
Answers and Hints to Exercise Questions in “Solar System Dynamics”
(Last Updated: 1 February 2000)

Chapter 1

Q1.1 Let O=octahedron, I=icosahedron, D=dodecahedron, T=tetrahedron, C=cube. (b) The largest
rms is 3.139 AU for O/C, T, I/D, D/I, C/O; the smallest rms is 0.248 AU for I/D, D/I, O/C, T, C/O. By
using the semi-major axes in Table A.2 the rms in (a) increases to 1.367 AU; in (b) the largest rms is 3.156
AU and the smallest is 0.258 AU but the orderings are unchanged.

Q1.2 Use the same notation as in Q1.1. (c) The largest rms is 2.484 AU for O/C, T, I/D, D/I, C/O. By
using the semi-major axes in Table A.2 the rms in (b) increases to 0.159 AU; in (c) the largest rms is 2.502
AU but the ordering is unchanged. Kepler produced astrological reasons why his ordering of the solids had
to be correct but he also managed to find the best possible ordering to fit his model.

Q1.4 Note that there is only one additional pair with |c| < 0.15. See error listings.

Q1.5 Planets 3 and 4 are close to a 7:6 (i.e. p = 6) commensurability and satisfy the condition.

Q1.6 (a) There is no simple relationship between Nr and imax. Although there are at most imax − q
rationals of the form p/(p + q) for a given q with p + q < imax, some of these can be reduced to rationals of
lower order (e.g. 2

6 = 1
3 ). For imax = 2, 3, 4, 5, 6, 7, 8, 9, 10 we have Nr = 1, 3, 5, 9, 11, 17, 21, 27, 31 respectively.

(b) εmax = 1
2

(
imax−1

imax
− imax−2

imax−1

)
. (c) You need to make some assumptions to get this expression for p. (d)

Think binomial distribution. (e) Note that the satellites of Neptune should be included and the upper limit
of the satellite eccentricity should be 0.15 and not 0.1. See error listings. Using the J2000 values for the
planets from Table A.2 as well as the satellite data gives Np = 44 and Nobs = 30. With p = 17/31 the
formula gives P = 0.025.

Chapter 2

Q2.1 Many of the techniques of Sects. 2.2 and 2.3 are still applicable with minor modifications. Once
you get the modified version of Eq. (2.13) you could just show that the polar equation of a centred ellipse
satisfies the equation.

Q2.2 Using the semi-major axes the time interval between conjunctions is 2.135 years. Given that
eM � eE calculate the separation for conjunctions at Mars’ perihelion and aphelion. The ratio should be
1.75 and so the minimum distance varies by a factor ∼ 2. A “very close” opposition of Mars occurs when
Mars is at perihelion. Imagine Earth and Mars in this configuration with the Sun, Earth and Mars defining
the reference line. Now think what the geometry will be at the next conjunction, 2.135 years later. This gives
the interval between close approaches as 15.8 years. In order to see what is happening plot the separation of
Mars and Earth as a function of time for the years 1985–2002 using the data from Table A.2. The minimum
separation at the closest opposition is 0.392 AU on 22 September 1988. The minimum separation at the
furtherest opposition is 0.674 AU on 12 February 1995. The next close opposition occurs on 27 August 2003.

Q2.3 For a hyperbolic orbit a < 0 and e > 1 but Eq.(2.20) still holds and the pericentre distance is still
a(1 − e). Using data from Tables A.4 and A.9 the maximum deflections are (i) 142.4◦ for Jupiter and (ii)
14.06◦ for Titan.

Q2.4 To show why e has to lie in the orbital plane consider the directions of the vectors r, v, h and
h × v. To show that e is a constant you need to show that ė = 0.

Q2.5 E = 132.14◦, f = 158.47◦, r = 4.5892 AU, θ = 240.67◦. You can see the images taken by the
Galileo spacecraft at http://www.jpl.nasa.gov/galileo/sepo/cruise/sl9/wfrag3.html

Q2.6 At noon on 14 August 2126 the Earth has position vector rE = (0.773762,−0.654228, 0) AU while
Swift-Tuttle has position vector rST = (−4.48642, 4.73128, 1.56172) AU. Hence the separation is 7.68844 AU.
In fact, the minimum separation is as low as 1.238 AU in mid-2128 but still nothing to worry about. However,

1



it should be noted that these answers are based on a number of assumptions.

