
FIELDS AND WAVES

3.0 MAGNETIC FIELDS

The properties of “lodestone”, a permanently magnetised mineral (magnetite
ore), was certainly known to the Chinese as early as 290 - 300 BC. It behaves
like a compass, pointing to the North, and so could be used in navigation. In
1269 Peter Peregrinus of Maricourt described experiments he had performed
using very basic apparatus in a letter On the magnet. But it is William
Gilbert who is usually referred to as the father of magnetism for his treatise De
Magnete published in 1600, in which he set out the results of his experiments
on magnets (and also on electrical phenomena). He was the first to propose
that the Earth itself behaved like a large magnet, and that lodestones or pieces
of iron magnetised by lodestones, were attracted to point towards the poles
of the Earth in the way he demonstrated with a spherical “micro-earth”, or
globular lodestone.

A permanent magnet, such as a bar magnet or a compass needle - or indeed a
piece of lodestone has two poles, one of which is attracted towards the North
Pole of the Earth, so it is called the north pole of the magnet (although
perhaps a better name would be the north- seeking pole of the magnet): the
other pole is attracted to the South Pole of the Earth - it is the south pole
of the magnet. It is quite easy to demonstrate with two magnets that like
poles repel one another, whilst unlike poles attract. (One may conclude that,
considering the Earth as a magnet, the magnetic pole near the geographic
North Pole is in fact a south pole; and conversely the one near the geographic
South Pole is a north pole!)

The magnetic north and south poles of the Earth are not coincident with
the geographic poles; in fact they wander around, and over geological time
there have even been episodes of reversal of the Earth’s magnetic field. The
mechanism that sustains the magnetization of the Earth is quite complicated,
and includes electrical currents flowing in the molten iron core deep in the
Earth’s interior. A compass needle will indicate the direction of magnetic
north; to derive from that the direction of true (geographic north) one needs
to know the angle between these two directions, and this in turn is different
from one place to another as well as changing a little from one year to the
next. Maps will show this angle, the “angle of variation”.
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If the compass needle is allowed to turn not only in a horizontal plane, but also
in a vertical plane, it will (except near the equator, where the magnetic field is
essentially horizontal) point downwards (in the northern hemisphere), which
is what you might expect on considering the Earth as a globular magnet. Here
in London, the dip angle, the angle below the horizontal of the direction of
the needle, is about 70o .

3.1 MAGNETIC FIELD LINES

You may be familiar with the pattern revealed by sprinkling iron filings on
a sheet of paper placed over a bar magnet. This illustrates the magnetic
field lines which are a useful aid to picturing a magnetic field. It is easy to
experience the force exerted by magnet on another magnet, or by a magnet
on a piece of iron or other material that responds to the magnetic field. We
associate a magnetic field with the magnet in order to describe and understand
these forces, and the iron filings help to visualize this field. The direction of
the field at any point is the direction along which a tiny compass needle, free
to rotate, will become oriented if placed at that point. And its strength will
be related to the torque (twisting force) experienced by that compass needle
if it is misaligned with the field.

So one way to plot out the field lines is to take a small compass and move it
from place to place in the field, drawing a little arrow to show the direction
taken up by the compass at each point. These then map out the field lines,
and one finds that they appear to emerge from the north pole of a magnet
and either go off “to infinity” or else end on a south pole. But please note
that whenever there is a north pole, there is always a south pole. If you cut
a bar magnet in two, you will not find one of the pieces with just a north
pole and the other with just a south pole: you will find that you have now
obtained two magnets, each with a north and a south pole.

A very important discovery was made by the Danish physicist Hans Christian
Oersted whilst preparing demonstrations for a course of lectures he was going
to deliver to students. As he reported to them, when he allowed an electric
current to flow in a wire parallel to a nearby compass needle, the needle
was deflected. By following the method described above for tracing out the
pattern of field lines, one can show that they are arranged in concentric circles
around the current-carrying wire. Their direction depends on the direction
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of the current in the wire. If you were to look along the wire in the direction
of the current, the field lines are directed in a clockwise sense. (Put another
way, if you were to drive a screw in the direction of the current, you would
need to turn the screw in the direction of the field lines - assuming that is
that the screw was the conventional right-handed screw!)

