectors of all particles and observers are taken to be parallel,

e all time angles are put equal to zero, or are taken to zero in a limiting
process.

Clearly, these two limits are equivalent, but each is useful in its own context.
The first of these two limits is useful in transforming vector time equations into
scalar equations: for example, in transforming the vector mass-energy relation
of six-theory into the corresponding scalar equation of four-theory. The second
of these two limits is more appropriate for use in expressions in which time
angles appear explicitly: for example, in obtaining the Lorentz transformation
equations of four-theory from those of six-theory in which time angles appear
explicitly.

2 Summary of the results

We now present a brief summary of our approach to six-dimensional relativity,
and of some of the important results which will be derived in subsequent chap-
ters. Reference will be made in the following sections to the notions of 6-vectors,
in particular to the 6-momenta and 6-velocities of particles These concepts are
defined as natural extensions of the 4-vectors of four-theory.



2.1 Space and time transformations in six-theory

The basis of six-theory is a description of the spacetime transformations, but
first the corresponding transformations in four-theory will be described. The
superscript 7" will denote the transpose of a matrix throughout the work.

Transformations in four-theory

Let S and S’ be two inertial frames moving with relative velocity v in .S and v’

in §’, and let the coordinates of an event be described by X = (2,y, z,ct)T =
(r,ct)T in frame S and X' = (2',y', 2", ct)T = (v',ct')T in frame S’. The linear
transformation equations are of the form

X' = A(4)X + Xo

where A(4) is a 4 X 4 matrix whose elements will be functions of the velocities v
and v', but are independent of the space and time coordinates. The quantity Xg
is a constant four-component vector. The requirement of light-speed invariance
which leads to the result

—dr”? + Adt’? = —dr® + Adt?
will mean that
T
Al GaAa) = Gy

where G(4) is a 4 x 4 diagonal matrix G(4) = diag{—1,—1,-1,+1}. At its
simplest (for frames which are in standard configuration which will be described
more fully shortly), these transformation equations take the form

' = y(x—vt)
y =y
Z =z
; (4)
t = v (t - c%iﬁl)
2
where Yo = (1 — 2—2) ’
with |v/| = |v|. These are the special Lorentz transformations.

Transformations in siz-theory

The situation regarding the spacetime transformations in the six-dimensional
case, in which time is three-dimensional, is described as follows [1, 2, 3, 4, 5, 10,
12, 14]. In the inertial frame S, an event will now be located at the space and
time points given by

x tl
r=| y = (x,y,z)T and t=| t = (tl,tg,tg)T
z t3

10



respectively. The position in S of a particle in spacetime will be specified by
these six coordinates, and its worldline will now have a direction of motion in
time as well as in space. In particular, in specifying the transformation equations
between two observers, we must now specify the time directions, as well as the
velocities, in each frame of the other’s spatial origin. This is done as follows:

e As seen in frame S, the spatial origin O'of S’ will have a time direction
along the unit vector aos. It will have a velocity vo: = dr/dto:, where
dtor is measured along the direction ao:.

e As seen in frame S’, the spatial origin O’ of S’ will have a time direction
along the unit vector ey, . Its velocity in this frame is vy, = 0.

e As seen in frame S’, the spatial origin O of S will have a time direction
along the unit vector ay,. It will have a velocity vi, = dr’/dt;,, where dt;,
is measured along the direction ay,.

e As seen in frame S, the spatial origin O of S will have a time direction
along the unit vector ap. Its velocity in this frame is vp = 0.

Since there are only two velocities in this specification which are not generally
zero, there will be no confusion in writing v = vo and v/ = vy,.

Writing X = (r,ct)” and X' = (¢, ct’)T for the spacetime coordinates of
an event in frames S and S’ respectively, the transformation equations will take
the form of a linear matrix equation

X'=AX + X (5)

where A is a 6 x 6 matrix. Its elements will be functions of the velocities v and
v’, and of the unit time vectors aor, ayy, oy and ap. but are independent of
the space and time coordinates. The quantity X, is a constant six-component
vector. The requirement that

—dr”? + Adt"”? = —dr? + 2dt?. (6)
will mean that
ATGA =G (7)

where G is a 6 x 6 diagonal matrix G = diag{—1,—1,—1,+1,+1,+1}. (In line
with our very short introduction to the situation in four-theory, we should really
denote this matrix by G ), but we will only be dealing with this matrix from
here on, so we may dispense with the suffix). More specifically, the matrix A

can be written in the form
A P
(an) ®)

At = GATG = < _‘fT }?f) 9)

A

11



where the matrices A, P, Q and R are all 3 x 3 matrices. These matrices will
be functions of the velocities v and v’, and of the unit time vectors aor, ayy,
ap and ao.

