
FIELDS AND WAVES

0.1 INTRODUCTION

This course continues the study of “classical” Newtonian physics you will
have started last semester. The first four areas of study to be covered deal
with fields. Fields occupy a prominent place in all of present-day physics,
so this topic is of central importance. The gravitational and electromagnetic
fields you will meet in the next few weeks are still discussed in contemporary
research. Of course, the questions now being addressed are different from
those we will be treating in this course. But the ideas we will introduce in
these lectures are nevertheless relevant to physics today.

Later in the course, the focus will shift to waves. Waves, and oscillatory
phenomena are likewise of topical relevance both in research and in practical
applications of physics. Indeed it is hard to imagine how any understanding of
physics can proceed without encountering waves and related phenomena. You
may have heard of “wave-mechanics”, which is one way to formulate quantum
mechanics. So what you will study about waves in this course has application
also in understanding quantum mechanics and so also most of present day
advances in physics.

1.1 GRAVITATIONAL FIELDS

Let me start by reminding you of Newton’s three laws of motion:

• Every object continues at rest or with uniform velocity unless acted upon
by a resultant force.

• The rate of change of momentum of an object is proportional to the resultant
force which acts on the object.

• When two objects interact, they exert equal and opposite forces on one
another.

These laws were sufficient to account for all the known phenomena involving
such interactions as arise in everyday life; but one of the most familiar of all
situations presented a problem. Falling objects accelerate, and as was well
understood ever since the careful and clear account made by Galileo, this is
because they are acted on by a force - gravity. But unlike the forces exerted by
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a horse pulling a cart, or the friction which resists its motion, the gravitational
force on a body, its weight, seemed not to require a direct contact between
the body and anything else. It was clear that objects close to the surface of
the Earth fell towards it, and so it seems as though there is a force exerted
by the Earth which attracts the body, and so is responsible for its weight.
Furthermore, it was apparent that this downwards force is in fact directed
towards the centre of the Earth. But it acted at a distance.

As you know, with brilliant insight Newton proposed a Universal Law of
Gravity in which for the first time the laws of mechanics were extended from
applying to things terrestrial to include also under the same universal laws the
motions of the planets and the Moon. Expressed as an equation, Newton’s
law of gravitation (for objects treated as points) is:

F = −G
m1m2

r2
,

where F is the gravitational force between two objects (with masses m1, m2),
distance r apart. The minus sign indicating that the force is always in the
opposite direction to increasing r, which is to say that it is always attrac-
tive. The constant G, is the universal constant of gravitation, one of the
fundamental constants of Nature. Its value is

G = 6.673× 10−11N ·m2 · kg−2.

This was first measured by Maskelyne in 1774 (as you will see in the video),
but the first reasonably accurate measurement was made in 1798 by Henry
Cavendish. It is very difficult to measure precisely, and it is the least well-
determined of all the fundamental constants. Our way of expressing the law
of gravitation, and at the same time removing the difficulty with action-at-
a-distance is by introducing the concept of the gravitational field. Space is
no longer to be considered as empty, but rather as occupied by fields, with
the gravitational field as the first example we will consider. The gravitational
force exerted by one mass on another is ascribed to the gravitational field.
The mass of an object produces a force field which extends throughout space,
and it is this force field which then acts on the mass of each and every other
object, attracting it to the first.

The gravitational field produced by a mass M is proportional to M . And
its effect on a mass m is proportional to m. This has the immediate and
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important consequence that the acceleration that the force on m produces
is independent on m. This explains the famous (but probably apocryphal)
experiment by Galileo at the Leaning Tower of Pisa. It is also one of the
pillars on which centuries later Einstein was to build the General Theory
of Relativity. The gravitational field at any point P is defined to be the
gravitational force that would be experienced by a small ”test mass” m placed
at P , divided by m. It is therefore just the acceleration which that test mass
would experience. We will write the magnitude of the gravitational field as
g. Note that the units in which g is to be expressed are those of force divided
by mass, so N·kg−1 (and this is in fact the same as the more familiar units
m·s−2 for acceleration). Since it has a direction (after all, it is proportional to
a force) the gravitational field is in fact a vector, and if we wish to emphasise
this, we should write it as g. [It is a very special property of the gravitational
field that the strength g of the field is equal to the acceleration it produces.]
The strength of the gravitational field produced by a particle of mass M at
distance r is easily seen to be

g =
F

m
=

GM

r2
.

