
Radiation of Accelerated Charges

Non-relativistic Case

Consider a charge q which has always been at rest at the origin until time t = 0. The electric �eld lines
clearly point away from the origin in all directions. At t = 0 we brie
y apply a uniform acceleration which
brings the velocity of the charge up to �v in time �t. At time t > 0, the charge will have moved a distance
t�v. Outside a circle of radius ct, the �eld lines cannot yet know that the charge has moved (no signal
can move faster than light), so they point radially away from the origin. Presuming that �v � c, the �eld
lines point away from the charge within the annulus, which has width c�t (see �gure).

Inside the annulus, the �eld lines must join up. This means there is a kink, which is propagating radially
outward at speed c. This kink is nothing more than a pulse of radiation! We know that the electric �eld E
of an electromagnetic wave is perpendicular to k̂, which means that it is only the �-component of E which
contributes to the 
ux. The Poynting 
ux for the EM pulse (for which E = B) is

S =
c

4�
E2

�
k̂:

To �nd E� is just a matter of simple geometry:

E�

Er

=
�v t sin �

c�t
=

r sin �

c2
�v

�t
;

where r = ct. Since Er is just the Coulomb �eld,

E� =
q sin �

c2r

�v

�t
=

qa sin �

c2
r:

Let W be the energy which is radiated. Then

S �
dW

dt dA
=

q2a2 sin2 �

4�c3r2
:

is the power radiated per unit area in a given direction. Integrating this over all area elements r2 d
 on
the surface of the annulus, we get the total radiated power:

P �
dW

dt dA
=

2q2a2

3c3
:

This is known as Larmor's formula. A more careful treatment using the correct retarded potentials gives
the same answer after considerably more work.

A couple of things to note about the radiation are:

� It is dipolar (/ sin �). If you are looking down the direction of acceleration, you don't see a kink in
the electric �eld; the intensity is zero. The intensity is greatest if you are staring at the particle from
above in the �gure.

� The polarisation (the direction of E) points along the direction of a projected onto the sphere of
radius ct.

� We use the proper acceleration measured in the frame of the particle.

Spectrum

Integrating the Poynting 
ux over time, we �nd

dW

dA
=

c

4�

Z 1

�1

E2(t) dt:
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The spectral content of the radiated electric �eld is given by its Fourier transform:

eE� =

Z 1

�1
E(t)e2�i�t dt; E(t) =

Z 1

�1

eE�e
�2�i�t d�:

Parseval's theorem allows us to write

dW

dA
=

c

4�

Z 1

�1

j eE�j
2 d� =

c

2�

Z 1

0

j eE�j
2 d�:

The spectrum is therefore given in terms of the Fourier transform of the radiated electric �eld by

dW

dAd�
=

c

2�
j eE�j

2:

Relativistic Case

Since energy and time transform the same way under Lorentz transformations, dW=dt is a Lorentz invariant.
Let the primed frame be the instantaneous rest frame of the particle. Then

P = P 0 =
2q2

3c3
a
02 =

2q2

3c3
(a02k + a

02
?);

where a is written in terms of components parallel and perpendicular to the velocity. You can show that
a0k = 
3ak and a

0
? = 
2a?, which gives

P =
2q2

3c3

4(a2? + 
2a2k):

The exact form of the angular distribution of radiation is quite complicated, but the important thing to
remember is that the radiation will be strongly beamed in the forward direction into a cone of opening
angle � 1=
. The faster the particle goes, the more the radiation is beamed in the forward direction.
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