Chapter 3

Q3.1 Note that the angular separation should be 23.9◦ and not 23.5◦. See error listings.

Q3.2 (i) Ā = 4 + 3α. (ii) Ā = 4 − 3α. (iii) Ā = 1 − 3β − (7/8)µ2 ≈ 1 − (3/2)β ≈ 1 + (7/8)µ2.

Q3.3 You need to make use of the masses of Jupiter and Io to calculate the distance of the Io–Jupiter
L1 point from Io in units of the semi-major axis of Io’s orbit. Remember that in our system of units Io has
unit mean motion and therefore 2π time units correspond to one orbital period of Io. Remember that the
growth away from an unstable point is exponential. The answer is 1.794 days.

Q3.4 Be warned that there are several incorrect ways to get the right answer and so the detail is
important!

Q3.5 (i) x0 = 1.92. (ii) x0 = 2.47. (iii) x0 = 2.49 gives xmax = 12.3256 following encounter. Because
some of these trajectories are in chaotic regions it is possible that your answers could be slightly different
from these.

Q3.6 Note that r and v are the position and velocity vectors in the inertial frame and that the necessary
theory is given in Sect. (3.14.2), not Sect. (3.15.2). See error listings. Remember that in the approximation
we only need to include terms of O(k) and we can neglect terms of O(kµ2) and higher. Also, the unshifted
L4 and L5 points are located at r = 1.

Chapter 4

Q4.1 You should be able to show that there is no contribution to J2 from a sphere of uniform density
and so only the thin shell contributes.

Q4.2 (a) x = [(5αρ/2 − ρm)/(ρ − ρm)]1/2; ρc = ρm + (ρ− ρm)5/2/(5αρ/2− ρm)3/2. (b) For Earth the
relationships give ρm ≤ 4.58 g cm−3, ρc ≥ 7.30 g cm−3, x ≤ 0.91. When we use Rc =3,480 km we have
ρm = 4.18 g cm−3 and ρc = 12.3 g cm−3.

Q4.3 (a) tan ε = ωβ/(ω2
0 − ω2); A = F/

[
(ω2

0 − ω2)2 + ω2β2
]1/2. (b) To do the integral you must set

x = A cos(ωt − ε) and ẋ = −ωA sin(ωt − ε). (c) Emax = 1
2ω

2
0A

2 and hence Q = ω2
0/(βω). This is often

referred to as a “frequency-dependent Q” in geophysics, and implies ε ∝ ω for small phase lags and slow
forcing.

Q4.4 The numerically-derived answers for the Moon’s initial and final synchronous states under tidal
evolution are: (a) [initial state] a = 2.26R, Porb = P = 4.8 h at time τ = −1.65 × 109y (for Q = 12).
(b) [final state] a = 77.5R, Porb = P = 39.7 d at time τ = +6.7 × 109y. (c) [final state, with no solar
torques] a = 86.9R, Porb = P = 47.0 d at time τ = +16.1 × 109y. Note that the above are averages of ∼ 12
independent calculations, and may be accurate to ±0.5%. The results for (a) and (c) may also be derived
approximately from angular momentum conservation arguments.

Q4.5 For the first part you should make use of the fact that satellite tides cannot appreciably alter the
orbital angular momentum, L, but only the z-component is conserved if I �= 0 because the orbit will precess.
The inclination damping timescale is τI = (2/3) (ms/mp) (a/Rs)

5 (Q/k2)s (sin I/ sin ε)2 (n cos I)−1. Make use
of Eq. (4.198) and Eq. (4.156) to show that τI/τe = 7 (sin I/ sin ε)2 (cos I)−1.

Q4.6 The theory behind this method is covered in Sect. 4.13 with the initial semi-major axis set to
the synchronous value. The resulting lower limits for Mars, Jupiter, Saturn, Uranus and Neptune are 42,
1.12 × 106, 8.1 × 104, 7.9 × 104 and 5.4 × 104 where we have used a synchronous semi-major axis of two
planetary radii for the case of Proteus.