In order to make the resulting equations easier to work with, it is possi-
ble to take a form of standard configuration in six-theory: this will not be as
straightforward as in the four-theory version. In this configuration, we take the
corresponding spatial axes to be parallel, with relative motion along the parallel
z and ' axes. The position in the time subspace is not so simple: we are not at
liberty to say that the unit time vectors of the spatial origins are parallel. The
simplest specification is to take the time vector ap parallel to the ¢; axis, the
time vector ay,, parallel to the ¢} axis, the time vector avor in the t; — ¢5 plane,
and the time vector ay, in the t] — ¢, plane. Specifically, we will take

In frame S : v = (v,0,07
ao = (1,0,0)7
ao = (cosf,sinf,0)T
In frame S’ : v = (=v,0,0)7
ap = (1,0,0)7
ap = (cosh sing’, 0)7,

where 6 and 6’ are angles in the time subspaces of S and S’ respectively. It can
be shown that

Vo QO-QO = Yy QO or 7y, cos =y, cost (10)

(e
Yo = —c—2 .

The matrix A will be shown to be functions of the quantities v, v', 8 and 6'.

An important part of our six-theory formulation is to demonstrate how we
can experimentally determine the values of v and 6 for a particle moving in an
inertial frame S. It is possible to show how these values can be determined by
bouncing several light pulses off the particle and measuring the transmission
and reception times for each pulse. This is similar to the process of determining
v alone in four-theory, but in six-theory we must also take timings on clocks
which have different time directions.

The four-theory limit can be obtained by putting sinf = sin§’ = 0 and
cosf = cos@’ =1 in all of the elements, yielding the result

where

Yo 0 0 _'Yv% 0 0
0 1 0 0 0 0
0 0 1 0 0 0
A= (11)
_'Yv% 0 0 Yo 0 0
0 0 0 0 1 0
0 0 0 0 0 1

12



Equation (10) will also reduce to the result
Yo = Yo'y OF |V| = |Vl|a (12)

which is the correct result in four-theory.

2.2 Vanishing

One of the most important and dramatic predictions of our six-theory is that
an object may disappear from the sight of an observer if certain conditions are
met [13, 15, 16]. This phenomenon depends on the parameters of the motion,
in both space and time, of the particle relative to the observer: there will be
other observers for whom the particle will not disappear.

Of course, this phenomenon is not predicted in four-theory. In that theory,
the persistence of a particle is governed by the interaction of its worldline with
the light-surface of the observer, and light from the event at the spacetime point
(z,y, z,ct)T will reach the observer at the spacetime point (zq, 9o, 20, ctg)” where

(z —20)” + (y —y0)* + (z — 20)” = > (t — to)”. (13)

If light from a particle reaches the observer at the event (zo,%0, 20, cto)?, it is
easily demonstrated that, since the particle is moving relative to the observer
with a speed less than ¢, then light from it will continue to reach the observer
(unless, of course, the particle is annihilated or light from it is blocked by other
bodies).

The situation is more complicated in six-theory. In this case, light from any
event which occurs at the spacetime point (z,y, 2, ct1, cty, ct3)T will reach the
observer at the spacetime point (zg, o, 20, cti0, Ct20, ctzg)”T where

(—20)>+(y—y0)> +(2—20)” = ¢ ((t1 — t10)” + (t2 — t20)” + (t3 — t30)°) . (14)

In six-theory, it can now be proved that persistance of sight of a particle by an
observer is not guaranteed, and a particle can effectively vanish from the sight
of an observer, even though the particle is neither annihilated nor has its light
blocked by other matter. Specifically, suppose that the particle is moving with
a constant velocity v relative to an observer, and the time angle between the
observer’s time direction cp and the particle’s time direction 3 is 8. Then it
can be shown that

o If the vanishing condition
|v| < ¢|sinb], or  Yyjcosf <1 (15)

holds, then there may be times 73 and 74 for the observer such that the
particle will be visible to the observer in the time interval (73,74), but
will not be visible at any time up to 73 and after time 74,. The particle
will effectively disappear from the sight of the observer after time 7y4.
Equation (15) is never satisfied in four-theory.

