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Preface to the 2014 Publication  

This publication of mathematical speculations and writings made during the 1970:s 
and early 1980:s contains the general principles of a proposed deductive approach to 
theoretical physics and an outline of a mathematical theory. A rigorous and self- 
contained exposition of the three most basic concepts of the theory, containing the 
definitions and theorems quoted in Part II, is given in Successive Confidence Es- 
timates on Solutions to the Many-Particle Schrödinger Equation. Basic Concepts 
which is included in this book as Part III. The reference lists are incomplete in the 
sense that I have not been in a position to do ordinary studies of and make ordinary 
references to other existing works related to the present work.  

*** 

First of all I wish to thank Lars E. Henriksson. It was Lars who, together with and 
supported by Peje Löfgren, took the initiative to publish these old mathematical 
speculations and writings of mine. Lars performed and managed all that adminis- 
tration work that was necessary. Without Lars’ great, due to my own shortcomings 
necessary, patience, this publication would not have been realized.  

    I wish to thank Peje Löfgren for many years of profound mathematical discus-  
sions. Many of these have bearing on my own work. Let me just give one example.    
A central concept in the present theory is that of finite approximations. I owe much to 
Peje’s own work on this subject.  

     I wish to thank Jan Pilotti. Jan has read Parts I and II of the manuscript critically 
and has pointed out several important corrections and elucidations.  

I also wish to thank Anders Källström for help with the mathematical typesetting of the 
manuscript.  

    To all I wish to express my great gratitude. 

Stockholm August 2014 ��� 

Tomas Blomberg  

	  



	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	   	  



	  
	  
	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  



Preface  
The principal object of the following theory is to treat and develop theoretical physics          
as a deductive science.  
  Common theoretical physics, although deductive in certain parts or steps, gen-               
erally displays an apparent lack of deductiveness. There are excellent examples of 
completely deductive theories such as e.g. Newtonian point mechanics, but they            
appear as small isolated and widely separated islands when considered in rela-                   
tion to our complete physical knowledge. Practically every theoretical discussion      
frequently introduces extra, often implicit, assumptions depending on the specific      
problem under concern, without deriving the validity of these extra assumptions              
from basic postulates. In some cases these extra assumptions are more or less ob-            
vious or natural (although they might be difficult to prove). In some cases they                   
are rather doubtful. However, it is a remarkable fact that derivations of such ex-                  
tra assumptions are often missing in the literature even in cases where it would                    
be a straightforward task to work out a rigorous proof. For example, we will not                 
take for granted, but derive rigorously, the fact that light propagates along straight            
lines and with the “velocity of light” 𝑐. A rigorous and complete formulation and             
proof of this statement needs a thorough consideration of confidence estimates on           
wave packets. Although quite nontrivial, it is obtained by a rather elementary ex-            
ercise in Fourier transform theory. It ought to be found in any thorough theoretical 
discussion on light.  
A similar situation appears when one theory is a special case of another more               
general theory. There are seldom any attempts to derive in a more definite way the        
validity of the basic principles of the special theory from the more general theory.             
The task of working out such derivations, connecting different theories, is of a              
central interest in the following theory. Let us note that such a derivation is not only              
a matter of formality. It is in fact intimately related to the problem of finding the             
exact conditions under which the special theory is applicable and such conditions             
have an immediate physical significance. Often the special theory appears as an 
approximation of the more general theory and one also wants to know the degree of    
accuracy of this approximation, which also has an obvious physical significance.               
The lack of derivations discussed means that important physical questions are left        
outside the theoretical treatment.  
A consequence of this general lack of deductiveness is also that it makes it              
practically impossible to apply the mathematical method effectively. The central          
position of proofs in the mathematical method is intimately connected to the func-             
tion of mathematics as an “art of computation”. Computations are in fact examples              
of the deductive method. There is no principal difference between a proof, which in a 
deductive way leads to a qualitative prediction and a computation, which in a            
deductive way leads to a quantitative prediction. Thus, we see again that deduc-           
tiveness is not only a question of formality but has a practical importance. It is                  
only when we have complete deductiveness that we can fully exploit the power of              
the theoretical method.  
   Parallel to the lack of rigorous proofs there is in common theoretical physics a       
pervading lack of precise definitions of important concepts used in the theories.  
	  



