Mass transfer
Several regimes of mass transfer:

e [f the binary is detached, but one of the components has a strong
stellar wind, then gravitational capture of the wind by the other
star may be significant.

Relevant mainly to high mass X-ray binaries:

High mass donor — strong wind +

Neutron star or black hole accretor — high accretion efficiency.
e For a semi-detached binary:

(i) If the mass transfer occurs in the stable regime, expect a
stream of gas from the L; point and (probably) formation of
a disk around accretor.

(i) If the mass transfer occurs on a dynamical or thermal timescale,
expect large accretion rate — common envelope evolution.



Wind accretion

Most relevant to high mass X-ray binaries — early type (O or B)
star with a neutron star or black hole in a close orbit.

General properties of the wind:
e High mass loss rate ~ 107% — 107> Myyr—!.

e Wind velocity,
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Unless the compact companion is very close, v,, > vg, where

Uy ™ Vege =

vk 18 the Keplerian velocity of the neutron star or black hole.

Accretion flow is highly supersonic — Bondi-Hoyle-Lyttleton ac-
cretion regime. All gas within an accretion cylinder of radius R, is
accreted.
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Capture radius is simply the maximum distance at which the grav-
itational potential energy exceeds the kinetic energy:
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where M,.. is the mass of the accreting object and v, is the
relative velocity of the accretor relative to the wind at large distance.

Resulting accretion rate is,
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where ps is the density at large radius from the accretor.

What fraction of the stellar wind is gravitationally captured by
the compact object?
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Substituting for the stellar wind velocity,
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Typically a small fraction — 1073 or 10~* of the wind flux.




For a neutron star accretor,
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Because of the large mass loss rates, even a small capture fraction
produces a significant luminosity;,
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Will the accreted gas have enough angular momentum to form a
disk around the neutron star? Two simple analytic arguments:

e Average the specific angular momentum over the face of the
accretion cylinder. This gives,
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e Assume that accretion occurs via an accretion line (as in the
original Hoyle-Lyttleton description), implying,

[ ~ 0.

Even in the first case the resulting specific angular momentum
could be smaller than the specific angular momentum of a Keplerian
orbit at the neutron star surface.

— marginal whether a disk forms in all cases.



Numerical simulations add an additional complication: flow may
not reach a steady state. Strong flip-flop’ instability seen in 2D
calculations eg Benensohn, Lamb & Taam (1997):
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Probably less pronounced in 3D (Ruffert 1999).



Specific angular momentum of accreted gas (Ruffert 1999):
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Large fluctuations, which may sometimes be strong enough to re-
verse the sign of the accreted specific angular momentum.



Accretion flow is definitely not steady in these systems, eg X-ray
lightcurve (time units are in hours),
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Dynamical timescale at the surface of a neutron star is,
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— variability on hour timescales suggests instabilities at R > R,,.