13



e If the condition
[v] > ¢|sinb)|, or  yyjcosf >1 (16)

holds, then the particle will remain visible to the observer up to a time 7
and for ever after a time 75 on the observer’s time path. It may become
invisible in the time interval (71, 72) if 71 < 7. This is the situation which
holds in the four-theory limit in which 71 > 7.

Notice that the vanishing condition |v| < ¢|sin | is not necessarily a relativistic
effect. In fact, it places no minimum restriction on the value of |v|, and it holds
even more readily in the non-relativistic case for which |v| << c.

One possibility of this vanishing phenomenon lies in the partial description
of dark matter. It has been shown [13] that matter which an observer cannot see
(by virtue of the vanishing condition) is able to influence the behaviour of other
matter which the observer can see. In this way, visible matter will appear to
be acted on by other matter which is not visible. Using six-dimensional special
relativity only, we will derive an estimate of the proportion of dark matter
in the universe: let the the function f(v) be the distribution function of the
speeds v of the matter in the universe. Then the proportion of dark matter in
the universe, as predicted by the special six-theory only, will be shown to be
i = {7,71) where the average (.) is taken over the distribution function f(v).
For example, a simple decreasing distribution f(v) = 4/(me)v,~! will predict
a dark matter percentage of 84.9%, a constant distribution f(v) = 1/c will
predict a dark matter percentage of 78.5%, while a simple increasing distribution
f() =2/(wc)y, will predict a dark matter percentage of 63.7%

2.3 Particle mechanics

It is known that the equations of Newtonian mechanics in four-theory are in-
variant under a classical Galilean transformation, and that certain assumptions
must be relaxed if the equations of mechanics are to be invariant under the
Lorentz transformations which are given in Equation (4). In four-theory, the
use of plausible assumptions leads to the energy-mass relation E = mc?, which
is a scalar equation. This treatment can be extended naturally in six-theory,
and leads to the conclusion that energy in now a wector quantity [6, 9]. This,
in turn, will lead to a plausible reason for the observation that time appears to
be one dimensional in our everyday lives.

Particle mechanics in four-theory

We will look first at the situation in four-theory. Suppose that a particle has a
rest mass mg; that is, mg is the mass of the particle as measured by an observer
for whom the particle is at rest. If the particle then moves with an instantaneous
speed w relative to the observer, its 4-velocity in the frame of the observer is
defined to be

P* = moye(w,o)T.
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When it is assumed that total 4-momentum is conserved at the event of a particle
collision or decay, it is found that the mass of the particle in the frame in which
it is moving with instantaneous speed w is

m = MgYa
— that is, its mass increases as its speed increases.

Particle mechanics in siz-theory

This treatment is easily extended to six-theory. We must now use the 6-
momentum
P* = moy(w,e8)7.

where 3 is the unit time vector of the particle in the frame of the observer.
Using arguments which are similar to those used in four-theory, we can now
deduce that the energy of the particle is now a vector quantity which is given
by

E =mc*B (17)

— that is, the energy of the particle in the inertial frame is now a vector which
is directed along the time direction of the particle.

It follows that the equations which represent conservation of energy are now
vector equations. In particular, consider the case of a particle with rest mass
myg at rest with time vector e in an inertial frame S. A vector energy Ae is
then applied to the particle which makes it move with a speed w and a new
time vector 3. Then its time vector has been turned through an angle § where
cosf = ap.3, and these quantities will obey the energy conservation condition

Mo ywB = moctag + Ae. (18)

It can be shown that not all applied energies Ae will produce a change, meaning
that not all applied energies will be absorbed. Since v,, > 1, it can be proved
from Equation (18) that the applied energy Ae will be absorbed only if it obeys
the condition

1
‘ Ae + oy

mocC

5 > 1. (19)

There are two main consequences of the vector energy conservation equation
which can be described here: the first provides an indication why we do not
notice the turning of time vectors in our everyday lives, and the second provides
a condition on the applied energy in order to produce vanishing.

o It will follow from Equation (18) that the minimum energy magnitude
|Ae|min required to turn the time vector of the particle through an angle
6 is given by

1
|Ae|min = 2moc? sin 50. (20)

For example, for an object with mass mg = 1kg , the minimum energy
magnitude required to turn the time vector through an angle of 1° can be
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calculated to be 1.57x10'5J: this is roughly equivalent to the energy release
of a 375kton explosion, or the equivalent of twenty nine Hirosima atom
bombs. The practical aspects of producing this turning are formidable:
not only must the object be able to survive the absorption of this energy
unscathed, but the energy must also be directed precisely in the time
subspace away from the object’s initial time direction. This energy is
just not available on an everyday basis, and indicates that the objects
we see in our everyday lives do not readily change their time directions.
On the other hand, the minimum energy magnitude which is required
to turn the time vector of an electron through 1° can be calculated as
1.43 x 107*2J, and hence the energy magnitudes needed to turn the time
vectors of quantum particles is greatly reduced.

