COHERENCE AND INTERFERENCE

- At any interference experiment, one must use coherent waves (same frequency and wavelength). To
observe a stable pattern of interference, it is essential that the phase shift (Ae.) between the waves
that interfere at any given screen point remains constant during observation time. In two slits
interference model, we considered two waves E|, = E sin(at) _and _E, = Esin(wt + @) (1)

This modelling is based on three assumptions a) Infinite long waves in time; b) Same frequency ;
c) constant phase shift all time. Let’s verify the limits of our assumptions and make some corrections.

a) Experimental measurements show that the visible wave light (A ~ 550nm) is emitted by the atoms
during 7 ~107%sec. This wave associates the transition of atom from a high to lower energy level
and it is emitted randomly in time and space direction. As the period of this wave is T = A/c we find
that T = A/c=550%10"/3*10° = 1.833*10""° sec. This means that in the wave train emitted by the
atom there are 7 /T ~107°/1.833*107" =5.5%10° full periods. During the emission of one period
from the source, the wave front advances by one wavelength. So, for 7 ~107sec the source (atom)

emits 7/T =5.5%10° full oscillations in row; i.e. a length of (z/T)* A =5.5%10° *550*10~ =3m.

So, the average length of randomly emitted visible wavelet (fig 1.a) by a single atom is L,~3m. This

parameter is known as the wave COHERENCE LENGTH . Actually, due to collisions with other

atoms, the real coherence length is much smaller (L. ~ 20-30cm) even for the best conventional light

sources (low density Cs gases). It is almost the same for common He-Ne but can be as long as 3km at

some special lasers. So, the spatial length or coherence length of interfering waves is not infinity.
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This length (L. ) restricts the extension of region occupied by fringes in an interference experiment.
The interference calculations are based on “path difference (6 = r; — r; ). But, at first, the two
wavelets have to superpose and if é > L they cannot (fig 1.b). This is an effect that restricts the
interference order of fringes to a certain maximum order of interference M.

b) Same frequency is a precise modeling for two atoms of the same element.

¢) Constant phase shift all time is impossible because the process of irradiation is random. At

Young’s experiment, this problem is overcome by using a pinhole that selects a few secondary

wavelets emitted by a restricted zone of initial wavefront and two slits that get two “in phase

oscillations from the same plane wavefiront* due to a considerable distance from the pinhole.

The phase of the wave front that hits the two slits changes randomly in time but, at a given
moment, it is the same at all points across the two slits. So, although the phase at the
“entrance* of slits oscillates randomly, the difference of phases for the two outgoing wavelets
is equal to zero , all time.




- In the process of light emission participates a big number of atoms and the light wave produced by
the source is constituted by a big number of wavelets. The average length L, of those wavelets is
larger if the random collisions between the atoms are minimized; a low pressure gaz source does
have advantages from this point of view. The production of a big number of wavelets in phase
inside the source means a certain intensity of package of the emitted wavelet by the source. This
requires the simultaneous emission by many atoms inside the source.

These two interference requirements are met by the laser light where the random effect of wavelets
emission from different atoms in the light source is minimized. This makes possible the excellent
coherence proprieties of laser light. One recognizes two kind of coherence (fig 2) :

a) Temporal coherence = is increased if the emission process for each atom is not random.
This means large values of Lc ( coherence length or wavelet length)

b) Spatial coherence = all atoms emit wavelets simultaneously (same phase) and even along
the same direction in space.
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- When calculating the interference from two waves (1) we found the resultant intensity is
I=41,co8*(Ap/2) remember I,=E; 2)

Note that this result and its graph in figure (3) assume a constant phase shift 4¢p between interfering
waves. For a random 4¢ (each slit illuminated by a different source) one has to work with 4¢ -average.

As for each point on the screen, A¢ changes in [0,2%] randomly, one finds out cos®(A¢/2)=1/2 and
1=21,=1,+1, 3)

This corresponds to the uniform illumination in case of the superposition of two completely incoherent
waves. Remember that the average light intensity on the screen for coherent and non-coherent waves is
the same, 21, (see fig 3). But, the interference redistributes it differently on the screen.
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LIGHT DIFFRACTION

-In general, the term diffraction is applied to situations involving the resultant effect produced by a
limited portion of wave front. In optics, it appears as ” light bending around obstacles” and
produces some light in regions where geometrical optics predicts shadow.