	  
This indicates that the apparent lack of deductiveness is connected to general con- 
ceptual problems of theoretical physics. In order to develop a general deductive 
theoretical physics we have to solve the following two problems:  

. 1) Establish a general conceptual basis for deductive theoretical physics. ��� 

. 2) Establish a formulation of quantum mechanics with general and unproblem-    

.     atic applicability to physical problems. ��� 
 These two problems are closely connected since the solution of one of them 
presupposes a solution of the other. Classical theoretical physics is composed of a 
set of disconnected theories, mechanics, the electromagnetic theory, thermody-                
namics, etc., and the only theory, which offers the possibility of a general theory, 
encompassing these classical theories, is quantum mechanics. On the other hand         
we claim that a solution of the controversial conceptual problems of quantum me-     
chanics presupposes a general conceptual deductive framework. Our proposal for 
solving these two problems is the embedding of the Schrödinger equation for-      
malism in a general “physico-logical” structure which we shall call “stochastic        
event structure”. This structure provides basic concepts for direct descriptions           
both of classical and quantum phenomena in a unified and objectivistic way. The 
Schrödinger equation then complements this descriptive structure with a general 
dynamics generalizing and encompassing the classical theories.  
The theory proposed in part II below is at the same time a mathematical theory           
and a physical theory. As a physical theory it has of course a phenomenological 
character. Thus, the mathematical theory below is suggested by speculations on 
quantum mechanics, which in turn has its origin in the physical phenomenology,        
and the purpose of the theory is to describe the physical reality. As any physical         
theory it then ultimately stands or falls depending on its further success in describ-    
ing, analyzing and predicting physical phenomena. We can thus distinguish three 
different steps in the development of a physical theory.  

. 1)  Axiomatize the theory. This means that we establish the basic mathematical 
      concepts which are to describe the basic physical concepts of the theory and   
      establish in a mathematical form the basic laws connecting these concepts.  
     The axiomatization thus results in a specific mathematical theory. ��� 

. 2)  Develop this mathematical theory. ��� 

. 3)  Compare results obtained in the mathematical theory with the physical reality. ��� 

  It is important for the deductiveness of the theory that we are in a position where   
steps 1 and 3 present no problems and we can deal mathematically with step 2 in           
a free way, undisturbed by unformalized physical questions. We claim that the      
theory proposed below meets this demand.  
The purpose of the following exposition is to give the general principles of the    
theory i.e. establish step 1) above. For the mathematical development of the the-                    
ory, step 2) above, we refer to the self-contained, purely mathematical exposition    
given in Part III.  



Introduction  
In the following we shall give the conceptual foundations of a mathematical for-        
mulation of quantum mechanics based on confidence estimates instead of mean             
values and density operators, used in conventional quantum mechanics and quan-              
tum statistical mechanics.  

     
A mathematical formulation of this theory – an approximation theory of                                

𝐿2-functions of several variables, applied to sequences of interrelated subspaces                   
of solutions to the many-particle Schrödinger equation – is given in Part III. The          
exposition in Parts I and II can be considered as a physical motivation and a mathe-      
matical outline of this theory. For proofs of theorems cited below and for further 
development of the mathematical technique needed in this theory, we refer to Part               
III     
   The main purpose of this exposition is to describe the basic principles of the                   
theory, in the following called “the confidence theory”.  
    A second and complementary purpose is to discuss the difference between the            
theory and the conventional formulation of quantum theory and statistical mechan-                              
ics. Although we reject the Copenhagen interpretation and the formalism built on                  
it, we shall, due to its present overwhelming position, recapitulate it in chapter                       
2 and criticize it in chapter 3. Conventional statistical mechanics is discussed in             
chapter 4 (4.1).  
  The two main purposes of the confidence theory are the following:  

1) To modify the conventional theory to give an unambiguous, deductive theory.  

2) To propose a general theoretical basis for the treatment of, generally non-   
    stationary, macroscopic systems.  
 The most important of these is the second. We consider the first purpose, although                
it has its own conceptual interest, mainly as a means to achieve the (more prag-           
matical) second purpose.  
   Since the exposition in Parts I and II is mainly conceptual, it is important to             
emphasize the mathematical technical character of the confidence theory. The         
confidence theory is not in first hand a philosophical-logical discussion on the              
subject “quantum mechanics without the observer”. It consists of a mathematical     
technique, the above mentioned approximation theory, whose main motivation is                
the second purpose stated above.  
Chapters 1–4 mainly have the purpose of supporting the heuristic derivation of                   
the confidence theory given in chapter 5. An axiomatic exposition of the theory                     
is given in chapters 6 and 7. The systematic exposition of the theory given in                    
chapters 6–7 is “self-contained” in the sense that it does not formally or logically 
presuppose chapters 1–5.  
By a confidence estimate we shall mean an estimate of the form  