e Whether or not the vanishing condition of Equation (15) holds for a par-
ticle is directly related to the energy applied to the particle. In order to
produce a change in the particle’s motion, the energy Ae supplied to the
particle must satisfy the condition in Equation (19). It can be shown that
if the applied energy Ae satisfies the condition

—2moc® < ap.Ae < 0, (21)

then the particle will eventually disappear from the sight of the observer.
On the other hand, the long-term persistance of the particle will be guar-
anteed if either of the conditions

ag.Ne < —2moc® or 0< ag.Ae (22)

are satisfied.

2.4 Particle interactions and decays

In the context of a three dimensional time, the concepts of ”before” and ”after”
are not well defined, although each observer will have an idea of what these
notions mean. The concepts of ”before” and ”after” now become observer-
dependent. These considerations particularly apply to the study of particle
collisions and decay, which will be described collectively as particle interactions.
The four-theory idea of the 4-momentum being conserved at the event of a par-
ticle interaction cannot now be described, in an observer-independent manner,
in terms of before and after interaction. However, all observers will agree on the
directions of the time vectors of the participating particles, whether they either
enter or leave the interaction event. Consequently, we will write down an equa-
tion of conservation of 6-momentum in which terms on one side of the equation
relate to particles whose time vectors enter the interaction region while those
on the other side relate to particles whose time vectors leave the interaction
region. Specifically, each particle d which participates in the interaction will be
assumed to have a family function ®(d) associated with it: this function will
be a vector whose elements will include baryon number, lepton number, charge,
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and other relevant quantities. A collision event C' which involves the m + n
particles a1, as ..., am,b1,bs,...,b, will be denoted by

EC = [alag---am,blbg---bn]. (23)

The particles a; (i = 1,...m) to the left of the separating comma will always
denote particles whose time vectors enter the interaction, and the particles
bj (j = 1,...n) to the right of the separating comma will always denote par-
ticles whose time vectors exit the interaction. The ordering of the particles a;
among themselves is not important, and the ordering of the particles b; among
themselves is not important. Let P#(d) denote the 6-momentum of a particle
d. Then the interaction E¢ given in Equation (23) will be described as valid if
total 6-momentum and total family function are conserved in the form

Y Pra) =Y Pr(by) (24)

and
n

m

S d(a) = 3 a()). (25)

i=1 j=1
Since all observers will agree on whether a particle’s time vector enters or leaves
the interaction event, they will all agree on whether a term should appear on
the left hand sides or the right hand sides of these two equations. Now let the
6-velocity of an observer O be U (“O). Then the particle d will be classified as a
particle or an antiparticle according to the prescription

PH(d)Uoy, >0 : dclassified as a particle by observer O,
PH(d)Uoy, <0 : d classified as an antiparticle by observer O, (26)
PH(d) Uy, =0 : d classified as a zeroparticle by observer O.

Notice that the class of zeroparticle will be practically empty, since any small
deviation of the quantity P*(d)Up), from zero will push it into either the
particle or antiparticle classification. Table 1 shows how the initial/final and
particle/antiparticle classification of a particle d is made for any observer O.
The signs + and — refer to the sign of P*(d)Uo),, and ”in” and "out” indicate
if the time vector of the particle d is entering or leaving the collision event. Then
by taking the inner product of Equation (24) with the 6-velocity U(“O) of the
observer O, and re-arranging the terms in such a way that each side contains
only positive quantities, the before/after and particle/antiparticle nature of the
interaction is specified for that particular observer. Such a re-arrangement of
the terms will be described as an observer-dependent instance of the interaction.
Other observers will have their own, perhaps different, re-arrangements of the
terms.

Let d denote the antiparticle equivalent of the particle d. Then, for example,
the interaction [a;,b1bs] will have a full list of possible instances as

a — by +b
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Table 1: The initial/final and particle/antiparticle classification of d made for
any observer O. The signs + and — refer to the sign of P*(d)Uo),, and "in”
and ”out” indicate if the time vector of the particle d is entering or leaving the
collision event.

d initial final
particle +, in + , out
antiparticle — , out — ,in
in out
+ initial particle final particle
— final antiparticle initial antiparticle
a; + E — by
a; + E — b
bi+by — ar
by — ar+ by

E — a+b1.

