
The free electron model
This is the simplest possible model for a metal. We shall make two fundamental (and
very big) assumptions that are, in fact, much more reasonable than they look:
• the interactions between the electrons are irrelevant and can be ignored (the

independent electron approximation)
• the electrons move in a constant potential V r( )  i.e. we can ignore everything about

the structure of the material. In that case we might as well set V r( ) to zero.

These are heroic assumptions; but they do give a fair representation of a simple metal.
If these assumptions are granted, the Schrodinger equation for a metal is simply that of
a particle in a box
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where ψ  is the wavefunction of a single electron of mass m and E is the energy. This
gives the wavefunctions as
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where V is the volume of the material and k is the wavevector. The energy is given by
E m= �

2 2 2k / (remember that for this case the energy depends only on the magnitude
of k). This gives travelling (or stationary) waves as before and k is, in effect, the
wavenumber. If L is the periodic length-scale, we have the same restrictions on kx ,ky ,kz

as before: that they must equal 2πp L/  where p is an integer. This gives a cubic lattice
of points in k-space and for each state of the system described by (kx ,ky ,kz ), the
energy is
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As before, we can use the idea of a density of states. Previously we showed that the
density of states for lattice vibrations depended on the magnitude of the wavevector;
ρ π( ) /k Vk= 2 22 .  We can relate this density of states, ρ( )k , to the density of states
expressed with respect to the energy E, D (E). But now, for each value of k there are
two electrons (one with spin up, once with spin down). We must therefore write

( ) ( )dEEDdkk =ρ2  And, rearranging this in the usual way, we therefore have
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For our particle in a box, we know that E k m= �
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2 , and
therefore, substituting for ρ(k), we obtain
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This is parabolic and does look roughly like the
bottom of a band. Note that, since D (E) is
proportional to V, the more material we have,
the more states there are. Suppose that we
have a material with N electrons in it. Then we
proceed as before, filling up the states. The
energy of the highest filled state at zero temperature is, by definition, the Fermi energy
EF.  We can obtain this since we know
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and so, performing the integral and rearranging it,
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where (N/V) is the density of electrons in the material. Two quantities are closely
related to this. First, the Fermi temperature, TF  is defined by the relation EF = kBTF

and the Fermi wavevector, kF  is defined as the magnitude of wavevector of the state
with energy EF. This can be calculated since we know that E k mF F= �

2 2 2/  and,

combining this with the result for kF we get ( )k N VF = 3 2 1 3
π /

/
. Since we have ignored

everything about the structure, the occupied states are described by k values in a
sphere of radius kF - the Fermi sphere. For a typical metal, with electron density (N/V)
about 1028m-3, EF is about 2eV and kF is about 6.7nm-1; roughly the reciprocal of a
lattice spacing.  We can easily obtain the velocity of the electrons at the Fermi surface,
either by considering them as particles, in which case, the kinetic energy, 1
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or as a wave, in which case the group velocity is given by
v d dk dE dk k mF k k FF
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either way. This is about 106m/sec which is well below relativistic velocities; but is
above thermal velocities (i.e. velocities given by 3kT/2 = mv2/2; for 300K this is about
105m/sec. Another way of putting this is to say that the Fermi temperature is high;
about 105K. This means that, under terrestrial conditions, the behaviour of the
electrons is dominated by the Pauli principle. The electrons form a degenerate quantum
gas. They generate a huge outward pressure and can be seen by the following
argument. Ignoring the heat term, the first law of thermodynamics states that dE = -

PdV. The total energy of the electrons is given by E D E dE NEF

EF
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 . Hence

the pressure is (-3N/5)(dEF/dV) = 2NEF/5V. Putting in the figures quoted above, this
gives a pressure of about 10GPa. This is what keeps the ears of a white dwarf apart
(remember your 1st year 1B23 course on the evolution of stars).