Chapter 5
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Q5.1 (a) For Io: a−c = 15.6km = 0.00856RIo. (b) For the Moon in its current orbit: a−c = 0.0658km =
0.0000379RMoon; this is undetectable. (c) For the Moon at 10 Earth radii: a− c = 14.4km = 0.00830RMoon;
for the Earth with a 10 h rotation period and h2 = 1.94: ε = 0.0192 and J2 = 0.00619. (d) Taking the spin
period to be 58.65 days (see error listing) you should get ε = 1.3×10−6; this corresponds to a−c = 0.003 km.
(e) In this part you could use the mean density for Pluto given in Table A.4. For Pluto a − c = 1.3 km; for
Charon a − c = 0.7 km.

Q5.2 (a) The total mass is 1.47 × 1022 kg giving a mean density of 〈ρ〉 = 2.08 g cm−3. See Sect. 2.7
for a clue as to how to measure the individual masses and densities. (b) τP ≈ 7 × 106 y. (c) Note that for
smaller bodies k2 ∝ R2 and so τC/τP ≈ (RC/RP)4 is more realistic. (d) The intial semi-major axis and
orbital period would have been a = 14620 km and P = 4.103 d, respectively.

Q5.3 This is a fairly simple task using the outline in Sect. 5.3.

Q5.4 The critical eccentricity is ecrit = 0.2793.

Q5.5 Measuring along the θ̇/n = 1 line, the maximum variation is reduced from 180◦ to 76◦.

Q5.6 For p = − 1
2 ,

(
θ̇/n

)
max/min

= − 1
2 ±

√
e3/48. For p = −1,

(
θ̇/n

)
max/min

= −1±
√

e4/24. For fixed

e intersection of the “islands” of these resonances occurs for α = 1
2

{√
e3/48 +

√
e4/24

}−1

. The equation
for e as a function of α is transcendental in e and so has to be solved numerically. Based on the equation
for α as a function of e, are the islands ever likely to intersect?

Chapter 6

Q6.1 8n′− 3n = −0.00789237 ◦d−1. If we write a general argument as ϕ = 8λ′− 3λ+ϕi then the ϕi are
ϕ1 = −5*, ϕ2 = −*′−4*, ϕ3 = −2*′−3*, ϕ4 = −3*′−2*, ϕ5 = −4*′−*, ϕ6 = −5*′, ϕ7 = −3*−2Ω,
ϕ8 = −*′ − 2* − 2Ω, ϕ9 = −2*′ − * − 2Ω, ϕ10 = −3*′ − 2Ω, ϕ11 = −* − 4Ω, ϕ12 = −*′ − 4Ω,
ϕ13 = −3* − Ω′ − Ω, ϕ14 = −*′ − 2* − Ω′ − Ω, ϕ15 = −2*′ − * − Ω′ − Ω, ϕ16 = −3*′ − Ω′ − Ω,
ϕ17 = −*−Ω′−3Ω, ϕ18 = −*′−Ω′−3Ω, ϕ19 = −3*−2Ω′, ϕ20 = −*′−2*−2Ω′, ϕ21 = −2*′−*−2Ω′,
ϕ22 = −3*′ − 2Ω′, ϕ23 = −* − 2Ω′ − 2Ω, ϕ24 = −*′ − 2Ω′ − 2Ω, ϕ25 = −* − 3Ω′ − Ω, ϕ26 = −*′ −
3Ω′ − Ω, ϕ27 = −* − 4Ω′, ϕ28 = −*′ − 4Ω′. The term associated with the argument ϕ = 8λ′ − 3λ −
*′ − 2* − Ω′ − Ω is G(m′/a′)e2e′ss′ 1

16

{
−1488αb

(6)
3/2 − 433α2db

(6)
3/2/dα − 38α3d2b

(6)
3/2/dα2 − α4d3b

(6)
3/2/dα3

}
.

