Topic 22 — Interference of Several Sources
FGT1051-1053, AF914-917

sum of signals from several dipoles AF91/

If we have a large number of sources, we can add them together using the
phasor or the complex number picture. Here we use the complex number
aproach.
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Figure L.22.1: The geometry of several interfering sources.

Suppose we are a long distance r from such an array, looking at an angle
off axis (see figure 1.22.1). If the sources are h apart, then the phase difference
0 between successive sources will be

0= 277rh,sin0
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and if the signal from one slit is
Ey(w,t,r,0)
then the total signal from N of them will be
E(w,t,r,0) = Ey(w,t,r,0) + Ey(w,t,r, 0)6“ + Ey (w, t, T, 9)€2i6...

which is a geometric series with common ratio €, so

1 — eNid
E(w,t,r,0) = Ei(w,t,r, 0)1—76”5
which can be simplified to
5/28In(NG6/2)

E(w,t,1,0) = Ey(w,t,r,0)e' ™" :
(wa ' Ty ) l(wa » Ty )6 sm(&/?)
How does this function vary with N7 When ¢ is zero or any other integer

multiple of 27 amplitude has the form 0/0, so we have to resort to I’'Hopital’s
rule do find the limit, which is N. Thus whenever

. A
sinf = mﬁ

where m is any integer, there is a peak of amplitude N, because

Of course, we might have realised this from thinking of the phasor dia-
gram: the best we can do is to add all the signals in phase, and then the
amplitude will just be N times the one-slit amplitude.

Next, we note that if the sources are all ideal line sources, they will radiate
uniformly in all directions, so that F; is independent of 6.

We get the intensity by squaring the modulus of the amplitude and so

sin (@ sin(ﬁ)) ] ’
N sin (“Th sin(@))

1(6) = 1(0) [
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We can see that whenever whenever Y™ sin(#) is a multiple of 7 we have

a zero, unless % sin(#) is a multiple of r, )\in which case we have a maximum
of height I(0). Thus the widths of the maxima decrease as N increases —
see figures 1.22.2 and L22.3. The number of lines in these figures are much
smaller than would be found in a realistic grating, but they do show the
point that the principal maxima decrease in width as the number of lines
increases. One can also count the subsidiary maxima, and verify that there

are just N — 2 such subsidiary peaks between principal maxima.
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Figure L22.2: The interference pattern produced by five line sources, showing
intensity plotted as a function of angle in radians.

Figure .22.3: The interference pattern produced by ten line sources, showing
intensity plotted as a function of angle in radians.

This, of course, is the principle of the diffraction grating.
Note also that if we have only two slits, N = 2, we have

sin (% sin(&)) ]
2sin (”Th sin(@))

2

1) = I(0) [
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1(0) [2 sin (% sin( ) cos (”—)fl sm(@))]

2sin Th 51n(0))

U

and if the angle # is small we may write
sin(f) ~ tan(f) = y/x

to recover the previous expression for Young’s slits

1(6) = 1(0) lcos (%”)r

laboratory example

Note that there is an experiment in the undergraduate laboratory which uses
the half-millimetre marks on a metre rule as a reflection diffraction grating,
with an infrared laser as the source. A warning: the half-millimetre marks
are slightly shorter than the millimetre marks, so if the system is aligned
incorrectly one uses the millimetre marks instead as the grating, but assumes
them to be half a millimetre apart, leading to a wavelength which is twice
what it should be.

phasor diagrams FGT915-916, AF915

The results of this section can also be obtained by methods based on phasor
diagrams. In fact, this may help to clarify what the factors of NV are all about
in the intensity pattern. In the straight-through direction all the signals add
in phase, so the total amplitude is N times the amplitude from one slit, or the
total intensity is N? times the intensity from one slit. So if we refer all our
intensities to this straight-through intensity, we want the function by which
it is multiplied to have a value of 1 at § = 0. That is why we incorporate the
N in the denominator of the expression in square brackets.

fading of edges of fringe patterns AF912

As with the two-slit situation, the longer path differences which occur at
large angles require long coherence times, and thus the edges of diffraction
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patterns (high angles) tend to be less distinct than the centres (small angles).