∫𝑅|𝜓(𝑥,𝑡)|2𝑑𝑥≥1−𝜀  

���where 𝜓(𝑥,𝑡) is a normalized wave function of the time variable 𝑡 and the con-          
figuration space variables 𝑥 for a set of elementary particles. 𝜀 should be a very                                        



	  
small positive number  and  1−𝜀 is called the “confidence level”. According to                                              
the statistical interpretation of the wave function, the above estimate means that                  
the particles are, with practical certainty (probability ≥ 1−𝜀) confined to the                   
region 𝑅 at time 𝑡. A reason for using confidence estimates rather than exact lo-         
calization statements comes from the fact that a wave function ψ(𝑥,𝑡), localized            
exactly at time 𝑡1 to a region 𝑅1 (i.e. vanishing outside 𝑅1), will, according to the 
Schrödinger equation, generally spread out in space so that it cannot be localized          
exactly to any finite region at another time 𝑡2. On the other hand, we can under             
certain assumptions obtain estimates  

∫𝑅2 
|𝜓(𝑥,𝑡2)|2𝑑𝑥≥1−𝜀 

at time 𝑡2 with finite region 𝑅2 and very small 𝜀. ��� 
    The most general basic question of a physical theory is the study of the macro-           
scopic distribution of matter in space at different instants of time. Even if we are         
studying an experiment observing a single elementary particle, the situation can                 
and should ultimately be described by macroscopic, directly observable, quanti-                
ties. Thus, the task of establishing an interpretation of the quantum-mechanical               
wave functions and the task of describing and understanding macroscopic pro-               
cesses from an underlying atomistic point of view are closely connected.  
    The macroscopic distribution of matter in space can be instantaneously de-                    
scribed by the localization of the configuration space variables for the constituting 
elementary particles to suitable intervals or regions, which are small from a macro-        
scopic, but large from a microscopic point of view. For a quantum-mechanical                 
wave function this means that it has (at a given instant of time) its support in that            
region i.e. vanishes outside the region. The set of all such wave functions consti-                
tute a (closed) subspace of the Hilbert space of wave functions. We shall describe               
the macroscopic distribution of matter by means of sequences of such subspaces                 
(or equivalently by their corresponding projection operators).  
    By the preceeding argument, the use of confidence estimates will allow us to              
describe, with a sufficiently high degree of accuracy, the macroscopic behaviour                   
of systems by consequently using only such subspaces (projection operators). The            
confidence theory is a theory developed consequently along these lines.  
    The confidence theory thus gives, in a direct way, a connection between wave          
functions and macroscopic quantities and therefore presents an alternative to the        
ensemble (density operator) methods of statistical mechanics. We shall criticize                  
the conventional (classical and quantum) statistical mechanics in chapter 4 and            
propose an alternative theory based directly on phase-space region localizations.                
The confidence theory is a quantum-mechanical generalization of this phase-space         
region theory.  
   Parts I and II is an attempt to describe the theory (and its relation to the con-             
ventional theory) in qualitative, intuitive, verbal terms. Due to the structural and       
conceptual complexity of the subject, it consists of a network of different aspects               
and more or less precise arguments. A completely rigorous discussion can of                  
course only be given in an axiomatized mathematical exposition (see Part III).  
	  



	  

	  
	  

	  
	  
	  
	  
	  



	  

	  
	   	  



	  

	  

	  
	   	  



	  
III.8 Physical Remarks  

Differences to the Conventional Quantum-Mechanical Formal- ism  

The present theory can be considered as embedded in the conventional quantum- 
mechanical formalism. Our series of successive events (projections 𝑃 ) could be 
considered as a series of conventional quantum-mechanical measurements, with a 
special prescription for preparation of a state after measurement, namely that mea- 
suring 𝑃 on a “state” 𝑢 results in “state” 𝑃 𝑢. We are then considering apparently 
special series of measurements of localization observables, (leaving out most of        
the conventional formalism such as canonical commutation relations, complete        
sets of commuting variables, density operators, etc.). The restriction to equian-       
gular sequences then means that any state vector (or density operator), which can       
be prepared from some other previous state by successive measurements of the 
observables describing the initial conditions, will give (approximately) the same 
probabilities for the following measurements, so these probabilities can be calcu-     
lated from a knowledge of these initial observables only.  

