
Chapter 1

Introductory Material

It is assumed that the reader is familiar with the use of algebra, and a number of other techniques that are
covered in pre-university mathematics courses. However, some of that material is summarised in this section
to serve as a revision aid.

1.1 Polynomial Equations

For a variable continuous variable x valid for any real number between −∞ and +∞ we can write a function
f(x) = y in terms of x. The general form of a linear relationship between these two variables is

y = ax + b,

where both a and b are constants. When x = 0, we find that y = b, so the constant b corresponds to the value
of y when x is zero, alternatively we may say that b is the value of the intercept of the function y = ax + b
with the y−axis. The constant a is the slope of the function, or how quickly y changes with x.

We can write y = f(x) such that it depends on powers of x. The simplest such equation can be written
generally as

y = ax2 + bx + c.

We call equations of this type quadratic equations. When x = 0 we find that f(x) = c, so the constant
c again corresponds to the value at which the curve intercepts the y−axis. It is possible to determine the
points of intersection between the curve and the x−axis by finding the roots to f(x) using

x± =
−b ±√

b2 − 4ac

2a
.

As long as the quantity in the surd is positive we will obtain two real results for x±, and the function f(x)
will cross the x−axis twice, once at x = x+, and once at x = x−. If the quantity in the surd is zero, we will
obtain a single solution for the crossing point at x = −b/2a.

Often it is possible to simplify a quadratic equation by writing

y = ax2 + bx + c.

as

y = (Ax + B)2,

= A2x2 + 2ABx + B2.
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If a quadratic equation can be rewritten as y = (Ax + B)2, we know that when x = 0, y = B, and when
y = 0, x = −B/A.

Another possible solution for simplifying a quadratic equation is to reduce it into factors of the form (Ax+B):

y = ax2 + bx + c,

= (Ax + B)(Cx + D),

= ACx2 + (AD + BC)x + BD.

If it is possible to factorize the problem in this way we can readily identify the values of a, b, and c as

a = AC

b = AD + BC

c = BD

If it is possible to factorize a quadratic equation and write it as y = (Ax + B)(Cx + D), then the function
crosses the x−axis when x = −B/A, and x = −D/C.

Higher order terms in powers of anxn can be introduced to write down polynomial equations of order n,
where an is the coefficient of the term corresponding to the nth power of x. For example, if we consider the
quadratic equation y = (x2 + x + 1)2, we can expand the parentheses as follows

y = (x2 + x + 1)2,

= (x2 + x + 1) × (x2 + x + 1),

where each term in the first parentheses is multiplied by each term in the second parentheses:

y = x2 × (x2 + x + 1) + x × (x2 + x + 1) + 1 × (x2 + x + 1),

= x4 + x3 + x2 + x3 + x2 + x + x2 + x + 1.

This can be simplified by collecting together the terms xn to give

y = x4 + 2x3 + 3x2 + 2x + 1.

The procedure of multiplying out each term in in the first set of parentheses with each term in the second
set of parentheses can be used to expand out more complicated functions.

1.2 Trigonometric Identities

The sides of a right angled triangle (opposite o, adjacent a, and hypotenuse h) with internal angles 90◦, θo,
and θa (See Fig. 1.1) are related via the equation

h2 = o2 + a2.

The angle opposite the hypotenuse h is 90◦. o is the length of the side opposite the angle θo, and a is the
length of the side adjacent to θo (hence opposite θa). Trigonometric functions relate the angles to the sides
h, o, and a of the triangle:

sin(θo) =
o

h
,

cos(θa) =
a

h
,

tan(θo) =
o

a
.
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Figure 1.1: A right-angled triangle with sides o, a, and h, and internal angles 90◦, θo, and θa.

For a non-right angled triangle, as depicted in Figure 1.2, we the sides and internal angles are related via
the cosine rule:

a2 = b2 + c2 − 2bc cos(θa),

and via the sine rule:

a

sin(θa)
=

b

sin(θb)
=

c

sin(θc)
.
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Figure 1.2: A triangle with sides a, b, and c, and internal angles θa, θb, and θc.