The Laplace coefficients are αb
(6)
3/2 = 0.0942442, α2db

(6)
3/2/dα = 0.677156, α3d2b

(6)
3/2/dα2 = 4.49721 and

α4d3b
(6)
3/2/dα3 = 28.5378. The smallest integers for which the condition is satisfied are p = 10 and q = 17.

Q6.2 The differential equation for G is (y − 1)y d2G/dy2 + [(2s + j + 1)y − 2s] dG/dy + s(s + j)G = 0.
Taking s = 3

2 (see error listing), substituting the solution for G in this differential equation and equating
coefficients of y−2 and y−1 gives A1 = 1

4 (2j − 1)A0 and B0 = 1
8 (2j + 1)A1 respectively. Taking l = k and

l = k + 1 and equating coefficients of yk ln y gives Bk+1 = 1
4Bk(2k + 3)(2k + 2j + 3)/[(k + 1)(k + 3)]. Taking

l = k − 2, k − 1, k and k + 1 and equating coefficients of yk−2 gives Ak+1 = [−2kBk−1 + (2k + j − 1)Bk−2 +
1
4 (1 − 2k)(1 − 2k − 2j)Ak]/[(k + 1)(k − 1)]. Although A0 and A2, on which all the remaining Al and Bl

depend, are not defined, they can be calculated numerically. Consider G as a function of y, A0 and A2.
We can isolate A0 and A2 as factors by noting that G(y;A0, A2) = A0 G(y; 1, 0) + A2 G(y; 0, 1). Now, since
F (x) = G(y) where y = 1 − x, we can evaluate F (x) at two arbitrary values of x = 1 − y giving the two
simultaneous equations F1 = F (1 − y1) = G(y1) = A0 G(y1; 1, 0) + A2 G(y1; 0, 1) and F2 = F (1 − y2) =
G(y2) = A0 G(y2; 1, 0)+A2 G(y2; 0, 1). Because we know the form of F we are left with two linear equations
in two unknowns, A0 and A2. The choice of y1 and y2 is arbitrary provided they are different positive values
less than 1. The value of b

(2)
3/2(0.999) is 636930.0087516. This sort of precision can be achieved with l < 10

in the series for G.

Q6.3 *̇S = −Ω̇S ≈ (3/4) (mJ/M) (aJ/aS)2 ns. This gives a pericentre precession period of 137000 y.
Note that this is off by a factor 2.5 but the right order of magnitude. It would have been a better approxi-
mation if aJ � aS.
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Q6.4 dI/dt = −
(
3nJ3R

3e
)
cos I

(
(5/4) sin2 I − 1

)
cosω/

(
2a3(1 − e2)3

)
. The expression for dω/dt is not

given in Sect. 6.11 (see error listing) so you should use: dω/dt =
(
3nJ2R

2
) (

1 − (5/4) sin2 I
)
/

(
a2(1 − e2)2

)
.

The approximate variation in I is ± (J3Re) /
(
2J2a(1 − e2)

)
.

Q6.5 (a) n =
(
GM/a3

)1/2 {
1 + 3h2/(2c2a2)

}1/2 and κ =
(
GM/a3

)1/2 {
1 − 3h2/(2c2a2)

}1/2. (b) For
Earth *̇GR = 0.038 arcsec y−1. For Mercury *̇GR = 0.41 arcsec y−1.

Q6.6 (a) ac =
{
2J2 (Mp/MSun)R2a3

p cos I/ cosβ
}1/5. (b) For Earth, Saturn and Uranus ac/R = 9.82,

42.5 and 77.6, respectively. (c) Think about the important plane in each case. (d) Here we are calculating
the precession due to J2 alone. Moon: Ω̇ = −5.9 × 10−6 ◦d−1; T = 6.1 × 107 d. Mimas: Ω̇ = −0.99◦d−1;
T = 365 d. Titan: Ω̇ = −0.0013◦d−1; T = 2.7×105 d. Miranda: Ω̇ = −0.052◦d−1; T = 6.9×103 d. Oberon:
Ω̇ = −2.7 × 10−4 ◦d−1; T = 1.3 × 106 d.

Chapter 7

Q7.1 Note that µ1 = m1/(ms + m2) and µ2 = m2/(ms + m1) where ms is the mass of the star. See
error listing.