There remains the problem of what keeps a metal together. In a solid, there are two
competing effects; as the electrons spread out in the material as a ‘gas’ , the kinetic
energy is lowered ( 3/2−∝ VE ). On the other hand, as they move away from the nuclei,
the potential energy is raised. For the inner electrons, tightly bound to the nucleus, the
potential energy is the stronger effect and the spreading out of the electrons is minimal.
The nuclei plus inner electrons form a positively charged ‘core’ . For the outer
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(valence) electrons, the kinetic energy effect is much stronger and the electrons spread
throughout the metal like a gas. However, they cannot spread out infinitely far, they
are still held within the material by the Coulombic attraction of the positively charged
cores. The tendency of the kinetic term to spread the electrons out balances the
Coulombic attraction of the cores at the experimental volume of the material.

Finite temperature.
So far, we have completely ignored the effect
of temperature. We have assumed that the
occupation of the density of states falls
instantly to zero at EF and there is no thermal
distribution of states at this point. This is
untrue, of course. The necessary correction
is given by the Fermi-Dirac function fFD

given by
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where µ  is the chemical potential of an electron (in effect the Gibbs free energy of the
electron gas per electron; strictly speaking the Gibbs free energy change when one
more electron is added to an N electron system under stated conditions of temperature
and pressure). If E << µ , fFD(E) goes to unity. Even if E is only slightly below µ,
fFD(E) is still approximately unity at low enough temperature. In the other limit, when
E >> µ  or the temperature is high,  fFD(E) goes to zero. If the energy is equal to the
chemical potential, fFD(E)= 1/2. The shape of the function is shown in the diagram
above. As can be seen, for many purposes, the step function is not a bad
approximation. However, the true spectrum of electron energies should be written as
D(E,T) = D(E)fFD(E). We can now calculate the electronic specific heat directly, since

CV = dE/dT and E T E D E T dE
EF
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doable, but the integral is a mess. A reasonable
approximation can be obtained by assuming that
fFD(E) can be replaced by a straight line passing
through the point when fFD(E) = 1/2 and cutting the
lines fFD(E)=1 for E=EF - kBT and the line fFD(E)=0
at
E = EF + kBT (dashed line on the diagram).  In this
case, the thermal excitation involves altering the
vertical cutoff by removing a triangle at the top and
putting it at the bottom. The number of electrons
promoted is the area of a triangle of height D(EF)/2
and width kBT  i.e.  D(EF)kBT/4  and they each gain
about kBT. Thus E(T) = E(0)+D(EF)kB

2T2/4. The
specific heat is therefore

CV = dE/dT  ~ D(EF)kB
2T/2 = 3NkB

2T/4EF
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Doing the job properly gives an extra factor of 2π 2 3/ . The important point is that the
specific heat is linear in temperature. If we recall that, at low temperatures, the
phonons give a term proportional to T3, we can write the specific heat of a metal at
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low temperatures as CV = AT + BT3 . Experimentally, the functional form is obeyed
very well, but our calculated value of A is out by about 25%. This was one of the first
triumphs of quantum theory, since a classical theory would give 3NkBT/2 from classical
equipartition.

Transport
We showed above that the electrons could be
considered as a gas of particles. However, they have a
non-Maxwellian velocity distribution since the particle
velocities are given by v k m= � /  with a maximum
when k = kF . We will continue this analogy by
assuming that we can use the classical equations of
motion for a charged particle, ( )dtvdm /′=F where ′v

is the extra velocity due to the force F. This is NOT the

same as v used above. Thus ′ = �v t dt m( ) ( ) /F . The question is what to use for the

limits. The electrons collide with each other and with the lattice. The important
interaction is between the electrons and the lattice vibrations. If we assume, continuing
the classical analogy, that each interaction randomises the velocities (i.e. that the
electron loses all the velocity ′v  due to the force F), then the integral should be over
the time between interactions. The mean of these velocities, called the drift velocity, is
approximately
v FD m= τ /  (11)
where τ  is the mean time between collisions, called the relaxation time . If the force
varies, so must the drift velocity. This can be described by a transport equation of the
form

( )m d dtD D( / ) /v v F+ =τ (12)

In the steady state, we get v FD m= τ / , and if F = 0, then
v vD D t t= = −( ) exp( / )0 τ , (13)
illustrating the relaxation of drift to zero upon the removal of the driving force.