It is easily seen that the full list of instances cannot contain those two which
have zeros on either side. For our example, this means that the instances

a1+E+E — 0
0 — ar+0b+bs

will not be valid. Not all other instances will be valid: let the rest masses of the
particles a;, by and b be My, m; and ms respectively. Then it can be shown
that the decay ay; — by + bs is a valid instance only if

|T)’l12 — m22| < M02, (27)

and if this relation is not satisfied, then there will be no observer for whom the
above decay will be valid. In particular, let the particle be at rest in the frame S
of the observer for whom the above decay is valid, and let the resulting particles
by and by have time directions which make angles #; and 6, with that of the
initial particle. Then one component of the energy part of the conservation
equation (24) will give

Mo = m17yu, cos 01 + M2y, cos b (28)
where w; and we are the speeds of the resulting particles immediately after

collision. This result shows that 7, cos§; < Mg/m; for both j =1 and j = 2,
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and hence it can be seen from Equation (15) that the final particle with mass
m; will vanish from the observer’s sight if m; > My. It can also be shown
that the resulting particles will either both vanish from, or both persist in,
the sight of the observer — they will both vanish if m; 4+ ms > My, and will
both persist if mq + ma < My. Note that Equation (28) does not imply that
My <mq + -+ my, as it would in four-theory.

It further follows from Equation (27) that a necessary condition for the
virtual decay a1 — a1 + b to be valid is

me < \/QMO.

For example, it can be shown for the virtual decay p — p + 7% that the values
of the quantity ~ cos for the final proton p and pion 7° are 0.9896 and 0.0720
respectively; both of these values are less than unity, and show that the final
particles will vanish. As a second example, the neutron decay n — p+e~ + 7 is
a valid instance of the interaction [nv., pe~] in both four-theory and six-theory.
Although the decay p — n + e + v, is not a valid instance of the interaction
[pe~,nv.] in four-theory, it is possible to find at least one observer for whom
the decay is valid in six-theory.

2.5 Apparent superluminal velocities

In late September 2011, neutrinos which were generated at Cern near Geneva,
were received in Gran Sasso in Italy at the detectors of OPERA (Oscillation
Project with Emulsion tRacking Apparatus).The neutrinos had travelled a dis-
tance of approximately 730 km, and appeared to have travelled at speeds greater
than the light speed c. It has since emerged that faulty wiring in the measuring
apparatus was responsible for erroneous results, and a subsequent repeat of the
experiment has produced no superluminal speeds.

However, such apparent superluminal speeds can be predicted by six-theory
under certain experimental circumstances: the emitted particle must leave a
source and follow a time path which differs from that of the observer, only to
re-unite with that of the observer at a detector. This will necessitate the use of
a form of lens action at some point between the source and detector. This lens
will be localised in space, but will have an extent in the time subspace. In this
picture, the particle will leave the source at the event A and travel in a straight
spatial line with a constant speed w4 and with its time vector making a constant
angle 14 relative to that of the observer. It then encounters the lens, and leaves
it to travel at a constant speed wp and time angle ¥p to meet up with the
detector at event B. Since the energy of the particle is now a vector quantity
which is directed along the time vector of the particle, and since the time vector
of the particle must change in its passage from the source to detector, then the
energy of the particle must change by a non-zero quantity Ae at the lens.

We will use the suffix ob (denoting observed) to denote quantities in our
equations which are directly measurable. There is no available measured data,
but we will illustrate the calculations by using the data that the OPERA re-
searchers thought they had produced. This data includes the distance X,; over
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which the particles have travelled, the time Tj;45; it would take light to travel
that distance, and the time T,; actually taken by the particles. Since the parti-
cles appeared to travel faster than the speed of light, they arrive more quickly
at the detector than light would have done by an amount ATpy = Tiignt — Tob,
which has been measured at (57.8 £7.8) x 10~ ?s. The observed apparent speed
wyp 18 therefore greater than the light speed c.