Note that diffraction effects are observed always when a part of wave front is cut. As all optical
devices use a limited portion of wave front, they cannot avoid diffraction.

-The figure 4 shows a diffraction pattern formed by a circular obstacle on a screen at a moderate
respective distance. There are alternating dark /bright fringes around the image borders and a
central bright spot (Poisson spot). This situation corresponds to the “FRESNEL DIFFRACTION:
Either the light source or the screen is close to the obstacle (or aperture). In these circumstances,
the wave fronts are spherical (not planes) and the calculations go beyond the limits of this course.

Fig.4

-We will study the diffraction pattern when the source and the screen are far from the aperture (or
obstacle). In this case, the incident light advances by plane fronts of wave and parallel rays strike the
screen’. This situation is known as FRAUNHOFER DIFRACTION.

SINGLE SLIT FRAUNHOFER DIFFRACTION

-This is the situation for each of slits used in Young’s experiment.

We will see the effect of aperture _dimension on far field interference
for a monochromatic (one L) plane wave front at slits’ input.

-Consider the division of slit aperture “a” into twelve thin strips of equal
infinity small thickness and parallel to the slit. Each strip element
(presented by a point in fig.5) emits one Huygens wavelet of light. All those
wavelets are coherent to each other and have the same coherence length
(L¢). It is clear that for the direction 0 = 0°, all those wavelets interfere
in phase to each other and produce a maximum of interference because
¥

the path difference between each of them is zero and all phasors are
aligned along the same direction (fig.6.a).

Figure 5
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Figure 6.a Twelve phasors “in phase”

" In optical devices, those rays pass through a convergent lens before hitting the screen located at lens focal plan.



- For angles 0 # 0° a path difference is produced between the wavelets. Consider the angle 6 for which
the path difference between the first and the second wavelets is equal to AM/12(see fig. 5). In this case

. : . . 11 .
the path difference between wavelets emitted by the strips one and twelve is §1_12 = E/l. This means

that the phasor twelve is phase-advanced by A@;.12 = k* 81.1,= 2n/L)* %/1 =2m* % with respect to

phasor one and the sum of all phasors gives a zero net phasor (see fig. 6.b). To increase the precision of
this calculation we must increase the number of stripes and decrease their thickness. Noting that, for n
strips the path difference between the first and the last wavelet is

O1_n = =12 , it comes out that the corresponding phase shift is
n
Apy_, =Z+222 =" 27, When the number of stripes becomes
1-n A n n

very big lim,,_,, nT_l = 1, the path difference becomes

81—, = A and the phase shift becomes A¢,_, = 2n
Fig. 6.b

-This analysis shows that along this direction 0 for which the path difference between the first and last
wavelets is O = asin@ = A the net phasor is zero and consequently a minimum of interference is
produced. A step by step mathematical procedure based on the phasors’ modeling shows that there is a
minimum for each direction that corresponds to the general condition

that a*sinf =sA; s=*x1£2+3 ... (4)

Note that:
a) s =0 is excluded in equation (4) because it corresponds to the central maximum which is
large and becomes larger with decrease of slit thickness (a). (Why?)
b) As “a” is small, sin@ (= A/a) may be out of “small angle approx” range even for s =I.
¢) In between two consecutive minima there is a maximum. The directions for single slit
secondary maxima fulfil the condition

a*sin@, =(2S+1)A/2; S=+1,£243,...... (5)
d) The intensity of 1-slit diffraction pattern decreases quickly with distance from screen center
and is described by the following function (Imax stands for the top intensity of central maximum)
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-The formulas (5, 6) tell that even a single slit produces maxima-minima patterns in the conditions of
Fraunhofer diffraction. Similar calculations show that small obstruction (hair, blood cells, ..) produce
diffraction related patterns, too. One uses these patterns to estimate “small objects” dimensions.

These diffraction related patterns are visible only when a > A. If a >> A the angles 6, are so small that
fringes superpose to each other (i.e. disappear) and the image on the screen takes the slit’s profile.

* The way how to get this formula is given in the textbook, p.791.