Electrical conductivity (F = -eE ).
Substituting into the above, this gives the steady-state solution of
v ED e m= − τ /  (14)
(Note that  e is the magnitude of the fundamental electronic charge and is therefore
positive). If we define the mobility µ e D=| |/| |v E , then, comparing with the previous
equation, we have the mobility of an electron in an electron gas as µ τe e m= / . The
electric current, the rate of flow of charge,  j  =  -nevD  where n=N/V, the density of

electrons. Putting in the expression for vD, we get j E E= =ne

m

2τ σ  which is Ohm’s

Law where σ  is the conductivity. We can use this to get an idea of the relaxation time.
For a typical metal, σ ≈ − −107 1 1Ω m  and taking our previous estimate for the density of
electrons of 1028m-3, this gives τ ≈ −10 14 seconds. The mean free path λ  is clearly

τFv , about 10nm. This is tens to hundreds of lattice spacings. This is obviously
consistent with the idea that we can to a great extent ignore the lattice, but does not
explain why.
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There are two main effects dominating the
value of  τ ; one is scattering off impurities,
the other is scattering off phonons. The first
effect is temperature-independent; the
second depends on temperature because the
number of phonons depends on
temperature. This explains the qualitative
shape of the conductivity curve.

Thermal conductivity. We have already discussed thermal conductivity when we
considered phonons. This effect dominates the thermal conductivity of insulators.
When considering metals, we must consider the thermal conductivity of the electrons.
We can still use the expression for the coefficient of thermal conductivity obtained
from the kinetic theory of gases; κ λT vC= / 3. Here we identify the mean velocity
with the Fermi velocity since only electrons near the Fermi level can change their
electronic state at thermal energies. The specific heat per unit volume of the electrons
is nCV where CV is the heat capacity of one electron and n is the density of electrons
(N/V). We have derived expressions for CV

and λ  above, so we can obtain an expression
for the thermal conductivity due to the
electrons as
κ τ πT F B F Fk T E v n= ( )( / )( / )v 2 2 2 3      (15)

which reduces to κ π τT Bn k T m= 2 2 3/  when
we take into account the fact that the Fermi
energy is the kinetic energy of the electrons
and so; EF = mvF

2/2. In metals, this tends to
dominate the phonon contribution. Taking our
usual values; we get 100 Wm-1K-1. To get this,
we have assumed that one relaxation time is valid for both thermal and electrical
conductivity. Then we examine the following combination;
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- the Lorenz constant. This experimental
correlation is at least approximately obeyed
for a variety of metals and is called the
Wiedemann-Franz Law.

The Hall effect. We consider the transport
of electrons in a slab of when a magnetic
field is applied at right-angles to the
direction of motion. In this case, we must
put the Lorentz expression for the force in
the transport equation we derived above i.e.

( ) ( )m d dt eD D D( / ) /v v E v B+ = − + ×τ

If we write this out in components we have
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If the current goes down the wire, then 0== DzDx vv . From the diagram,  By=Bz=0

In the steady state, the acceleration in the x and z directions of the electrons must be
zero. Thus equation (17) reduces to

xeE−=0   ;  y
Dy eE
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τ
; ( )xDyz BvEe −−=0

The first equation states that there is no current in the x direction;  the second equation
is simply that of the current down the wire. The third states that there must be a field
perpendicular to the current Ez = vDyBx  or, substituting for the velocity,
Ez = (-1/ne)jyBz = RHjyBx where RH  is the Hall coefficient and is obviously given by
RH = -1/ne in the free electron model.    The tendency of the magnetic force to bend
the direction of the current must be balanced by an induced electric field if the current
is to go down the wire. This is the Hall effect. In general, the Hall field is written as EH

= RH B x j .  This can be obtained from the transverse potential across the slab of
conductor and can be used to deduce n, the electron density. However, the electron
density comes from the valence electrons, so n should correspond to the number of
electrons ionised per atom (or per mole of atoms) in the material. In other words, it
should correspond to the chemical valency if we assume that a metal consists of the
ionic cores bathed in a gas of electrons. This Table shows how we get on.