Q7.2 The precession rate of Saturn due to Jupiter is 2.6 × 10−3 ◦y−1 using this method. The formula
for g− given in Q7.1 is identical to that derived in Q6.3. The precession rate of Venus due to Earth is
6.9× 10−4 ◦y−1 usingthis method. The precession rate of the lunar orbit due to the Sun is 5.53× 10−2 ◦d−1

using this method; this gives a precessional period of 17.8 y. The precession rate due to the Earth’s J2 is
5.88 × 10−6 ◦d−1; this is much smaller than the solar effect.

Q7.3 The rate is *̇ = 1
4 (m′/M)nα

{
(2αD + α2D2)b(0)

1/2 + (e′/e)(2 − 2αD − α2D2)b(1)
1/2 cos(*′ − *)

}
.

(i) When *′ = *, *̇ = 1.447◦/century. (ii) When *′ = * + 180◦, *̇ = 2.220◦/century.

Q7.4 Using the secular theory for Jupiter and Saturn alone gives eforced = 0.0350, *forced = 9.40◦,
efree = 0.0452, *forced = 122.54◦, Iforced = 1.150◦, Ωforced = 96.55◦, Ifree = 2.091, Ωforced = 300.34◦.
Using Brouwer & van Woerkom’s secular theory gives eforced = 0.0371, *forced = 6.28◦, efree = 0.0479,
*forced = 123.85◦, Iforced = 1.149◦, Ωforced = 96.02◦, Ifree = 2.086, Ωforced = 300.08◦.

Q7.5 For a density of 1.2 g cm−3 the minimum separation varies from 57.8 km for a zero mass F ring,
to 162.2 km for an F ring mass equal to three times that of Prometheus. The separation is less than 70 km
when 0 ≤ m < 0.4 where m is measured in units of a Prometheus mass. For a density of 0.6 g cm−3 the
minimum separation varies from 79.5 km for a zero mass F ring to 132.5 km for an F ring mass equal to
three times that of Prometheus. The separation is never less than 70 km.

Q7.6 The eccentricity–pericentre eigenfrequencies, gi (in degrees per day) and the associated locations
in semi-major axes (in km) where A = gi are g1 = 1.00184 (187488, 237296, 238739, 292761, 296549,
374945, 379850, 523206, 530872, 1186250, 1257440, 1480710, 1481490, 3556240, 3566360), g2 = 0.417727
(241742, 290962, 298218, 373313, 381449, 520975, 533089, 1166710, 1276970, 1480490, 1481710, 3553470,
3569130), g3 = 0.198099 (305715, 370258, 384213, 517838, 536160, 1141710, 1301890, 1480190, 1482010,
3549920, 3572680), g4 = 0.0842694 (397518, 510745, 542585, 1098550, 1344560, 1479590, 1482600, 3543850),
g5 = 0.0275128 (574249, 1000210, 1436770, 1476800, 1485110, 353070, 3591890), g6 = 0.0188353 (618933,
944487, 1491350, 3524270, 3598320), g7 = 0.00137212 (2145640, 3414930, 3704710), g8 = 0.000152186
(4161030). The inclination–node eigenfrequencies, fi (in degrees per day) and the associated locations in
semi-major axes (in km) where B = fi are f1 = −0.999287 (187491, 237294, 238740, 292758, 296552, 374942,
379853, 523201, 530877, 1186210, 1257490, 1480710, 1481490, 3556240, 3566360), f2 = −0.417079 (241745,
290958, 298222, 373309, 381453, 520970, 533094, 1166670, 1277010, 1480490, 1481710, 3553460, 3569140),
f3 = −0.197899 (305721, 370253, 384217, 517833, 536165, 1141670, 1301930, 1480190, 1482010, 3549920,
3572680), f4 = −0.0842182 (397524, 510739, 542591, 1098510, 1344590, 1479590, 1482600, 3543840), f5 =
−0.0275047 (574257, 1000170, 1436800, 1476800, 1485110, 353070, 35918900), f6 = −0.0188356 (618899,
944493, 1491350, 3524270, 3598320), f7 = −0.00137098 (2146000, 3414860, 3704780), f8 = −0.00015199
(4161600).
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Chapter 8

Q8.1 δ̄ = 2.66 (mD/mSaturn)−2/3 and R = 1.587 × 10−3 (mD/mSaturn)−1/3
e. This gives mD/mSaturn =

0.0101; hence δ̄ = 56.8 and R = 0.0352. This leads to an implausible density of 7832 g cm−3.