This observation of apparent superluminal speeds can be explained in the
context of six-theory. In its passage from the source to detector, let the instan-
taneous speed of the particle be w (which is not greater than ¢), and let ¢ be
the instantaneous time angle between the time directions of the particle and the
observer. Then one of the main result which can be derived is

1 /cosy
wob_< w >

where (.) denotes an average value over the spatial displacement of the particle.
Since w,, > ¢ and w < ¢, then there must be at least one non-zero value of the
time angle 1. In the context of a lens action, this means that at least one of the
angles ¥4 and ¢ p must reach a required minimum value, which in the case of
the data from the OPERA experiment will be calculated as (6.884 + 0.465) x
103 rad. Again, it is tempting to ask if there is a maximum extent, or aperture,
to the lens action in a time direction which is perpendicular to the time direction
of the observer, and an extremely crude calculation based on the OPERA data
produces a value of 8.40 x 10~ %s, or approximately 2.52 light-kilometers.

In developing the theory, it turns out that there are fewer available equations
than unknown quantities. For example, the spatial displacement of the lens be-
tween the source and detector will enter the equations, but this displacement is
not known. Again, the thickness of the lens is not known, and the energy change
Ae at the lens is also unknown. Hence the equations must be supplemented with
a number of plausible assumptions. In particular, even though the direction of
the particle energy must change at the lens, there is no such requirement on
the magnitude e of the energy. If it is assumed that this magnitude does not
change, then the theory predicts that the apparent observed superluminal speed
wep 18 given in terms of this energy by the relation

% =[x —mo*c [k 7] ( 1 )

¢ e?

where square brackets [.] denote an average over many passages with [k?]
taken as a constant, and mg is the rest mass of the particle. Then a plot
of [wep?]e/c® against 1/e? should result in a straight line which has a slope
—mo2ct[k~?] and which, if extrapolated backwards, will cross the [wq?]e/c?-
axis at the value [k~2]. A similar relation holds between [AT]. and 1/e?
and, providing that the experiments can be repeated sufficiently carefully with
different prepared energies e of the particles leaving the source, these relations
could provide falsification or partial verification of the theory. The result shows
that both w,, and AT, cannot grow indefinitely with e, and both have upper
limits.
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Apparent superluminal speeds cannot be allowed in four-theory without hav-
ing to abandon the mass-energy relation, and this fact produced much hand-
wringing in the scientific community when the OPERA experimental findings
were initially released. But in producing apparent superluminal speeds we can
retain the mass-energy relation if we move to six-theory; it seems to me that
moving to a vector energy is a smaller price to pay for retaining the mass-energy
relation than staying with four-theory and abandoning it altogether.

2.6 Multitemporal ballistics

Two particles are at rest relative to an observer, and all three have the same time
vector ag. Can we find an explosive energy e which, when detonated to propel
the particles in opposite directions, allows one or both particles to vanish? Of
course we know from the lack of vanishing in four-theory that the directions of
both e and ag must be different.

The problem is formulated as follows: two particles 1 and 2 have rest masses
my and mo, and are at rest relative to an observer who is at rest in an inertial
frame S. The particles and observer initially have the same time vectors ao.
They are packed together with an energy source e such that the angle in the
time subspace between e and «y is ¥, so that cosy) = ag.e/e where e = |e|.
In order to be able to make a smoothe transition to the four-theory limit in
which 1) = 0, we must restrict our considerations to the case 0 < ¢ < 7/2. The
energy source is then released to propel the particles so that, for ¢ = 1,2, the
1th particle has speed v;, 3-momentum p; and time vector 3;. The vanishing of
particle ¢ will be decided by the condition

Ii=ywap,<1,

and we must calculate this value by manipulating the conservation equations
for 3-momentum and 3-energy. These equations are

0 = p1+p2,
(my+ma)cPag+e = miZe +[piPc By + Vma2eh + [p2f?c? B, .

from which it follows that |p;| = |p2| = p.

We can now highlight the differences between the four-theory and six-theory
versions of these equations. In four-theory, the (scalar) energy equation allows
the momentum magnitude p to be calculated exactly, but the directions (equal
and opposite) of the 3-momenta are undetermined. In six-theory, these direc-
tions are again undetermined, but so is the magnitude p. Further, the left hand
side of the above energy equation defines a plane of the initial energies, while the
right hand side defines a plane of the final energies. These two planes are not
necessarily the same — all we can do is calculate the line of intersection. Hence
if ¢ is the angle between these two planes, then the undetermined parameters p
and ¢ will appear in the expressions for the quantities I';.