This same equation is valid even if the object of mass M is not point-like,
so long as is spherically symmetrical, and so long as the distance r is greater
than its radius. So even outside a planet or a star (which we can suppose
to be spherically symmetrical) the same inverse square law holds. In order
to derive this result, Newton had first to invent integral calculus, which may
explain why he waited so long (from 1665 or 1666 when, according to what
he wrote fifty years later, he had first conceived his universal law) to 1687
when he published it in his masterpiece, the Principia. (What he showed was
that the gravitational field outside of a thin uniform spherical shell of matter
was the same as though all of its mass was concentrated at its centre; and
inside such a shell, its gravitational field was zero). The equation above may
be used to obtain the surface gravity of a planet or star (or of the Moon), by
setting r equal to the radius of the planet or star (or the Moon).

As with all vectors, it is often helpful to represent the gravitational field at a
point by an arrow, with the direction of the field specifying the direction of the
arrow, and its length indicating its magnitude. This would give us a picture
of the gravitational field something like the picture of the wind velocity you
will have seen in the weather report and forecast. [The wind velocity is indeed
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a vector field!] But it is sometimes more helpful to trace out what are called
the field lines, in which through any point P there is a line, with the tangent
to the line at P giving the direction of the field at that point. If the field lines
are straight, the field is said to be parallel, and if furthermore the magnitude
of the field is constant, the field is said to be uniform. The gravitational field
in a small enough region close to the Earth is often approximated by taking
it as uniform; its direction is then vertically downwards and its magnitude is
— well, what is familiarly called g, with the value 9.8 N·kg−1, more usually
quoted as 9.8 m·s−2. A non-uniform field does not have the same magnitude
and direction at all points. We may anticipate that the gravitational field of
the Earth is in fact non-uniform, although in a small enough region it may be
treated as uniform. “Small enough” has to be interpreted in a sensible way.
The departure from uniformity may safely be ignored when dealing with, say,
a game of football; but not for sending a rocket to the Moon.

1.2 THE GRAVITATIONAL POTENTIAL

The gravitational field due to a number of different masses may be obtained
by adding together the fields produced by each of them separately; likewise
for a distribution of masses, the resultant field may be obtained by integra-
tion. But adding vectors is not so easy as adding scalar quantities! So it
is very useful to be able to describe the gravitational field by introducing a
scalar quantity - the gravitational potential. This is closely related to the
gravitational potential energy. You will know that as an object moves in the
direction of the gravitational force (for example by falling!), it can be made
to do work. Conversely, to lift it against the gravitational force (its weight!)
requires that work should be done, or energy expended. The gravitational
potential energy PE(A) of a test mass at rest at the point A is defined to be
minus the amount of work needed to take it ”to infinity”, so far away that the
gravitational field is negligible. Note that it is always negative. To move it
from A to B then requires work equal to PE(B) - PE(A) (which can be posi-
tive or negative, depending on whether the gravitational force is hindering or
helping). If we write PE(r) for the potential energy of a test particle of mass
m at distance r from a planet (or any spherically symmetric object) of mass
M , it is then clear that the work needed to move it from r to s is PE(s) -
PE(r). In particular, to move it from r to r+∆r requires PE(r+∆r)- PE(r);
but this is ∆W = −F (r) ·∆r (the minus sign because this is the work done
against the force, not the work done by the force), where as we have already
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seen F (r) is

F (r) = −G
mM

r2
,

so we may write

∆PE(r) = PE(r + ∆r)− PE(r) = G
mM

r2
·∆r.

mM The gravitational potential V is defined as the gravitational potential
energy of the test mass divided by its mass, so we have

∆V (r) = V (r + ∆r)− V (r) = G
mM

r2
·∆r.

This equation may be integrated so as to give

V (r) = −G
M

r

as the gravitational potential energy at distance r outside the planet. This is
minus the work needed per unit mass to take an object from r to infinity; it
is negative, since it always takes work to lift the object against the force of
gravity to remove it to infinity. Since work is measured in joules, the units
for V are J.kg−1 (since J = kg.m2.s−2, this is also - but less conventionally -
the unit for the square of a velocity).

Note that the potential energy at a height h above the surface of the Earth
(radius R) is then given by putting r = R + h. If h is reasonably small
compared with the radius of the Earth (R), it is then possible (by using the
binomial theorem) to approximate the resulting expression by first setting

(R + h)−1 = R−1(1 + h/R)−1 ≈ R−1(1− h/R),

and then since h << R, we have

V (R + h)− V (R) ≈ GM

R2
h = gh,

where we have recognised that the usual definition of the work done in raising
a unit mass from the surface of the Earth to a height h is just gh, where now
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g is the familiar acceleration due to gravity, 9.8 m s−2. We can learn two
useful things from this. First, there is the relation

g =
GM

R2

giving the acceleration due to gravity near the surface of the Earth in terms
of G, and the mass M and radius R of the Earth; of course exactly similar
arguments will allow us to calculate the surface gravity (as it is called) for the
Moon, a planet, the Sun or a star.