Q8.2 Let M be the mass of the star; use primed quantities to denote the outer mass, unprimed quantities
for the inner mass. The resulting amplitudes in the eccentricities are: ∆e = 4.87m′/M , ∆e′ = 3.50m/M
for pair (1,2); ∆e = 7980m′/M , ∆e′ = 2280m/M for pair (1,3); ∆e = 4.87m′/M , ∆e′ = 3.62m/M for pair
(2,3). Note the large amplitudes for the (1,3) pair and make a comparison with the LONGSTOP Uranus
experience.

Q8.3 Taking the semi-major axis of Jupiter from Table A.2, the first-order resonances in the range are
the 2:1 at 3.27791 AU (width 0.1568 AU), 3:2 at 3.97091 AU (width 0.2728 AU), 4:3 at 4.29528 AU (width
0.3634 AU) and 5:4 at 4.48412 AU (width 0.4394 AU). The second-order resonances in the range are the
3:1 at 2.50152 AU (width 0.02872 AU), 5:3 at 3.70156 AU (width 0.1209 AU), 7:5 at 4.15782 AU (width
0.2231 AU) and 9:7 at 4.40069 AU (width 0.3285 AU). Using only these resonances there is overlap between
two or more resonances in the semi-major axis range of 4.046 AU < a < 4.565 AU. However, this is a slightly
artificial upper limit because including the remaining resonances leads to more overlap.

Q8.4 Taking the semi-major axes of Jupiter and Saturn from Table A.2, the jovian external first-order
resonances in the range are the 1:2 at 8.2598 AU (width 0.5930 AU), 2:3 at 6.81833 AU (width 0.5938 AU), 3:4
at 6.30343 AU (width 0.6311 AU) and 4:5 at 6.03797 AU (width 0.6742 AU). The jovian external second-order
resonances in the range are the 3:5 at 7.31448 AU (width 0.2044 AU), 5:7 at 6.51183 AU (width 0.2567 AU),
7:9 at 6.51244 AU (width 0.3131 AU), and 9:11 at 5.94818 AU (width 0.3710 AU). The saturnian internal
first-order resonances are the 2:1 at 6.00798 AU (width 0.1574 AU), 3:2 at 7.27815 AU (width 0.2737 AU), 4:3
at 7.87268 AU (width 0.3647 AU), 5:4 at 8.2188 AU (width 0.4409 AU), 6:5 at 8.44554 AU (width 0.5075 AU),
7:6 at 8.60565 AU (width 0.5672 AU) and 8:7 at 8.72476 AU (width 0.6217 AU). The saturnian internal
second-order resonances are the 5:3 at 6.78447 AU (width 0.1213 AU), 7:5 at 7.62073 AU (width 0.2239 AU),
9:7 at 8.06588 AU (width 0.3287 AU), 11:9 at 8.34286 AU (width 0.4368 AU), 13:11 at 8.53194 AU (width
0.5446 AU), 15:13 at 8.66928 AU (width 0.6529 AU) and 17:15 at 8.7736 AU (width 0.7614 AU). Using
only these resonances there is overlap between two or more resonances in the semi-major axis ranges of
5.763 AU < a < 6.640 AU, 6.724 AU < a < 6.845 AU, 7.212 AU < a < 7.415 AU, 7.690 AU < a < 7.733 AU
and 7.901 AU < a < 9.036 AU. Again, the last upper limit is slightly misleading because including the
remaining resonances leads to more overlap.

