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COHERENCE AND INTERFERENCE 
 
- At any interference experiment, one must use coherent waves (same frequency and wavelength). To 
observe a stable pattern of interference, it is essential that the phase shift (∆φtot) between the waves 
that interfere at any given screen point remains constant during observation time. In two slits 
interference model, we considered two waves    )sin(__)sin( 0201 ϕωω +== tEEandtEE           (1)   
This modelling is based on three assumptions a) Infinite long waves in time;  b) Same frequency ;  
c) constant phase shift all time. Let’s verify the limits of our assumptions and make some corrections. 
 
 a) Experimental measurements show that the visible wave light (λ ~ 550nm) is emitted by the atoms  
    during τ ~10-8sec. This wave associates the transition of atom from a high to lower energy level   
    and it is emitted randomly in time and space direction. As the period of this wave is T = λ/c we find 
    that  T = λ/c = 550*10-9/ 3*108 = 1.833*10-15 sec. This means that in the wave train emitted by the 
    atom there are 6158 10*5.510*833.1/10/ =≈ −−Tτ  full periods. During the emission of one period  
    from the source, the wave front advances by one wavelength. So, for τ ~10-8sec the source (atom)  
   emits 610*5.5/ =Tτ  full oscillations in row; i.e. a length of mT 310*550*10*5.5*)/( 96 == −λτ .  
   So, the average length of randomly emitted visible wavelet (fig 1.a) by a single atom is Lc~3m. This  
   parameter is known as the wave COHERENCE  LENGTH .  Actually, due to collisions with other  
   atoms, the real coherence length is much smaller (Lc ~ 20-30cm) even for the best conventional light 
  sources (low density Cs gases). It is almost the same for common He-Ne but can be as long as 3km at  
   some special lasers. So, the spatial length or coherence length  of    interfering waves is not infinity.  

 
    Fig 1 

This length (Lc ) restricts the extension of region occupied by fringes in an interference experiment. 
The interference calculations are based on “path difference (δ = r1 – r2 ). But, at first, the two 
wavelets have to superpose and if δ > Lc they cannot (fig 1.b). This is an effect that restricts the 
interference order of fringes to a certain maximum order of interference Mmax. 
  

b)  Same frequency is a precise modeling for two atoms of the same element. 
 

  c) Constant phase shift all time is impossible because the process of irradiation is random. At  
     Young’s experiment, this problem is overcome by using a pinhole that selects a few secondary   
      wavelets emitted by a restricted zone of initial wavefront and two slits that get two “in phase  
     oscillations from  the same plane wavefront“ due to a considerable distance from the pinhole. 
     The phase  of  the wave front that hits the two slits changes randomly in time but, at a given 
    moment, it is the  same  at all points across the  two slits.  So, although the phase at the  
   “entrance“  of  slits oscillates randomly, the difference of phases for the two outgoing wavelets  
    is equal to zero , all time. 
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- In the process of light emission participates a big number of atoms and the light wave produced by 
the source is constituted by a big number of wavelets. The average length Lc of those wavelets is 
larger if the random collisions between the atoms are minimized; a low pressure gaz source does 
have advantages from this point of view. The production of a big number of wavelets in phase 
inside the source means a certain intensity of package of the emitted wavelet by the source. This 
requires the simultaneous emission by many atoms inside the source. 
These two interference requirements are met by the laser light where the random effect of wavelets 
emission from different atoms in the light source is minimized. This makes possible the excellent    
coherence proprieties of laser light. One recognizes two kind of coherence (fig 2) : 

 
a) Temporal coherence = is increased if the emission process for each atom is not random.   

                                    This means large values of  Lc ( coherence length or wavelet length) 
                                     

b) Spatial coherence     = all atoms emit wavelets simultaneously (same phase) and even along  
                                           the same direction in space.  
 

 
Fig2 
 

- When calculating the interference from two waves (1) we found the resultant intensity is 
 
                                   2

00
2

0 __)2/(cos4 EIrememberII =∆= φ                                          (2) 
 
Note that this result and its graph in figure (3) assume a constant phase shift ∆φ between interfering 
waves. For a random ∆φ (each slit illuminated by a different source) one has to work with ∆φ -average. 

As for each point on the screen,  ∆φ changes in [0,2π] randomly, one finds out 2/1)2/(cos 2 =∆
−−−−−−−−−−−

φ  and  
                                                             0002 IIII +==                                         (3) 

 
This corresponds to the uniform illumination in case of the superposition of two completely incoherent 
waves. Remember that the average light intensity on the screen for coherent and non-coherent waves is 
the same, 2I0 (see fig 3). But, the interference redistributes  it differently on the screen. 

 
Fig 3 

     (Short Lc)  (Longt Lc) 
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- For angles θ ≠ 00 a path difference is produced between the wavelets. Consider the angle θ for which 
the path difference between the first and the second wavelets is equal to λ/12(see fig. 5). In this case 
the path difference between wavelets emitted by the strips one and twelve is ࢾି ൌ 


 This means .ࣅ

that the phasor twelve is phase-advanced by ∆φ1-12 = k* δ1-12= (2π/λ)* ଵଵ
ଵଶ

2π* ଵଵ = ߣ
ଵଶ

 with respect to 
phasor one and the sum of all phasors gives a zero net phasor (see fig. 6.b). To increase the precision of 
this calculation we must increase the number of stripes and decrease their thickness. Noting that, for n 
strips the path difference between the first and the last wavelet is 
ଵିߜ   ൌ ିଵ


 it comes out that the corresponding phase shift is , ߣ

 Δ߶ଵି ൌ ଶగ
ఒ

כ ିଵ


ߣ ൌ ିଵ


כ                 When the number of stripes becomes     .ߨ2

very big lim՜ஶ
ିଵ


ൌ 1 , the path difference becomes  

ଵିߜ  ൌ and the phase shift becomes    Δ߶ଵି  ߣ ൌ  ߨ2
                                                                                                                                             Fig. 6.b 
 
-This analysis shows that along this direction θ for which the path difference between the first and last 
wavelets is λθδ == sina  the net phasor is zero and consequently a minimum of interference is 
produced. A step by step mathematical procedure based on the phasors’ modeling shows that there is a 
minimum for each direction that corresponds to the general condition2 
 

that                                       ,......3,2,1_;sin* ±±±== ssa s λθ                                      (4)                            
                                    

Note that: 
a) s = 0  is excluded in equation (4) because it corresponds to the central maximum  which is 

large and becomes larger with decrease of slit thickness (a). (Why?) 
b) As “a” is small,  sinθ (= λ/a) may be out of “small angle approx” range even for s =1.   
c) In between two consecutive minima there is a maximum. The directions for single slit   
      secondary maxima  fulfil the condition 
                                   ,......3,2,1_;2/)12(sin* ±±±=+= SSa S λθ                                  (5) 
d) The intensity of 1-slit diffraction pattern decreases quickly with distance from screen center 

and is described by the following function (Imax stands for the top intensity of central maximum) 
 
 
                                      

                                                                                                                                                                                   
      (6)                                                                                                                         

    
  
 
 
 
-The formulas (5, 6) tell that even a single slit produces maxima-minima patterns in the conditions of 
Fraunhofer diffraction. Similar calculations show that small obstruction (hair, blood cells, ..) produce 
diffraction related patterns, too. One uses these patterns to estimate “small objects” dimensions.  
These diffraction related patterns are visible only when a ≥ λ.   If a >> λ the angles θs  are so small that 
fringes superpose to each other (i.e. disappear) and the image on the screen takes the slit’s profile. 
                                                 
2 The way how to get this formula is given in the textbook, p.791. 
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