To check this result, note that for the Earth, M ≈ 6.0 × 1024 kg, R ≈ 6.4 ×
106 m, and with G ≈ 6.7× 10−11 N m2 kg−2, we find

g ≈ (6.7× 10−11 Nm2kg−2)× (6.0× 1024kg)× (6.4× 106m) ≈ 9.8Nkg−1

as we should expect.

Of course we could also use the equation for g together with the radius of
the Earth, which had already been determined in antiquity, to deduce from
Cavendish’s measurement of G what is the value of M , the mass of the Earth!
The other thing we can note is the generalisation of this result. You can see
that what we have found is that

g = −dV

dr
;

the minus sign here is to indicate that the gravitational field is down, in the
opposite direction to that of increasing r. And this result is quite general.
The gravitational field is minus the gradient of the gravitational potential.

A useful aid to thinking about the potential is to consider equipotentials.
These are like contour lines on a map, which are lines of constant elevation
above sea-level, or isobars, lines of constant barometric pressure. An impor-
tant difference is that instead of lines, we now have equipotential surfaces,
although we will often draw them as lines (a section through the surface). So
the equipotentials around a planet, the Earth for example, will be concentric
spheres, which we can draw as circles. If the equipotentials (for equal poten-
tial differences) are close together, the field strength is large, and if they are
far apart it is weak - just as the gradient of a hill is large where the contour
lines (for equal vertical separation) are close together and small where they
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are far apart. Also the direction of the field is normal (perpendicular) to the
equipotentials; the field lines cut the equipotential surfaces at right angles,
just as the paths of steepest descent cross the contour lines at right angles
(which is why rivers and streams cross the contour lines on a map at right
angles).

1.3 KEPLER’S LAWS AND SATELLITE MOTION

Tycho Brahe (1546-1601), a Danish nobleman, built an observatory on the
island of Hveen from which over a period of some twenty years he made
meticulous observations of the heavens, and in particular of the motions of
the planets. In 1599 he was appointed Imperial Mathematician to the Holy
Roman Emperor, King Rudolph II in Prague. He was joined there by Jo-
hannes Kepler (1571-1630) as his assistant. Kepler deduced from Tycho’s
data that the planets followed what we now know as Kepler’s Laws. These
are:

1. Each planet moves in an elliptical orbit with the Sun at one of the two
focal points of the ellipse.

2. The line from the Sun to each planet sweeps out equal areas in equal
times.

3. The ratio a3/T 2 is the same for all the planets.

[T is the period, the time taken for the planet to make one complete orbit,
and a is one half of the longest cord of the ellipse.] Newton was able to show
that all three laws follow from his universal law of gravity. The same laws
are obeyed also by satellites in orbit around a planet, but with a different
constant in the third law. In fact the constant is GM/4π2.

1.4 ESCAPE VELOCITY AND BLACK HOLES

In order to send a rocket up into space, work must be done against the grav-
itational field. And we can see that this has to exceed the difference between
its gravitational potential energy at the height to which we wish to send the
rocket and the gravitational potential energy at the launch: W = PE(max
height) - PE(launch). To make the rocket escape completely (”to infinity”)
we need W ≥-PE(launch), and this might for example be provided by giving
it a vertical boost into space with an initial velocity v(launch). The work
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done as it climbs into space then comes from its initial kinetic energy =
mv(launch)2/2. So to launch it with a velocity great enough for it to escape
altogether requires mv(launch)2/2 ≥ - PE(launch). But the right hand side of
this equation is just GMm/R. The factors m cancel out, and we find for the
escape velocity (the minimum launch velocity required to escape to infinity)

v(escape)2 = 2GM/R,

where M and R are respectively the mass and the radius of the Earth. This
gives v(escape) = 11× 103 m s−1 as the escape velocity from Earth. Similar
calculations can be done for other astronomical bodies. Laplace speculated
about what might happen if the escape velocity equalled c, the speed of light.
The formula would then give Rc = 2GM/c2. Although Laplace’s arguments
are not really appropriate, since we should really use the ideas of general
relativity for such a discussion, the result obtained for the radius Rc is in
fact correct. It is called the Schwarzschild radius of the mass M , and if the
mass all resides within the Schwarzschild radius there indeed results an object
from which neither light, nor indeed any material object which perforce has
a speed less than that of light, can escape. It is a black hole. You might ask
whether such things exist. We have very good evidence that they do. There
are stars which have exhausted their thermonuclear source of energy, and then
collapsed under their own weight; they reveal themselves as powerful sources
of x-rays generated by matter falling into them. There are also supermassive
black holes, millions of times more massive than the Sun. These have been
identified at the centre of some galaxies, and it is highly probable that there
may be such a black hole at the centre even of our own Galaxy.
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