
Semiconductors

Basic introduction
Materials with a filled valence band and a
bandgap of less than 3eV (practical
semiconductors usually have band-gaps of
about 1eV) can have populations of electrons
and holes from thermal excitations. In this
case, carriers in both the upper and lower
bands can contribute to current flow. This is
an intrinsic semiconductor. The most
important elemental semiconductors are in
Group IV (Si, Ge). Also of great importance
are the III-V compounds (GaAs, InP, GaP)
and some II-VI (ZnSe). Many other compounds, particularly oxides, show
semiconducting behaviour. If we dope materials with impurities, we can produce an
extrinsic semiconductor. In a p-type semiconductor, the impurities have energy levels
that are in the band gap just above the filled band (acceptor states). Electrons can be
excited into these states, leaving an unfilled band that can now conduct. In an n-type
semiconductor, the impurities have energy levels that are in the band gap just below the
empty band (donor states). Electrons can be excited out of these states into the upper
band, and this can now conduct.

Consider an electron near the top of the lower (valence) band. The steady state drift

velocity is given by ∗−= mFvD /τ  where m*  is the effective mass of the unfilled state.

This will be negative (since it is at the top of the band), -mh, say, and so hD mFv /τ= .

If the force in question is an electric field,  F = -eE,  the current density, j, (defined as
charge motion per unit volume)  is

hD VmEeVevj // 2τ−=−=
where V is the volume. Now, the current density provided by a band that is complete
except for this electron is the opposite of this. In fact the nearly filled band acts as
though it were a positively charged particle of mass mh. We thus consider the nearly-
filled band as a hole and the promotion of an electron from the valence band to the
conduction band as the creation of an electron-hole pair. The transport equations are
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me and mh are the effective masses of the electron and hole respectively. The total
current is the sum of the electron and hole currents
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where ne, nh are the densities of electrons and holes respectively. We can also define
mobilities as hh me /τµ = , ee me /τµ = . Note also that if ne << nh, the Hall

coefficient is given by RH = 1/nhe and is therefore positive.
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Intrinsic semiconductors: detailed treatment.
Intrinsic semiconductors have a finite population of thermally-excited electrons in the
conduction band. This means that the Fermi level (i.e. the chemical potential of the
electrons µ) is somewhere in the gap.  Note the distinction between the chemical
potential and the Fermi energy, which is the highest energy level filled when
temperature is ignored; i.e. the chemical potential at absolute zero). If the energy of the
conduction band is EC, we can write the number of electrons in the conduction band
(neV where ne is the density of electrons and V the volume) as
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where fFD(E) is the Fermi-Dirac distribution function. If the chemical potential is
significantly below the conduction band (several kBT ), then we can approximate the
function as
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Also, the shape of the bottom of the conduction band. Hence the energy relation for
electrons at the bottom of the conduction band can be written as
E E k mC e= + �
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The densities of states are as for the free-electron case except that the energy zero is
either the bottom of the conduction band rather than the zero of potential. Thus the
density of states for the conduction band is
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Hence for the conduction band,
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and, putting in the formula for the density of states, we get
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We can solve this by some creative substitution; Let y2 = (E - EC) / kBT . Then
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getting the integral from standard tables. ( )y y dy2 2 1 2
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A similar argument gives the number of holes in the valence band. We now want the
density of states for the holes, and we also require (1 - fFD(E)) rather than fFD(E) since
we want the probability of the absence of an electron. Therefore,
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where the limits are taken over the valence band. If the chemical potential is several
kBT  above the valence band,   ( )( ) ( )[ ]TkEEf BFD /exp1 µ−≈− .  If the top of the
valence band is approximately parabolic, (i.e. the energy of an electron at the top of the



valence band is given by hV mkEE 2/22
�−= ) then, referring the energy zero to the

top of the valence band, we have
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and therefore, substituting all this in,
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and setting  y2 = (EV - E) / kBT we get
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We can proceed further since we know that this thermal creation must produce pairs of
electrons and holes, hence ne = nh. Hence, equating the two expressions, we can find
out the value of the chemical potential of the electrons µ(T). This is given by

( ) ( ) ( )ehBVC mmTkEET /ln)4/3(2/ ++=µ           (12)

and lies near the middle of the gap (usually the second term is small) as shown in the
diagram at the beginning of this section.

We can also obtain the product of the carrier concentrations. This is given by
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where Eg = EC - EV is the band gap. Note that this result is independent of the chemical
potential and is, in fact, an expression of the law of mass action. You can treat the
problem as though it were a chemical reaction and electrons and holes were chemical
species.   If ne = nh  (as in the case of electron-hole pairs produced by thermal
excitation), then the equation gives the intrinsic carrier density. For silicon, at room
temperature, this gives 2 x 1016 m-3. This is much less than for a typical metal
(1028 m-3).

This also implies that the thermal conductivity in an intrinsic semiconductor shows an
approximate Arrhenius behaviour (the mobilities do vary with temperature but the
effect is small compared to the effect of the carrier concentrations).

Extrinsic semiconductors
Another way of obtaining electrons in the conduction band (or holes in the valence
band) is to dope the pure semiconductor with impurities.

For example, if we dope silicon with small quantities of
a group V element like phosphorus, the phosphorus
displaces the silicon from its site. The effect is to add
an extra electron - and an extra positive charge (see the
diagram of a segment of the Si lattice on the right. It is
shown as you would see it looking down the a axis of
the structure - all the connections are correct but not all
the atoms are in the same plane). The extra electron is
weakly bound to the phosphorus and at room temperatures it is easily excited into the
conduction band. This impurity has donated an electron from a donor state. The
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density of electrons in the conduction band is
thus equal to the density of donors (plus any
thermally excited electrons). If the density of
donors is much greater than the intrinsic
density, ND >> ni then clearly
ne = ND. However, the result for ne derived
for the intrinsic case still remains true. Let us
rewrite this (equation 7) as an equation for
the chemical potential and set ne = ND
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For typical donor levels (ND about 1022 m-3 or one dopant atom in 106 ) this gives the
chemical potential as several kBT  (0.1-0.2eV at 1000K) below the conduction band
(i.e. far above the midpoint). Also, by the standard mass-action effect, we know we
will have a negligible concentration of holes (since nenh = ni

2 ). Thus the conductivity
is dominated by negative charge carriers; the system is called an n-type semiconductor.

If on the other hand, we dope silicon with a group
III element like boron, we get the opposite effect.
Boron also displaces silicon from its site, but now
it is one electron short of forming the four
tetrahedral bonds of the structure. In effect, we
have added a hole. Also, we have, in effect, added
a negative static charge; the valence state of boron
is three, one less than silicon. At zero temperature,
this hole is bound to the boron atom, but at room
temperature it enters the valence band (or equivalently, an electron from the valence
band is promoted into the localised state just above the valence band created by the
presence of the boron atom). Boron is an acceptor impurity; the state is called an
acceptor state. Again, for normal doping
levels, the number of holes is determined by
the number of acceptors, NA. Thus  nh  = NA.
Again, we can use the results for the intrinsic
case to write an expression for the chemical
potential in terms of the hole density
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and we find that this time, the chemical
potential is a few kBT above the valence band. Again, by mass-action the number of
electrons in the conduction band is reduced to negligible amounts and the conductivity
is controlled by the positively-charged holes. The material is called a p-type
semiconductor.
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