L22.1 Resolving power of diffraction grating

We now know the angular positions of principal maxima of a diffraction
grating, and we have seen that the widths of these maxima depend on the
number of lines in the grating. By putting these together we can draw
conclusions about the ability of the grating to distinguish between spectral
lines of similar wavelength, such as the two yellow lines of sodium. In order
to do this, though, we need a way of deciding whether two closely-spaced
lines will appear to the eye to be separate.

Rayleigh criterion

Rayleigh’s criterion states that two similar diffraction patterns can just be
separated if the first zero of one pattern falls on the central peak of the other.

As shown in figure L.22.4, this gives an adequate dip in intensity. This
is Rayleigh’s criterion for resolution. The rule is somewhat arbitrary, but
widely accepted.

Figure L22.4: Rayleigh’s criterion for two lines to be distinguishable, illus-
trated with pairs of lines separated by 0.8, 1.0 and 1.2 times the Rayleigh
criterion.
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Resolution and the grating

We can apply the Rayleigh criterion to the ability of a diffraction grating
to separate different wavelengths. We know that the position of a principal
maximum is given by

h
% sin(Opax) = mm,
or \
Sin(Omax) = my (L22.1)

where m is an integer.
If we write the maximum position as

mh .
NT sin(Omax) = Nmm,
it is clear that the position of the first zero to one side of this principal
maximum of a diffraction pattern is given by

N%h sin(@min) = (Nm + 1)m

or,
A 1 AoAl
i Hmin — sl Hmax = T ] —m- = - —.
Sin(@min) — Sin(Bmax) . <m+ N) me =Ty
For small angles, the angular separation of the peak and the minimum is

Al
Hmin - emax ~ -
h N

Note that this expression gives us the half-width of the peak, and so it is the
quantitative expression of our observation that the peak gets narrower as the
number of lines in the grating, /N, increases.

Now the angular separation between the mth order principal maxima
from two wavelengths which differ by AX may be obtained by differentiating
equation L22.1:

d\
cos(#)dl = m=-
or, for small angles,
AN
Al ~m—
"



. We can distinguish the peaks provided the peak of one falls on or beyond
the first minimum of the other, i.e.

Al - AN
hN ST
or )
— N
AN <m
The resolving power is defined as
A
— ~  —mN
(A)\)min e

thus the resolving power depends on the order of diffraction and on the
number of lines in the grating.

We normally choose to work at the largest order possible. Note that if
we go to high order we need to treat the angles rather more carefully (we are
beyond the small angle approximation).

For example, a grating 10 mm wide and ruled with 100 lines per mm will
contain a total of 1000 lines, so in the second order it will have a resolving
power of 2000. This would allow it to resolve a wavelength difference of
0.3 nm in the region of 590 nm, that is, it could just resolve the sodium lines
at 589.0, 589.6 nm.

Note that there is a limit to the maximum order one can observe. A
principal maximum occurs when

mh

> sin(f) = mm

and as the largest value of sin(f) is 1, we have

<l
m_/\.

One might ask, then, why one should not simply increase the order of the
diffraction, m, by increasing the slit spacing. There are two reasons

1. we will eventually have overlap between different orders, when
hsin(f) = (m 4+ )X =m(A+ AN),
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which defines a free spectral range

ar=2
m

2. the longitudinal correlation will be too small for effective interference
with the longer path-length differences.

L22.2 Other related cases

In astronomical radio telescopes, one has effectively a diffraction grating in
reverse: each aerial plays the role of one of the slits in the diffraction grating,
and the phase differences between signals arriving from distant sources give
rise to maxima and minima of signal.

Reflection gratings behave in a similar manner: the expressions derived
for the transmission grating above (which assumed light incident normally)
would be equally applicable to a reflection grating with light incident nor-
mally. Reflection diffraction gratings can be seen with, for example, compact
discs.
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