The trigonometric functions sin(x), cos(x) and tan(x) are shown in Figure 1.3, and the inverse trigonometric
functions are shown in Figure 1.4. Sine and cosine functions are periodic and the values of these functions
are repeated every 2π radians. The tangent function is periodic and the value of tan(x) is repeated every π
radians. We can express this mathematically by writing

sin(x) = sin(x + 2nπ),

cos(x) = cos(x + 2nπ),

tan(x) = tan(x + nπ),

where n is any integer. For x = π/2 + nπ tan(x) is asymptotic, and this corresponds to a collapsed triangle;
θo = π/2 in Figure 1.1. The maximum and minimum values of sin(x) and cos(x) are +1 and −1.
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Figure 1.3: The trigonometric functions (top) sin(x), (middle) cos(x), and (bottom) tan(x) for 0 ≤ x ≤ 4π.

Figure 1.4 shows the inverse trigonometric functions. Unlike the trigonometric functions, the inverse functions
are not periodic. arcsin(x) is the inverse sine function where −1 ≤ x ≤ 1. As sine is periodic, when we
compute the arcsin(x) for a particular value of x we obtain the family of solutions:

arcsin(x) = θ + 2nπ, and (π − θ) + 2nπ.

Similarly arccos(x) has the family of solutions:

arccos(x) = θ + 2nπ, and − θ + 2nπ,
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for −1 ≤ x ≤ 1, and arctan(x) has the family of solutions:

arctan(x) = θ + nπ,

for −∞ ≤ x ≤ +∞. The different ways to express trigonometric functions, their reciprocals, and inverses
are listed in table 1.1.
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Figure 1.4: The inverse trigonometric functions (top) arcsin(x), (middle) arccos(x), and (bottom) arctan(x)
for 0 ≤ x ≤ 4π.
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Table 1.1: The list of trigonometric functions, their inverse, and their reciprocal functions.

Name Function Inverse Function Reciprocal Function

sine sin(x) arcsin(x) or sin−1(x) cosec(x)
cosine cos(x) arccos(x) or cos−1(x) sec(x)
tangent tan(x) arctan(x) or tan−1(x) cot(x)
cosecant cosec(x) arccosec(x) or cosec−1(x) sin(x)
secant sec(x) arcsec(x) or sec−1(x) cos(x)
cotangent cot(x) arccot(x) or cot−1(x) tan(x)

The following trigonometry identities are assumed throughout:

cos2(x) + sin2(x) = 1,

1 + tan2(x) = sec2(x),

cot2(x) + 1 = cosec2(x),

sin2(x) =
1

2
[1 − cos(2x)]

cos2(x) =
1

2
[1 + cos(2x)]

sin(A + B) = sin A cosB + cosA sin B

cos(A + B) = cosA cosB − sinA sin B

where the double angle identities can be obtained in a straightforward way using complex numbers.

1.3 Exponential Function

The general form of an exponential function is written as

y = Aex,

where A is a constant, x is a real number between −∞ and +∞ and e is an irrational quantity called Euler’s
number, whose value is 2.71828 to 5 decimal places. Figure 1.5 shows the distribution of the function y = ex

in the vicinity of x = 0. Exponential functions are the set of functions where the value of rate of change of
the function is the same value as the function for a given x (See Section 2.1 for a mathematical discussion
of the rate of change of a function). Equations of the type y = Ax are often used when trying to model of
population growth.

Products of exponential functions can be re-written as another exponential function

exey = ex+y,

as is the case for any other product of the same quantity raised to two different powers. Similarly we can
write the ratio of two exponential functions as

ex

ey
= ex−y.
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Figure 1.5: The function y = ex.

1.4 Properties of Logarithmic functions

Logarithmic functions are the inverse of exponential functions. We can compute the logarithm of the
exponential function y = ex as

ln(y) = ln[ex],

as shown in Fig. 1.6. The logarithm denoted by ‘ln’ is the inverse of the exponential function e, thus

ln(y) = x.

We call ln the ‘natural logarithm’ to highlight the fact that this is the inverse of the function ex, where e
is Euler’s number. The natural logarithm of ex+y is x + y, so the natural logarithm of the product of two
exponentials exey is x + y. It follows that if we have ex/ey, then the natural logarithm of this ratio is x− y.
Logarithms are extremely useful in computations involving products of large numbers, where it is possible
to express the problem in terms of the addition of much smaller numbers.