Suppose now that the current-carrying wire is wound as a solenoid; one finds
that outside the solenoid, the field lines resemble those of a bar magnet.
However, they continue inside the solenoid, and have neither a beginning nor
an end. Indeed, inside a long solenoid, far enough from the ends that end
effects can be ignored, the magnetic field is uniform, constant in magnitude
and in direction, the direction being along the solenoid. So one end of the
solenoid looks like the north pole end of a bar magnet, the other like a south
pole. You can work out which end is which from the rule which determines
the direction of the field lines round a current-carrying wire.

3.2 MAGNETIC FIELD STRENGTH

The picture we have so far described gives some indication of the magnetic
field, but it is not yet sufficiently quantitative to be of practical use in deriving
such interesting quantities as the force exerted by a magnetic field. The first
step we need to take is to give a definition of the magnetic field strength.
Since isolated magnetic poles - monopoles - do not, so far as we know, exist
in Nature (poles always come in pairs, one north one south), it is not possible
to follow the same path we used to define the gravitational field strength
(the gravitational force exerted on a test mass divided by the mass of that
test mass), or the electric field strength (the electrical force exerted on a test
charge divided by the charge of that test charge). Nevertheless, historically,
something like that was done by considering the force exerted on one of the
poles of a long magnet, so long that the other pole could be considered to
be far enough away as not to disturb the measurement. This approach is no
longer used.

What is done is to exploit the fact that a magnetic field exerts a force on
a wire carrying an electric current. Let us first consider the simplest case,
where the wire is straight and perpendicular to the field to be measured. It
is then found that there is a force on the wire that is proportional to the
current carried by the wire, and is in a direction perpendicular both to the
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wire and to the field. The direction of this force may be specified by using
the left-hand rule. If you arrange your left hand with the thumb, first finger
and second finger each at right angles to the other two, and then point the
First finger along the direction of the Field and the seCond finger along the
direction of the Current in the wire, your thuMb will point in the direction in
which the force on the wire will act to make it Move. (It is not uncommon to
see students in examinations on electromagnetism waving their hands about
in strange ways!)

In a region where the field is uniform, the force on the wire is proportional
to the length L of the wire in the field; and, as said, it is also proportional to
the current I carried by the wire. The force on the wire may then be used as
a measure of the strength B of the magnetic field in this region:

B =
F

IL
.

The unit for magnetic field strength is tesla (T): T = N.A−1 .m−1.

More generally, if the wire and the field are not at right angles to one another,
the formula becomes:

F = BIL sin θ,

where θ is the angle between the direction of the field and the direction of
the current in the wire. (The force is zero if the field and the current are
parallel). The direction of the force is still at right angles to both the field
and the current, and in the direction still given by the left-hand rule, but
with the first finger pointing in the direction of the component of the field B
perpendicular to the wire.

3.3 TORQUE ON A COIL

If a coil of wire carrying an electric current is placed in a magnetic field, the
resulting forces acting on it are in general such as to have a turning effect
on the coil - they comprise a couple or torque. Let us start by considering a
simple example. Suppose we have a large magnet shaped like this:

N⋃S
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so that the poles are opposite to one another. Between the poles we may
assume that the magnetic field B is uniform, and if the magnet held in a
horizontal plane, the field direction will also be horizontal. Suppose now
that we make a single rectangular loop of wire arranged so that two opposite
edges, each of length l are vertical, and the other two, each of length d are
horizontal, and place it between the poles of the magnet. We suppose it to
be small enough that the magnetic field running through it is everywhere
the uniform horizontal B-field. Consider first the case when the rectangular
loop of wire is in a vertical plane parallel to the direction of the field, and
that there is a current I around the loop. Each of the horizontal sides of the
rectangular loop is then parallel to the direction of the field, so although each
carries a current, there is no force on it. However, the current I in one of
the vertical edges of the loop will be running upwards, whilst in the opposite
side it will be running downwards. In either case, it will be perpendicular to
the field, and so there will be a force of magnitude F = BIl on this segment
length l of the wire, in each case perpendicular both to the wire and to the
field. But the forces on these two edges of the loop, although having the same
magnitude, will be in opposite directions (since the direction of the current
flow is opposite along these two edges). So the net force on the loop of wire
is zero.

