Semiconductors

Basic introduction

Materials with afilled valence band and a
bandgap of lessthan 3eV (practica D(E)
semiconductors usually have band-gaps of 4
about 1€V) can have populations of electrons
and holes from thermal excitations. In this
case, carriersin both the upper and lower
bands can contribute to current flow. Thisis promotion
an intrinsic semiconductor. The most
important elemental semiconductorsarein
Group 1V (Si, Ge). Also of great importance
aretheIl1-V compounds (GaAs, InP, GaP)
and some l1-V1 (ZnSe). Many other compounds, particularly oxides, show
semiconducting behaviour. If we dope materials with impurities, we can produce an
extrinsic semiconductor. In a p-type semiconductor, the impurities have energy levels
that are in the band gap just above the filled band (acceptor states). Electrons can be
excited into these states, leaving an unfilled band that can now conduct. In an n-type
semiconductor, the impurities have energy levels that arein the band gap just below the
empty band (donor states). Electrons can be excited out of these states into the upper
band, and this can now conduct.

Consider an electron near the top of the lower (valence) band. The steady state drift
velocity isgiven by v, = —1F /m” wherem isthe effective mass of the unfilled state.
Thiswill be negative (sinceit is at the top of the band), -m,, say, andso v, =1F /m, .
If theforcein questionisan eectric field, F = -eE, the current density, j, (defined as
charge motion per unit volume) is

j=-ev, IV =—€1E/Vm,
where V isthe volume. Now, the current density provided by a band that is complete
except for this electron isthe opposite of this. In fact the nearly filled band acts as
though it were a positively charged particle of mass m,. We thus consider the nearly-
filled band as a hole and the promotion of an eectron from the valence band to the
conduction band as the creation of an electron-hole pair. The transport equations are

mh(—d\(;?h + V%h] =ekE for the holeand m{% + V_;e] = —eE for the dectron.

m, and m, are the effective masses of the electron and hole respectively. The total
current is the sum of the electron and hole currents

j=le™* jn =€NyVp, —€NVpe =0E
where n,, N, are the densities of eectrons and holes respectively. We can also define
mobilitiesas y,, =er/m,, u, =er/m,. Noteaso that if n, << n,, the Hall

coefficient isgiven by Ry = 1/n,e and istherefore positive.



Intrinsic semiconductors. detailed treatment.

Intrinsic semiconductors have afinite population of thermally-excited electronsin the
conduction band. This means that the Fermi level (i.e. the chemical potentia of the
electrons L) is somewhere in the gap. Note the distinction between the chemical
potential and the Fermi energy, which is the highest energy leve filled when
temperatureisignored; i.e. the chemical potential at absolute zero). If the energy of the
conduction band is E¢, we can write the number of éectronsin the conduction band
(neV where n, isthe density of eectronsand V the volume) as

nV = j: D(E) f ., (E)dE (1)

where f-p(E) isthe Fermi-Dirac distribution function. If the chemical potential is
significantly below the conduction band (severa ksT ), then we can approximate the
function as

-1

fro(E) = (exp[(E - 1) / ke T]+1) " = exgf~(E - 1) 1 K T] ()
Also, the shape of the bottom of the conduction band. Hence the energy relation for
electrons at the bottom of the conduction band can be written as

E=E.+n°k?/2m, 3
The densities of states are asfor the free-electron case except that the energy zero is
either the bottom of the conduction band rather than the zero of potential. Thus the
density of statesfor the conduction band is

D(E)=D(E~Ec)= 12 2m (E - Ec) @
Hence for the conduction band,
nV = j; D(E - E¢)exp[— (E - )/ kg T|dE (5)

and, putting in the formula for the density of states, we get

. 2 3/2
n, = jEC (ZELS (E-Ec)” exp[~(E - 1)/ K, T|E (6)
We can solve this by some creative substitution; Let y? = (E - E¢) / keT . Then

n, = %exp[—( Ec —4)! kBT”: y’ exp(—yz)dy
T2 (7
=2t el -aykeT

getting the integral from standard tables. I: y? exp(— yz)dy =m'?/4

A similar argument gives the number of holesin the valence band. We now want the
density of statesfor the holes, and we also require (1 - f-p(E)) rather than f5(E) since
we want the probability of the absence of an electron. Therefore,

nV = [ DE)A- fro (E))dE (8)

where the limits are taken over the valence band. If the chemical potential is severa
keT abovethevalenceband, (1- fq(E))= exp[(E - u)l kBT] . If thetop of the
valence band is approximately parabolic, (i.e. the energy of an electron at the top of the



valenceband isgiven by E = E,, —7?k?/2m, ) then, referring the energy zero to the
top of the valence band, we have