Q8.5 The particle’s eccentricity at the start of the evolution should be taken to be zero (see error listing).
The times of encounter and the increases in e at each possible e- and e2-resonance are: 13:11 (t = 3.56×105 y,
∆e = 0.00162), 6:5 (t = 5.40 × 106 y, ∆e = 0.00742), 11:9 (t = 1.14 × 107 y, ∆e = 0.000144), 5:4
(t = 1.85×107 y, ∆e = 0.00144), 9:7 (t = 2.73×107 y, ∆e = 0.000124), 4:3 (t = 3.82×107 y, ∆e = 0.00141),
7:5 (t = 5.22 × 107 y, ∆e = 0.000110), 3:2 (t = 7.10 × 107 y, ∆e = 0.00161), 5:3 (t = 9.72 × 107 y,
∆e = 0.0000991), 2:1 (t = 1.37 × 108 y, ∆e = 0.00236) and 3:1 (t = 2.02 × 108 y, ∆e = 0.00299). Note
that when einit � ecrit the formula e2

init + e2
final = e2

crit can be used. This corresponds to putting δt = 0 in
Eqs. (8.218) and (8.232).

Q8.6 Note that the changes in semi-major axis are not required (see error listing). The variations in e
and * for each planet should have a period of 5.56 y. The amplitudes are ∆e1 = 0.000284, ∆e2 = 0.000369,
∆*1 = 0.739◦ and ∆*2 = 1.06◦. Remember that these are only due to the effects of the resonance.

Chapter 9

Q9.1 For λ0 = 293◦, ∆a = +2.989, ∆e = +0.3340, ∆* = −238.3◦. For λ0 = 293.3◦, ∆a = +4.508,
∆e = +0.4111, ∆* = −223.9◦. By varying the initial mean longitude in steps of 0.1◦ from 0 to 360◦ we
get ∆amax = +4.508 for λ0 = 293.3◦ (one of the two starting conditions above) and ∆amin = −0.1836 for
λ0 = 334.8◦.

Q9.2 The surface of section plot should look something like the figure below. In the plot the horizontal
axis is x and the vertical axis is ẋ. There are also some points with negative values of x but these have been
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excluded for clarity. The islands at x = 0.218, 0.279, 0.365, 0.479 and 0.626 are associated with the 5:2,
9:4, 2:1, 7:4 and 3:2 resonances. Note that because these are all of odd order, they have an odd number of
islands and therefore, because of symmetry, they will have islands on the x-axis. The apparent island close
to x = 0.79 is actually associated with a periodic orbit of the first kind (see Winter & Murray, 1994a).
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Q9.3 Taking µ = 1/1048.672 (from values of the solar and jovian masses given in Tables A.1 and A.2)
and using the absolute value of the difference in the eccentricities for the first 3500 Jupiter periods gives a
maximum Lyapounov characteristic exponent for the eccentricity of 0.00399 per Jupiter period. Note that
the divergence is minute at first and then becomes larger. Because there is no renormalisation the later data
values are not good to use in the calculation of the Lyapounov characteristic exponent.

Q9.4 Taking µ = 1/1048.672 (from values of the solar and jovian masses given in Tables A.1 and A.2)
and starting values in the stated range gives maximum eccentricities above 0.3 for the following values of
a and e: (i) a = 0.470 – 0.476 with e = 0.3; (ii) a = 0.478 with e = 0.27 – 0.30; (iii) a = 0.479 with
e = 0.22 – 0.26 and e = 0.30; (iv) a = 0.480 with e = 0.16 – 0.17 and e = 0.30; (v) a = 0.481 with e = 0.04,
e = 0.12 – 0.18 and e = 0.29 – 0.30; (vi) a = 0.482 with e = 0.16 – 0.18, e = 0.21 – 0.24 and e = 0.26 – 0.30;
(vii) a = 0.483 with e = 0.21 – 0.30; (viii) a = 0.484 with e = 0.25 – 0.30; (ix) a = 0.485 with e = 0.28 – 0.30;
(x) e = 0.29 – 0.30 with a = 0.486 – 0.488; (xi) e = 0.30 with a = 0.489 – 0.490. Note that the chaotic nature
of some of these orbits means that your results could have small differences from those quoted above.