However, a different point of view is to consider the restriction to equiangular 
sequences of localization statements as an extra dynamical postulate (a “princi-          
ple of equiangularity”), restricting the possible combinations of events. This ex-         
tra postulate is lacking in the conventional formalism, where any state vector or        
any density operator is a possible state and any selfadjoint operator is a possible 
observable, which can be measured at any time by applying a suitable external 
measuring equipment.  

In conventional quantum-mechanical formalism, the measurement process has 
received a central position, connected with the interpretation of the theory. In             
the present theory, a stochastic quantum transition is considered as a fundamental 
objective occurrence in reality – it is not considered, as in conventional quantum 
mechanics, to be a disturbance caused by a measurement. In those cases, where we 
actually have a measuring equipment, measuring a certain observable 𝑃 , we can 
include the measurement apparatus in a larger process containing both the object of 
measurement and the measurement apparatus. That an object can be forced to undergo 
a quantum transition is not a phenomenon reserved for measurement situations. Quite 
generally, the initial and boundary conditions forces a system to undergo quantum 
transitions. This is described by the concept of stochastic event structure.  

To summarize, the present theory differs from the conventional formalism in the 
following respects:  

. 1∘  Theonlyoperatorspostulatedtocorrespondtoobservablesaretheprojection operators 
corresponding to space localization. All other physical quantities will be 
indirectly defined in terms of these. ��� 

. 2∘  We avoid use of the concept of “state”, described by state vectors or density 



operators. Instead the theory is based on a description of initial conditions by 
means of a series of previously occurred events at different times described by 

the observables according to 1∘. The restriction to equiangular sequences of 
projections makes it possible to determine transition probabilities completely 
from the projections describing the initial conditions. ��� 

. 3∘  We consider the “collapse” of the wave functions (transition from 𝑢 to 𝑃 𝑢 in our 
cases) as an integrated part of the formalism. It is not pushed aside to an 
interpretation of the theory connected with a measurement process. The concept 
of equiangular sequences of projections describes a series of succes- sive, really 
occurred “collapses”. The observables thus describe objectively occurred 
events. ��� 

. 4∘  Instead of allowing more or less arbitrary state vectors or density operators and 
measurement of observables corresponding to arbitrary selfadjoint op- erators, 
the restriction to equiangular sequences of projections puts a strong restriction on 
which series of events are possible. ��� 

. 5∘  Instead of introducing an extra statistical distribution(density operator), extra 
assumptions concerning this distribution and assumptions that certain mean 
values describe macroscopic systems, the present theory handles macroscopic 
systems in a direct and deductive way. The confidence estimates can be used at 
different levels of description. Macroscopic estimates concerning gross dis- 
tributions of large number of particles can be derived directly from the wave 
equations just as e.g. a cross-section formula or an estimate of a bound-state 
energy level can be. ��� 