It can be shown that, whatever the initial specification (mj,ma, e, 1) of the
problem, it will always be possible to find parameters p and ¢ such that at least
one of the particles will vanish.
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2.7 Electromagnetism

In six-theory, a nabla operator V¢ = (8y,,8;,, 0, )T exists whose derivatives are
taken with respect to the three time coordinates, and this allows new electro-
magnetic fields to be defined [8, 11]. This is in addition to the usual operator
Ve = (04, 0y,0.)T whose derivatives are taken with respect to the three spatial
coordinates. In six-theory the vector and scalar potentials of four-theory are
replaced by two vector fields a and b, and the three-component magnetic and
electric fields B and E of four-theory are replaced by the magnetic field B, a
completely new three-component field W in the time subspace, and a new nine-
component field E which replaces the three-component field E. Specifically, we
define

_ % _ D4
ox; 8t]‘

= -V, bT — (Viah)T, or  Ey= fori,j=1,2,3

and 1
B=V,xa and WEC—QVtxb.

Equations of motion can be found for a charge moving under the influence of
these fields. An electric charge and an observer can have different time vectors,
and this has the effect of modifying the effectiveness of the charge. In the same
way, a moving charge which has a different time vector to that of the observer
will produce modifications in the fields which wash over the observer as the
charge passes.

2.8 The Dirac equation

The Dirac equation in four-theory is a first order differential equation for the
wave function v, and the coefficients of the derivatives with respect to the four
spacetime coordinates are matrices which must obey certain anticommutation
relations. This allows the function v to be the multicomponent quantity which
is required for the description of particles with spin 1/2. The anticommutation
relations ensure that the Klein-Gordon equation for relativistic particles with
no spin is recovered as a special case.

This equation can be extended in a six-dimensional description. The result-
ing extended Dirac equation will again be a first order differential equation, now
with respect to the six spacetime coordinates r and t. The coefficients of the
derivatives will again be matrices, but these will differ from their counterparts
of four-theory [2]. Specifically, the spacetime coordinates associated with an
inertial frame S will be denoted by z* for p = 1,...,6, with z' = z, 22 = y,
z® =z, 2t = cty, 2° = cto, and 2% = ct3. The extended Dirac equation for a
particle with rest mass mg will then be

9 0
(if"w - th> ¢=0
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where h = 1.054 x 10734Js is the reduced Planck constant. The six quantities
&# will be matrices which must satisfy the anticommutation relations

(€)= (@ = (€2 =~ =~ =~ = -L
gebrehed = 0 (j#k).

A representation of these matrices can be given in terms of the 8 x 8 matrices
which were originally obtained by Patty and Smalley [23]. The solution 3 will
then be an eight-component vector, and it will lead to the concept of spin in
the time subspace.

3 Towards a general theory

We will not be concerned with the general theory in which spacetime is curved
due to the presence of large gravitating masses. However for completeness we
describe this general approach. Attepmpts have been made by other workers
to obtain exact solutions to the Einstein field equations by introducing higher
spatial dimensions [19, 20, 21, 25]; in this section we describe some results which
have been derived using extra time dimensions [7].

The spacetime coordinates associated with an inertial frame S will be de-
noted by z# for u =1,...,6, with ' =z, 22 =y, 23 = 2, 2* = ct1, 2° = cto,
and 2% = ct3. In this section only, we will use g,, to be the metric elements
in the curved spacetime, and use gfg,) for the corresponding quantities in our
special theory. It can be seen from Equation (6) that the invariance of the light
speed ¢ in vacuo between inertial frames, together with the requirement of a
linear transformation between two inertial frames, means that the quantity

dso? = g,(lo) dztdz” = —dr® + 2dt?

v

is invariant in our special theory, where

gy =98 =98 =g = —gf) = -9l =1 and gy =0ifi#j.

In the above expression for dsg?, and throughout this text, we have used the
summation convention whereby a summation from 1 to 6 is implied over re-
peated indices. In the general theory, in which the presence of gravitational
fields causes the spacetime to be curved, it is the more general expression

ds® = Juvdztdx”

which is invariant, where now the quantities g,, will depend on the spacetime
coordinates and will reflect the fact that a gravitational field is present.

Weak time-independent fields

Once the Einstein field equations have been solved for the quantities g, , these
can inserted into the geodesic equations which in turn can be solved to give the

23



shape of the path of a test particle which moves in the gravitational field. Of
course, all of these solutions can be obtained in principle, if not in practice.