However, forces of equal magnitude but opposite directions acting on different
parts of the loop (as these do), will exert a turning effect on the loop - a torque
or couple. The magnitude of this couple C is the product of the force F with
the distance between the lines of action of the forces; in this case this distance
is just d, the length of the horizontal edges of the rectangle:

C = Fd = BIld = BIA,

where A is the area ( = ld ) of the rectangular loop. If now instead of a single
loop of wire, we had a coil made from N identical loops, the result would be

C = NBIA.

And if the coil with N windings had been in a plane which, although still
vertical, had made an angle θ with the direction of the magnetic field B the
magnitude of the couple would be

C = NBIA cos θ;
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(cosine, not sine, because the angle between the direction of the force on the
vertical section of wire and the plane of the coil is 90◦ − θ). In each case, the
direction of the couple is such as to turn the coil to lie in a plane perpendicular
to the field lines, when the couple vanishes.

3.4 THE MOVING COIL METER

We can exploit the torque exerted on a coil carrying a current I to measure
the current (assuming that we already know the field strength B). This is
done by balancing the torque against another mechanically produced torque
that can be measured. The first step is to form the pole faces of the magnet
in such a way that the space between them is cylindrical, and to place a
cylindrical piece of “soft” iron in this space leaving a narrow gap between the
iron core and the pole faces. The effect of this is to make the field in this gap
radial. A coil such as we have been considering is then suspended around the
soft iron core, with its windings in the gap between the core and the poles
of the magnet. It is free to rotate about an axis coincident with that of the
cylindrical core and the shaped pole faces.

With this arrangement, the field is always perpendicular to the vertical edges
of the coil, and the torque on the coil is given by C = NBIA, so long as the
coil remains in the field. Unless something is done to stop it, the coil will be
turned until it is no longer in the field. But something is done, because as part
of the suspension, there are attached hairsprings which resist the turning of
the coil. The more the coil is turned, the greater is the torque exerted by the
hairsprings opposing the turning of the coil, until at equilibrium, the torque
exerted by the hairsprings exactly balances that produced by the current in
the coil.

But the torque exerted by the hairsprings is (to excellent approximation)
proportional to the angle θ through which the coil has been turned. So now
all that is needed is to measure this angle θ, and to determine the factor of
proportionality relating the couple C to θ in the equation C = kθ. This can
be done in a separate experiment. We then have

θ = I ·NBA/k,

and if there is a scale on which a pointer moves to indicate the angle θ, it can
in fact be calibrated to show instead the value of the current I, since they are
proportional to one another, and the factor of proportionality is known.
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3.5 MOTORS

The torque on a coil carrying a current in a magnetic field can be exploited to
construct a motor. The main problem to be overcome is that he torque acts in
such a way as to turn the coil until it is in a plane perpendicular to the field,
but it then vanishes. This problem can be overcome in a number of different
ways. Possibly the simplest method is to arrange the way that the current
is fed to the coil from the battery or other (d.c.) source (which in any case
has to be done so as to enable the coil to rotate indefinitely without twisting
up the wires!) reverses the direction of the current in the coil every time it
has turned through 180◦ This can be done with a split-ring commutator. (See
the diagrams in the text-book for a clear illustration and discussion. There is
also a more complete treatment of different kinds of electric motor).

3.6 CHARGED PARTICLES IN MAGNETIC FIELDS

An electric current is, after all, a consequence of electric charge in motion.
So you might not be surprised to learn that a magnetic field exerts a force on
a charged particle moving through it. When the velocity v of the charge is
perpendicular to the magnetic field B, the force F is perpendicular to both
of them, and for a charge q its magnitude is given by

F = qvB.