Element Valency Apparent valency from
Hall coefficient

Na 1 0.9
K 1 1.1
Cu 1 (to obtain d10 core) 1.3
Be 2 -0.2
Mg 2 1.5
Cd 2 (to obtain d10 core) -2.2
Al 3 3.5
The agreement is at best fair and at worst (Be, Cd) disastrous. Something has gone
badly wrong with at least one of the assumptions we have made.

To summarise the free electron model
Successes
1. Metallic density of states more or less the right shape
2. Binding energies in the right range
3. Heat capacity functional form correct
4. Electrical conductivities reasonable and the Weidemann-Franz law
Failures
1. No account of the band gaps
2. No reason given why one crystal structure should be favoured rather than another
3. Hall coefficients can be seriously in error.



Electrical neutrality and screening
Although we have just considered the dynamics of an
electron in a metal under the influence of electric and
magetic fields, one of the basic properties of a
conductor is that it contains no internal electric field.
In fact we were cheating slightly! (It doesn’t alter the
analysis) When an electric field is applied to a simple
metal ( for instance if it is put in a capacitor), then
field must somehow be screened out. We shall see
how the gas distorts slightly near to charges in such a way that electrons further away
do not see much of the original charge. We shall derive the spatial dependence of the
electron gas and the electric field that is screened. We shall consider a problem in one
dimension where a metal is placed between the plates of a capacitor.

We start with Gauss’s Law, divE = Q / ε 0  where Q is the charge density and E the

applied field. Before the field is applied, the system is electrically neutral with the
electron gas charge cancelling the charges on the ions. When the field is applied, the
electrons shift and this cancellation is not complete and so a charge density is induced.
If the original charge density of the electron-gas (and positive lattice) separately have
magnitude|en0|, then the excess charge density induced by the field must be  -e(n - n0)
and this is Q. i.e. the positive ions do not move while the electron gas does. Then
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Next we consider particles in a small box of length dx and cross-sectional area A with
pressures P and  (P+dP) on opposing walls. The mechanical force on the particles in
the box is given by AdP down the pressure gradient. This is balanced by the electric
force on the electrons –nAdxeE. Thus

neE
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dP −= (17)

 We can use the degeneracy pressure for an electron gas, P = 2nEF/5 . We know the
expression for EF so we can differentiate the pressure equation for an electron gas.
This gives
dP

dx
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Putting these three equations together gives the result:
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where n has been approximated by n0 on the right hand side. This is the screening

equation, where λ ε= ≈2 3 010
2

0E e nF / . nm i.e. the screening length is approximately

a lattice spacing. The relevant solution to (19) is
( ) ( )E E= = −x x0 exp / λ (20)

i.e. the electric field penetrates only to a depth of a few lattice spacings. Similarly, if we
put a test charge in the electron gas, the Coulomb potential is screened, taking the
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form ( )V r
e
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r= −
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λexp( / ) . This is consistent with the idea that we can ignore the

electron-electron interactions too, although there is more to it than this.

Screening is one justification for the free electron model. Another reason for the
reluctance of electrons to scatter is the degenerate nature of the gas (there is nowhere
for the scattered elecrtons to go), and there is another effect, that a periodic potential,
such as is generated by a regular array of atoms, is in fact incapable, through quantum
mechanics, to scatter a travelling wave electron. This is a consequence of Bloch’s
Theorem.