In particular, let it be assumed that (i) the gravitational field is time-
independent and weak in the sense that the metric can be written

Guv = g(O)l“, + huu

where |h,,| << 1 and the hy, are independent of z*, 2% and 2%, and (ii) that
all velocities are small in the sense that |dz’/dt| << c for i = 1,2,3, where
dt is the infinitesimal increment of time measured along the projection of the
particle’s worldline in the time subspace. Then it has been shown that the
geodesic equations for a particle with spatial velocity v and time vector a will

reduce to
dv da

— =-V,;® d — =0
dt an dt
where the potential ® is given by
A<
¢ = E Z (e710%] hi+3j+3 .
ij=1

The first of these equations is the usual Newtonian equation. The second result
shows that in weak time-independent gravitational fields in the limit of small
velocities, the projection of the worldline in the time subspace of a freely falling
particle is a straight line. This will not necessarily be the case in the presence
of strong gravitational fields.

A solution of the field equations for spatial spherical symmetry

A spherically symmetric solution of the Einstein field equations in empty space
associated with a central mass M has been obtained for the metric

ds® = —a(r)dr* — r*(d6” + sin® 0d¢?) + b(r) ((dt1)* + (dt2)® + (dt3)?)  (29)

where r, § and ¢ are the usual spatial spherical polar coordinates. Writing
U = 2GM/(c*r) where G is the gravitational constant, and using the conditions
a—1,b— 1and db/dU — —1 as U — 0, the functions a(r) and b(r) were
found to be given by the implicit solutions

3
2

v o= 2(va-ve) et (vaTa- va) (vVaTas va) Vot ()
67+ (1- 1) pVE(VE)

which can be combined to give
2 2
b= (V3-v2) (VEta+v2) at.

I am not convinced that the form of the metric given in Equation (29) is the
correct one to take. A more appropriate form to consider may be one which
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Figure 2: Event G is the birth of your maternal grandmother, M the birth of
your mother, Y is your birth, and E is your encounter with your grandmother.

is sperically symmetric in the spatial coordinates r, 8 and ¢ as before, but
cylindrically symmetric in time. As far as the time coordinates are concerned,
let T' be measured along the axis of cylindrical symmetry, 7 measured from this
axis, and 1) the angle measured about the axis. Then a possible metric could be
sought whose coefficients could be taken as functions of r and 7. Such a metric
should then reduce to the form

dso® = —dr® —r*(df® + sin® 0d¢”) + dT° + dr° + 7°dy)”

as U — 0. The appropriate differential equations satisfied by the coefficients
can be easily obtained using suitable algebraic computing packages, although
obtaining the solution of these equations is a different matter entirely. The
reader who feels suitably challenged is invited to undertake this task. However,
as far as this text is concerned, no more will be said on this general theory.

4 Can you go back to kill your grandmother?

Let’s face it — one of the main arguments that have been put forward against
the idea of movement in three time dimensions is that you could loop back in
time to kill your maternal grandmother before she has had the chance to give
birth to your mother. In our model, this logical absurdity is not allowed. You
would be allowed to go back to have some sort of encounter with her, but you
certainly couldn’t eliminate her.

Figure 2 shows how such an encounter could take place. The event G rep-
resents the birth of your maternal grandmother, event M is the birth of your
mother, and Y is your birth. The looped part of the curve represents your time
line. The time lines we use in our everyday lives appear to be one dimensional,
and this is reflected in the straight line through the points G, E, M, and Y. But
since we can now allow curved paths in three time dimensions then, in principle,
you could cause your time line to curve back to intersect your grandmother’s
time line at the encounter E. You can put in extra events relating to the deaths
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of the various parties if you want. The lines in the figure are time lines, and
since we are using a three dimensional time, then the lines are not necessarily
all drawn in one plane.

We described briefly in Section 2.4 how the term E¢ = [a1as -+ - Gy, biba - - - by
describes an interaction between the m particles aq,as, ..., a, whose time vec-
tors enter the interaction region and the n particles by, bo,..., b, whose time
vectors leave the interaction region. Returning to the grandmother question,
let Gm and Gc denote the grandmother and grandchild respectively. Then the
meeting at the event E would be a valid instance of the interaction

EG = [GminGcin; GmoutGCout] )

and the presence of the term Gm,,; means that the grandmother has emerged
unscathed. This is not the same as the interaction [Gm;,G¢;n, GCpyut] in which
the grandmother does not emerge unscathed, and it is impossible for both this
event and Eg to represent the same event E. In a sense, we might say that
the interaction Eg must be ”single-valued”, just as in quantum mechanics we
require that the wave function of a system which is undisturbed by measurement
must be single-valued in order to avoid any surrealist happenings. But beware!
the event [Gm;,Gcipn, GMyyt] could be a possibility, and so you should be nice
to your grandmother when you meet her.
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