More generally, if the angle between v and B is θ, the force has a magnitude

F = qvB sin θ

and (for positive charge q) it is in the direction consistent with the left- hand
rule, where now the second finger points along the direction of the velocity.
[For those who enjoy using vectors, this result can be expressed through the
equation

F = qv ×B,

where the expression v×B is a vector with magnitude vB sin θ in the direction
as specified by the left-hand rule.] This force is responsible for the deflection of
the tracks of elementary particles (protons, electrons and the like) which you
will probably have seen in photographs of these tracks in particle detectors
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which usually have large magnetic fields for just this purpose: for from the
deflection it is possible to determine the component of the momentum of the
particle at right angles to the magnetic field. In a like fashion, the same force
which deflects the motion of charged particles through the magnetic field,
is exploited in many different devices which use beams of charged particles,
be they particle accelerators, storage rings, electron microscopes, controlled
nuclear fusion devices, ...

Another consequence of this force is the so-called Hall effect. When a current
flows in a conductor or a semiconductor, charge is transported against the
resistance of its flow by the application of the voltage which drives it. This
flow of current is best envisaged as a drift of the charged carriers (which can
be negatively charged electrons, or as is true for some kinds of semiconduc-
tors, positively charged “holes”). If a strip of the conductor or semiconductor
carrying a current is placed in a magnetic field perpendicular to the direction
of the current, these carriers will experience a force; and if the arrangement
has, for example, the field vertically downwards, and the conducting strip is
broad but thin, and lies horizontal, magnetic force will deflect the carriers
towards the thin, vertical, edges of the strip. This will result in a build-up
of charge on one of these edges, and a corresponding decrease of charge on
the opposite edge. There then results in a voltage difference across the strip,
produced by these opposite charges - the Hall potential difference, Vh . Even-
tually, this build-up of charge is sufficiently large that the voltage difference
it produces acts on the moving carriers of the current (through the electric
force it produces - which is always in the opposite direction to the magnetic
force which pushed the carriers to the edge of the strip in the first place) in
such a way as to balance exactly the magnetic force. Now the electric field
strength E associated with the build-up of carriers is

E = Vh/d

and this exerts a force F on a carrier with charge q given by

F = qE = qVh/d.

So when this is in balance with the magnetic force we have also

F = qvB,
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so that
Vh = vBd.

But now we need to determine the speed v of drift of the carriers along the
conducting strip. The current I along the strip is proportional to v; in fact if
the number of carriers in each m3 of the strip is n, and the cross-section area
of the strip is A, it follows that the current I carried along the strip is

I = nAvq.

But we also have A = dx, where x is the width of the strip. Thus

Vh = BI/nxq.

And the Hall voltage Vh can be measured. Its sign will tell the sign of the
charge carriers, and its magnitude can be used to determine their density
n, since one may assume that the magnitude of q will usually be e, that of
the charge on an electron. Alternatively, the Hall effect can be exploited to
measure the strength B of a magnetic field with what is called a Hall probe.

3.7 THE FIELD IN A SOLENOID

The field in a solenoid carrying a current can be measured, or example, using
a Hall probe. It is found that the field strength is proportional to the current
I carried by the solenoid, and also proportional to the number of windings
per metre along its length. Inside the solenoid (apart from end effects) it
is uniform, and parallel to the length of the solenoid. If the total number
of turns of the solenoid is N , and its length is l, we then have for the field
strength B inside the solenoid

B = µ0
IN

l
,

where µ0 is a fundamental constant called the magnetic permeability of free
space. It is defined to have the value

µ0 = 4π × 10−7 H ·m−1,
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where H stands for henry, named for the American physicist Joseph Henry.
It is the unit for inductance which we will meet later.

3.8 THE FIELD AROUND A LONG STRAIGHT WIRE

We saw earlier that the field lines around a long straight wire are concentric
circles centred on the wire, and in planes perpendicular to it. What we now
have to consider is how for a given current I in the wire, the strength B of the
field varies with the radius of these circles, that is to say with the distance r
from the wire (symmetry arguments can be used to show that there is nothing
else on which it can depend). Experiment shows that B is proportional to I,
and also that it varies like 1/r. It was Ampère who first derived the factor
of proportionality which should appear in this formula. He first considered
a long solenoid, for which the formula giving the field strength inside the
solenoid has been given (in modern terms) above. He then argued that the
same formula would still apply even if the solenoid were bent around into a
toroidal solenoid - like a bicycle tyre. So we would still have

Bl = µ0NI.