Q9.5 The largest semi-major axis before the condition becomes satisfied is a = 0.773; i.e. the first value
for which e > ∆a/a′ is a = 0.774. Using the overlap criterion given in Eq. (9.148), the predicted value is
a = 0.822. Note that the value of ∆a/a′ from the encounter map is larger than that predicted; the same
over-estimate is seen in Fig. 9.23 for a range of mass ratios.

Q9.6 The maximum absolute differences in longitude for each planet for ∆t = 1d and ∆t = 10d,
respectively, are as follows. Mercury: 0.0754◦, 0.0730◦. Venus: 0.191◦, 0.193◦. Earth: 0.0358◦, 0.0331◦.
Mars: 0.183◦, 0.183◦. Jupiter: 0.377◦, 0.377◦. Saturn: 4.41◦, 4.41◦. Uranus: 0.511◦, 0.511◦. Neptune:
0.537◦, 0.537◦. Pluto: 1.022◦, 1.022◦.

Chapter 10

Q10.1 The exact resonance is located at 136792 km giving a wave of amplitude of 2.0 km.

Q10.2 The Prometheus 13:12 ILR is at 132196 km; the first observed feature is just exterior to this
location.
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Q10.3 Under this model the mass of Pan is 1.96×1017 kg and its density is an unbelievable 46.9 g cm−3!
(This paradaox can be resolved by realising that the width of the cleared gap is determined by the shepherding
mechanism; see Cuzzi & Scargle 1985.) Using this large mass gives p = 258 for overlap and this occurs at a
separation in semi-major axis of 345 km. The maximum radial width of a horseshoe is twice the distance to
the L1 point or ∼ 130 km; the observed ring is much narrower than this (see Fig. 10.21a). For the last part
of the question think about resonance overlap.

Q10.4 The ratio of the widths is Wcr/WLr =
√

2
(
e′(j − 1)[−1 + 2j + αD]b(j−1)

1/2 /[2j + αD]b(j)
1/2

)1/2

.

Q10.5 The locations and widths of the Cordelia OLRs in the stated range are 26:27 at 51014.8 km (width
1.689 km), 25:26 at 51065.1 km (width 1.691 km), 24:25 at 51119.5 km (width 1.693 km), 23:24 at 51178.6 km
(width 1.695 km) and 22:23 at 51243.0 km (width 1.697 km). There is only one Ophelia ILR in the range; it
is the 15:14 at 51176.6 km (width 2.300 km). The 24:25 Cordelia OLR produces a wave of amplitude 0.34 km.
The 15:14 Ophelia ILR produces a wave of amplitude 0.24 km. Note: When dealing with the OLRs in this
question you cannot make use of the formulae given in Eqs. (10.21)–(10.23) because these are only valid for
ILRs. However, similar formulae can be derived. These give e′f = |n′fd (m/mc) / [(j − 1)n − jn′]|, a′e′f =
2a′2 |fd| (m/mc) / (3j |a′ − a′

res|) and W ′ = 4a′ {2 |fd| (m/mc) /(3j)}1/2 where fd = 1
2 [−1 + 2j + αD] b(j−1)

1/2 .

Q10.6 Here we have assumed that the density of Galatea is 1.2 g cm−3. (a) The 42:43 CIR is at
62929.5 km. (b) The width of the 42:43 CIR is 0.500 km. (c) This has to be done very carefully! See section
II.A of the paper by Horanyi & Porco (1993) for a complete explanation and numerical evaluation. By taking
of account of the variation of the mean longitude at epoch, Horanyi & Porco found that the location of the
resonances shifted outwards by 0.2 km. (d) The 42:43 OLR is at 62927.8 km. (e) Using the formulae given
in the answer to Q10.5 above, the radial amplitude of the wave should be 31 km. Compare this with the
full width of the OLR (29 km) and the width of the CIR (0.5 km)! (f) Check out fig. 2 in the paper by
Goldreich et al. (1986) for an idea of how this might look. Note: The numbers used in this question (apart
from the assumed density of Galatea) were taken from Appendix A and are not identical to those used by
Porco (1991). Furthermore, the mean motion of Galatea and hence the location of the resonances have been
revised by Sicardy et al. in Nature 400, 731–733 (1999).
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