We can write down the logarithm of an exponential function of the form

y = Nx,

as

logN (y) = x,

where the subscript N denotes the base of the logarithm. Occasionally you may encounter a natural logarithm
written as the logarithm of base e, denoted by loge. The same rules apply for logarithms of some base N
as for natural logarithms. For example, if we have the product or quotient of two numbers Nx and Ny, we
find that

logN (Nx±y) = x ± y.
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Figure 1.6: The function y = lnx.

Often you will encounter the logarithm denoted by ‘log(x)’ without specifying the base. In this case the
notation implies that one computes the logarithm base 10 of x: log10(x).

1.5 Partial Fractions

Consider the following function

f(x) =
1

(1 − x)(2 + x)

It is possible to separate the function into two parts, one with a factor of (1− x)−1, the other with a factor
of (2 + x)−1. When we re-write a fraction like this we are separating it into partial fractions. In the above
example we may write,

1

(1 − x)(2 + x)
=

A

1 − x
+

B

2 + x
,

where the constants A and B need to be determined. The values of A and B can be determined if we try
and recombine the two partial fractions together. This gives

A

1 − x
+

B

2 + x
=

A(2 + x) + B(1 − x)

(1 − x)(2 + x)
,

=
1

(1 − x)(2 + x)
.

From this we see that

1 = A(2 + x) + B(1 − x).
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If we let x = 1 we find that A = 1/3 and if we let x = −2 we find that B = −1/3. Using this information
we can write our original fraction in terms of partial fractions:

1

(1 − x)(2 + x)
=

1

3(1 − x)
− 1

3(2 + x)
.

It is possible to use this technique of partial fractions to simplify quotients of more complicated forms. For
example, if we have a quotient of the form

f(x) =
1

(ax2 + bx + x)(cx + d)

we can separate this out as

f(x) =
A

(ax2 + bx + x)
+

B

(cx + d)

=
A(cx + d) + B(ax2 + bx + x)

(ax2 + bx + x)(cx + d)
.

As before, we can equate the numerator in the original quotient with the numerator we obtained here, namely

A(cx + d) + B(ax2 + bx + x) = 1.

All that remains is to determine the values of A and B, which can be done by choosing suitable values for x
such that one of the quantities in parentheses ’()’ is zero, and we can solve for the unknown multiplying the
other quantity in parentheses.

1.6 Limiting values

Consider the function y = 1+x2. For any given value of x, we are able to compute a corresponding value for
y. If we now consider the behavior of the function in the vicinity of some value of x denoted by x0, then the
value of the function will be given approximately by y(x = x0). This approximation becomes exact when
x = x0, or when x is infinitesimally close to x0 such that any remaining differences are completely negligible.
We often refer to this process as taking a limiting value, or just taking the limit as x tends to x0. So the
limit of function y = 1 + x2 as x tends to x0 is 1 + x2

0. Mathematically we often write this as

lim
x→x0

(y) = 1 + x2
0.

To further illustrate taking limits, we can consider an exponential function, y = ex as is described in
section 1.3. If we take the limiting value of ex as we allow x to become more and more negative, we find that
the value of the function becomes smaller, but never becomes negative. In the extreme case that we allow x
to become infinitely negative, then the value of the function becomes vanishingly small, and imperceptible
from zero. Now if we consider the case that we let x tend to some finite value, for the sake of illustration
we assume that x tends to zero, then the function will tend to e0. In the limit that x is infinitesimally close,
or exactly zero, then in this limit the function has a value of unity, i.e. e0 = 1. If we now consider a third
limiting case, where we allow x to become increasingly positive, we see that the value of ex also becomes
increasingly positive. In the extreme limit that we allow x to tend to infinity, then the value of the function
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also tends to infinity. These results are summarised in the following

lim
x→−∞

ex = 0,

lim
x→0

ex = 1,

lim
x→+∞

ex = ∞.

1.7 Moments

The concept of moments is a fundamental ingredient of classical mechanics. In mechanics the first moment
of a force F exerted on a point object is the distance of that point from the origin x multiplied by the force
exerted on the object F :

1st moment = xF.

Similarly we can write higher order moments, that are sometimes useful. The nth moment is given by

nth moment = xnF.