CORRECTIONS TO THE RESULTS OF YOUNG’S EXPERIMENT

-When considering the interference conditions for Young’s experiment we did not account for the
diffraction effect of each slit pattern individually. Remember that we found:

a) the maxima for condition d *sin 19M =MA _m= 0,£1,+2,43,...... (7)
b) the minima for condition ~ d *sin8, =(2m+1)A/2 m=0,£1,+2,43,...... (8)

Note: Do not mix slits’ distance ‘d’ in (7,8) with aperture ‘a’ in equations (4,5,6).

-Suppose that for the same direction 6 the conditions (4) and (7) are fulfilled simultaneously for two
slits with equal aperture ‘a’ at a distance ‘d’. The condition (5) tells us that in this direction each slit
produces a dark fringe; i.e. no one slit is sending a light wave at this location. As there are not waves
to superpose, the corresponding maximum fringe for two slits system will be missing.

-Suppose that for the same direction 6 the conditions (5) and (8) are fulfilled simultaneously for the two
slits” system. The eq. (5) tells us that in this direction each slit alone would produce a bright fringe. But
the eq. (8) fixes a minimum for this direction and the light brought here by each of slits along this
direction is removed. The two slits’ interference effect “takes this light out of this direction”(fig. 6).
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As the same light must obey simultaneously to two different interference rules it will be a minimum
along each direction 0 for which exists one minima condition. “It is like multiplying by zero rule ”.
So, several maxima from two-slits interference are cancelled due to one slit diffraction mechanism. The
intensities of two slits” maxima pattern are modified in conformity to one-slit diffraction pattern, too.

Notes:

a) In general, the distance “d” between two slits is bigger than the slit thickness . It comes out
that A/d << M\ a. This means that several maxima of “2 slit pattern interference” fall between
the two first order minima (s = +/-1) due to “I slit diffraction pattern”.

b) In general, the small angle approximation does work for two slits interference but, it does not
work always for one slit diffraction pattern. So, it is useful that, before using the small angle
approximation, one verify whether the conditions for small angle approximation are met.
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THE RAYLEIGH CRITERION FOR OPTICAL RESULTION

-The ultimate sharpness of a camera images is defined by the spatial resolution = the capacity to
discern two neighbouring points on the object surface. This parameter is limited by the diffraction.

-In all optical system there is an input aperture that allows (cut) only a portion of wave front to pass
through lenses. This process is associated with light diffraction. In other words, this means that even a
‘point source’ at system input will produce a Fraunhoffer’ pattern at recording (sensor or film) plane.

-In figure 7, two points on object surface are acting as non-coherent point sources. Each of these points
produces a similar diffraction pattern on sensor plane but there is no interference between them to
redistribute the light. It can be proved that for a circular aperture with diameter ‘a’, the first minimum
direction is defined by equation (proportionality coefficient changes from 1 to 1.22):
sinf = 1.224 9)
a
In all optical devices a >> A. So, we use small angle approximation and the equation (9) becomes

(10)

This expression gives the direction of first minimum with respect with to direction of the center of
diffraction pattern for a point source. Taking into account that a similar diffraction pattern is produced
by each of two point sources, one gets the picture for intensity distribution shown in figure 7.

Two non-coherent point sources can be
easily resolved as far as their diffraction
patterns do not overlap.

Fig. 7

-When the separation between the two points on the object surface is small, the corresponding
diffraction patterns on sensor plane overlap and do not permit to record them clearly as distinct points.

How to judge whether the images are separated or not on the sensor surface?
RAYLEIGH CRITERION: Two images are barely resolved when the central maximum of one

pattern coincides with the first minimum of the other one (see figure 8). Following this criterion,
the critical separation_angle 0. is

3 We consider a plane front wave at system input and recording plane. Lens brings the image form infinity to focal distance.
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0, == (1)

For smaller angular separation between two objects (8 < fc¢), the optical system will not distinguish
between the two images. One can increase resolution by using lenses with bigger apertures® (the
increase of a produces a decrease of 0. ). This way, one fulfills easier the condition 8 > ¢ for a given 6
value (fixed value) between the set of rays from two given object points at lens input (see fig. 7) .
Example 38.3 in textbook.

Fig. 8
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(a) The diffraction pattern of a point source and a circular aperture. (b) According
to Rayleigh's criterion, two sources can just be resolved if the central maximum of one diffraction
pattern coincides with the first minimum of the other. (c) If the separation between the sources is
reduced further, they can no longer be resolved.

* Photographs use this method to improve the quality of recorded pictures.