If we were to consider any line of the magnetic field inside the solenoid, along
which the field strength would be B, this formula would apply, but now l
could be interpreted as the distance around the field line, and NI as the total
current passing through the loop which constituted that field line. He then
generalised that idea to the case of the long straight wire, where the loop was
the circle of radius r which has a length 2πr. And the current passing through
that loop is just the current I carried by the wire. The result is then

B =
µ0I

2πr
.

This is an example of a more general rule named after Ampère.

3.9 THE DEFINITION OF THE AMP

At last we are in a position to give the definition of the amp, from which will
follow that of the coulomb, the volt, etc. The fact that there is a magnetic
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field around a wire carrying a current, and that a magnetic field exerts a force
on a wire carrying a current, allows us to relate the magnitude of the current
carried in each wire to a force which we can measure. And that allows us
to define a standard for the current, the amp. If we have two parallel long
straight wires, distance d apart, with a current Ix in one wire (call it wire X),
and likewise a current Iy in the other wire we shall call wire Y , then the field
strength at wire Y produced by the current in wire X is

B =
µ0Ix

2πd

and this exerts a force on each length L of the wire Y given by

F = BIyL =
µ0IxIyL

2πd
.

The force is attractive if the current flows in the same direction in each of the
wires.

So we may define the amp (A) as follows: If in each of two infinitely long
parallel wires 1 m apart in vacuum the same current flows, and the force on
each of the wires is 2× 10−7 N ·m−1, the current in each of the wires is 1 A.

3.10 MAGNETIC MATERIALS

Some materials, for example iron, can be “permanently” magnetised: they
are called ferromagnets. The explanation for their magnetisation involves an
understanding of the magnetic properties of individual atoms, and indeed of
the electrons and atomic nuclei from which they are built. The elementary
particles like the electron and the proton themselves behave like tiny magnets,
and it was a great triumph of quantum mechanics to explain why this should
be so. In addition, the motion of the electrons around the atomic nucleus can
be thought of as a tiny electric current loop, with which there is associated a
magnetic effect. So atoms can behave like tiny magnets. In a ferromagnet, it
is energetically favoured for these tiny magnets to become aligned, all pointing
in the same direction in a piece of the material; such a piece of a ferromagnet in
which the atomic magnets are all aligned is called a domain. But the domains,
although large compared to atoms, can be quite small; and the alignment can
be different from one domain to the next. So in an unmagnetised piece of iron,
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the magnetisation of the domains is pretty well random in direction, and the
overall magnetisation vanishes.

However it is relatively easy to make the magnetisation of each of the domains
line up with an externally imposed magnetic field, and what special about
permanent magnets is that once aligned they stay aligned until something
happens to make them point in a different direction. Ferromagnetic materials
differ one from another in the difficulty with which they can be magnetised,
or the direction of their magnetisation can be changed. If it is easy, the
material is said to be a “soft” magnetic material (iron for example); if it is
more difficult, the material is said to be a “hard” magnetic material (most
kinds of steel, for example).

When a ferromagnetic material is placed inside a solenoid carrying a current,
the magnetic field produced by the current in the solenoid can magnetise
the ferromagnet, and so it too will produce a magnetic field which enhances
that of the solenoid alone. This means that our formula for the magnetic field
strength in a long solenoid (or a toroidal solenoid) has to be modified. Instead
of B = µ0nI (n being the number of turns per metre along the solenoid), we
will now have

B = µrµ0nI,

where µr is a constant characteristic of the material inserted into the solenoid
called its relative permeability ; this can have a value as high as 2000 for soft
iron. You should exercise caution when using this formula, since it only holds
in a regime in which the fields are not too large; the field should not exceed
the saturation field strength, at which the magnetisation of the material can
be increased no further.
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