Summary  
General principles for deductive physical theories are discussed. It is claimed that                  
a deductive physical theory should in principle be a pure mathematical theory (or                   
a set of coupled mathematical theories) together with an identification of certain 
quantities/concepts (“observables”) in the theory and corresponding observable             
entities in the real world. This identification – the “interpretation” of the theory -             
should be unproblematic, both for the theoretician and the experimentalist.  
   A general basis for a deductive physical theory, comprising both classical and          
quantum physics in a unified way, is proposed. The theory is based on succes-                    
sive confidence estimates on quantum-mechanical wave functions corresponding                  
to space-localizations of particles. This allows a direct and simple way of describ-               
ing both macroscopic and microscopic phenomena by means of the same basic          
concepts. Especially, this gives a simple, direct, kinetic, radical alternative to the       
ensemble methods of classical and quantum statistical mechanics.  
    The theory takes as its starting point the general basic ideas and problematics of         
quantum theory that was formulated in the 1920:s. The theory is thus consistent                
with conventional quantum mechanics in the sense that it is based on the same      
mathematical formalism of Hilbert spaces, projection operators, the Schrödinger         
equation (and its relativistic generalization, the Schrödinger-Schwinger-Tomonaga     
equation), etc., together with the – although from an axiomatic point of view, as      
formulated, unsatisfactory – original primitive statistical interpretation.  
    However, it is claimed that this is only half of the theory – half the set of condi-                
tions in a complete set of axioms. This leaves a manifest and obvious ambiguity.                    
It is claimed that this is the root of the controversial interpretation problems and        
paradoxes of the conventional expositions of quantum theory.  
Central in the axiomatics of the outlined theory is the concept of equiangu-                          
lar sequences of projections (projection operators). It describes a successive se-             
quence of “collapses of the wave function”. It is proposed that the restriction of              
general physical processes to fit an underlying structure of equiangular sequences                  
– a “principle of equiangularity” – together with the restriction to projections cor-   
responding to space-localizations of particles could give the extra conditions, con-      
stituting the other half of the theory.  
    From equiangular sequences of projections is abstracted the general structure of     
“stochastic event structure”. It gives an axiomatization of the ordinary (classical!)   
probability theory (based on classical – not “quantum” – logic) and, at the same                
time, an axiomatization of the concept of causality, which generalizes the ordinary 
“deterministic” causality to what we call “stochastic causality”. It can be applied                  
to problems far beyond physics.  
    Characteristic of the outlined theory is the avoidance of the concepts of “states”                 
and “systems” as basic concepts. The basic concept of the theory is the concept of         
events, represented by projection operators corresponding to confidence estimates                 
of localization of particles to many-particle space regions.  
An event can be characterized as a “partial statement” about the actual physi-                       
cal situation. Thus any concrete physical situation is described by a more or less             
exhausting set of partial statements, complementing each other. This description                 
can often be complemented by other events, for instance on a deeper level of de-       
scription. The set of – simultaneously often “overlapping” – partial statements                   
can, in the quantum domain, generally not be reduced to the classical concepts of       



“system” and “state” and the incomplete instantaneous specification of the situa-                
tion is complemented by giving events at different times. This is an expression of                
the so called “quantum unity”.  
    The avoidance of the concept of state as basic concept means that the wave           
functions, and the corresponding vectors (or rays) in the Hilbert space are not           
(generally) given the status or meaning as states. The term “state vector” is thus      
abandoned. The time-dependent wave functions are instantaneously coupled to               
events of instantaneous space localizations. At other times they are to be con-                
sidered as auxiliary dynamical quantities for determining probabilities. This is in     
accordance with the original Heisenberg idea of the 𝑆-matrix.  

   In the cat paradox case the process can be detailed by a description of what                  
really happens – when the poisoning capsule explodes, when and how the cat dies               
etc., in case of a finally found dead cat – or, what the cat did during the process,                   
in case it comes out living.  
    On the other hand, quantum mechanics puts strong limits on what can be de-                    
tailed with respect to the time development. In a two-split experiment with a single       
electron we cannot say that the electron has passed through one and not the other                
slit. An arrangement that would determine through which slit the electron passes                    
is incompatible with the two-split arrangement in the sense of the definition of      
compatibility given in the theory.  
    The limits on detailization is determined by the restrictions of equiangularity                       
and the ultimate restriction to space-localizations together with the dynamics of              
wave-mechanics.  
    Another characteristic of the outlined theory is that it is not – contrary to the        
conventional quantum theory – based on the concept of measurement. The events                
are to be considered as really occurred “elements of reality” irrespectively of                
whether or not a systematic measurement or observation is coupled to the object             
system under concern. For a discussion of measurements in the proposed theory, see Part III.  
    The concept of equiangular sequences of projections can be considered as a     
generalization of the concept of 𝑆-matrix (and its factorizations/subdivisions into 
subprocesses) to finite regions in space and time.  
    It is also a characteristic of the proposed theory that it is fundamentally in- 
deterministic/stochastic. This is contrary to common ideas that physical laws                        
are fundamentally deterministic and time-reversible. This determinism and time-     
reversibility is formal and concerns only the one half of the theory mentioned above.  
    The proposed theory gives a basis for a general theory of irreversible processes                    
based directly on quantum mechanics. It gives an alternative definition of entropy              
and an alternative derivation of entropy increase in irreversible processes. It shows                 
a deep relation between thermodynamics and quantum theory.  
    Irrespective of physical applicability, the concepts of confidence estimates on                   
𝐿2 -functions and their Fourier transforms, equiangular sequences of projections                  
and stochastic event structures have interesting properties that deserve a separate,  
pure mathematical study, see Part III.  
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