D(E) = D(E, - E) :%1/2%(@ ~E) ©)

and therefore, substituting all thisin,

2 3/2
v =] %(E\, ~E)'? exp|(E - 1)/ kg T HE (10)
and setting y* = (Ey - E) / keT we get
_1(2mk T\
n, _Z(Tj expl(E, ~ 1)/ kqT| (12)

We can proceed further since we know that this thermal creation must produce pairs of
electrons and holes, hence n, = n,. Hence, equating the two expressions, we can find
out the value of the chemical potential of the eectrons 4(T). Thisis given by
u(T)=(Ec +Ey )/ 2+ (3/ 4)kgT In(my, /m,) (12)
and lies near the middle of the gap (usually the second term is small) as shown in the
diagram at the beginning of this section.

We can aso obtain the product of the carrier concentrations. Thisis given by

C1(kTY) a2
nn, = E( mzj (mm,) exp(—Eg / kBT) (13)
where E; = Ec - Ey isthe band gap. Note that this result is independent of the chemical
potential and is, in fact, an expression of the law of mass action. Y ou can treat the
problem as though it were a chemical reaction and electrons and holes were chemical
species. If n,= n, (asin the case of electron-hole pairs produced by thermal
excitation), then the equation givestheintrinsic carrier density. For silicon, at room
temperature, this gives 2 x 10" m™, Thisis much less than for atypical metal

(10 m™).

This aso implies that the thermal conductivity in an intrinsic semiconductor shows an
approximate Arrhenius behaviour (the mobilities do vary with temperature but the
effect is small compared to the effect of the carrier concentrations).

Extrinsic semiconductors
Another way of obtaining eectronsin the conduction band (or holes in the valence
band) is to dope the pure semiconductor with impurities.

For example, if we dope silicon with small quantities of |SI |S| |SI |SI
agroup V eement like phosphorus, the phosphorus S—S— P—Si
displaces the silicon from its site. The effect isto add | L |

an extra electron - and an extra positive charge (see the S —S—S —S—
diagram of a segment of the Si lattice on theright. It is | | | |
shown as you would see it looking down the a axis of Sll Sl' ?‘ Sl'
the structure - al the connections are correct but not all

the atoms arein the same plane). The extradectron is
weakly bound to the phosphorus and at room temperaturesit is easily excited into the
conduction band. Thisimpurity has donated an electron from adonor state. The



density of dectronsinthe conductionbandis | D(E) donor state
thus equal to the density of donors (plus any *
thermally excited eectrons). If the density of
donors is much greater than theintrinsic
density, Np >> n; then clearly

n. = Np. However, the result for n.derived
for theintrinsic case ill remainstrue. Let us >E
rewrite this (equation 7) as an equation for
the chemical potential and set n. = Np

1 (2mkgT)>?
ﬂ:EC—kQW{AND{ T;f } } (12)

For typical donor levels (N, about 10 m™ or one dopant atom in 10°) this gives the
chemical potential as several ksT (0.1-0.2eV at 1000K) below the conduction band
(i.e. far above the midpoint). Also, by the standard mass-action effect, we know we
will have a negligible concentration of holes (since n.n, = n?). Thus the conductivity
isdominated by negative charge carriers; the system is called an n-type semiconductor.

If on the other hand, we dope silicon with a group

[11 element like boron, we get the opposite effect. S—S—g5 —S—

Boron also displaces silicon from its site, but now | | | |.

it is one electron short of forming the four SII S||_h IB_SII_

tetrahedral bonds of the structure. In effect, we §—S—S —S—

have added a hole. Also, we have, in effect, added | | | |
Y

anegative static charge; the valence state of boron S —Si—
isthree, onelessthan silicon. At zero temperature, | |

this hole is bound to the boron atom, but at room
temperature it enters the valence band (or equivalently, an electron from the valence
band is promoted into the localised state just above the valence band created by the
presence of the boron atom). Boron is an acceptor impurity; the stateis called an

acceptor state. Again, for normal doping

levels, the number of holesis determined by D(E) acceptor
the number of acceptors, Na. Thus n, = Na. + State
Again, we can use the results for theintrinsic
case to write an expression for the chemical M
potential in terms of the hole density

1 [(2mk,T)¥? |
#:EV+kBT|n(4NA{ 7;128 } }(12) : »E

and we find that this time, the chemical
potential isafew ksT above the valence band. Again, by mass-action the number of
electrons in the conduction band is reduced to negligible amounts and the conductivity
is controlled by the positively-charged holes. The material is called a p-type
semiconductor.



