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LECTURE 21

Content

In this lecture we will commence a study of molecules

by devoting ourselves to the Born-Oppenheimer ap-

proximation. In general the solution of a Hamiltonian

for a molecule is complicated due to the electron-nuclei

interaction which makes it inseparable.

The Born-Oppenheimer approximation provides a method

for performing an approximate separation.

Outcomes

At the end of this lecture you will:

• know how to write the Hamiltonian for a complete

molecule

• know and be able to apply the Born-Oppenheimer ap-

proximation

• be able to show how it leads to a Schrödinger equation

for nuclear motion in an effective potential due to the

electrons
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5 MOLECULES

Atoms rarely remain isolated. Instead, more commonly,

they combine to form molecules. As in the atomic case,

Coulomb interactions and atomic properties dominate. But

molecules are not just sums of atomic properties. They are

qualitatively different since we must consider motion of nu-

clei and electrons.

We shall consider the simplest molecules, H+
2 and H2, ex-

amples of covalent bonding where the nuclei share the

electrons. We shall also consider another type of molecules,

held together by ionic bonding (e.g. LiH).

As it is for atoms, the structure of molecules can be probed

by scattering and spectroscopy. Molecular spectra are

more complicated than atomic ones because, in addition

to electronic transitions, there are other energy changes

arising from the rotational and vibrational motion of

nuclei.

5.1 SCHRÖDINGER EQUATION FOR MOLECULES

For our molecule we will define:

RN and ZN = Position vector and charge of Nth nucleus

ri = Position vector of ith electron
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The time independent Schrödinger equation, including nu-

clear (RN) and electronic (ri) coordinates is written:

ĤΨ(R1, R2..., r1, r2...) = EΨ(R1, R2..., r1, r2...) . (1)

The Hamiltonian is:

Ĥ(R1, R2..., r1, r2...) =
∑
N

−h̄2

2MN
∇2
R︸ ︷︷ ︸

K.E. of

nuclei

+
∑
i

−h̄2

2m
∇2
i︸ ︷︷ ︸

K.E. of

electrons
+ V (RN , ri)︸ ︷︷ ︸

Coulomb

Interactions

(2)

where the potential is :

V (RN , ri) =
∑
i,j
i>j

1

|ri − rj|︸ ︷︷ ︸
e−–e− repulsion

+
∑

N,M
N>M

ZNZM
|RN −RM |︸ ︷︷ ︸

Repulsion

between nuclei

− ∑
N,i

ZN
|RN − ri|︸ ︷︷ ︸

Attraction

between nuclei

and electrons

. (3)
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Because of the interaction between electrons and nuclei

(last term in equation (??)), the solution cannot be simply

separated into nuclear and electronic components, i.e.

Ψ(RN , ri) 6= ν(RN)ψ(ri)

N. B. To simplify the notation, sometimes we will write

Ψ(RN , ri) but it should be understood that hereRN stands

for all nuclear position vectors and ri for all electronic

positions

So, solution is difficult. But an approximate separation

(of electronic and nuclear parts) can be achieved through

the Born-Oppenheimer approximation—arguably one

of the most effective tools in molecular physics.

5.2 BORN-OPPENHEIMER APPROXIMATION

The Born-Oppenheimer approximation is underpinned by

fact that nuclei move much more slowly than electrons,

since they are much heavier, i.e., me
MN

� 1

Using this fact we will be able to write the total wavefunc-

tion for any molecule as a product of an electronic and

nuclear part. For simplicity we will use a general diatomic

molecule to explain the approximation.

After separation of the centre of mass motion, the Hamil-

tonian can be written:

Ĥ(R, ri) = − h̄
2

2µ
∇2
R +

∑
i

−h̄2

2m
∇2
i + V (R, ri) (4)

with µ the reduced mass of the nuclei.
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BORN-OPPENHEIMER IN SIX EASY STEPS

1. First fix the nuclei in place, i.e. set the internuclear

coordinate to a constant value:

R = constants

We can therefore neglect the nuclear kinetic energy

term, − h̄2

2µ∇
2
R, in the Hamiltonian (??).

2. Having ‘pinned’ the nuclei, now solve the Schrödinger

Equation for electronic motion (in the field of nuclei

fixed in position):

Ĥel(ri;R)ψ(ri;R) = Eel(R)ψ(ri;R) (5)

where

Ĥel(ri;R) =
∑
i

−h̄2

2m
∇2
i︸ ︷︷ ︸

K.E. of

electrons

+ V (ri;R)︸ ︷︷ ︸
P.E. with

fixed nuclei

(6)

Note that R is now a parameter on which the wave-

function and Hamiltonian depend. To indicate this we

write (ri;R).

The above is known as the electronic Schrödinger

equation. SettingR equal to a different value, we can

solve this equation until we have a complete descrip-

tion of the electron wavefunctions in terms of nuclear

positions.
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3. Assume the solution of the Schrödinger equation has

the form:

Ψ(R, ri) = ν(R)ψ(ri;R) (7)

that is, a product of a nuclear part that depends on

R, and an electronic part that depends on (ri;R).

4. Plug this form into the full Schrödinger Equation in-

cluding the nuclear kinetic energy term:− h̄
2

2µ
∇2
R +

∑
i
− h̄2

2m
∇2
i + V (R, ri)

 ν(R)ψ(ri;R)

= Eν(R)ψ(ri;R) (8)

5. We look at the result of applying the operator associ-

ated with the kinetic energy of the nuclei to the wave-

function:

−h̄2

2µ
∇2
RΨ(R, ri) = − h̄

2

2µ
∇2
Rν(R)ψ(ri;R)

= − h̄
2

2µ

[
ψ∇2

Rν + 2∇Rψ · ∇Rν + ν∇2
Rψ

]
.

The major physical insight of Born and Oppenheimer

is that electronic wavefunctions are quite insensi-

tive to changes in nuclear positions, so gradients of

ψ (with respect to nuclear coordinates)

∇Rψ and ∇2
Rψ

are negligible.
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Hence, we can write:

−h̄2

2µ
∇2
RΨ(R, ri) = − h̄

2

2µ
ψ(ri;R)∇2

Rν(R) (9)

The key point of the Born-Oppenheimer approxima-

tion is this simplification.

6. Using this result we can simplify the Schrödinger Equa-

tion (??) in step 4:
ψ

− h̄
2

2µ
∇2
Rν(R)


 +

∑
i
− h̄2

2m
∇2
i + V

ψ
︸ ︷︷ ︸
=Ĥel(ri;R)=Eelψ(ri;R)

ν(R)

= Eν(R)ψ

Re-arranging:− h̄
2

2µ
∇2
R + Eel(R)

 ν(R) = Eν(R) . (10)

This gives a Schrödinger Equation for nuclear

motion. The electronic energies, Eel(R), act as an

effective potential in which the nuclei move.
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SUMMARY of Born-Oppenheimer approxima-

tion

1. Nuclei move much more slowly than electrons (much

more massive MP � me). We calculate electronic en-

ergies and wavefunctions neglecting ∇2
R/2µ term. So-

lution for electrons depends on position of nuclei, not

their motions: the electrons adjust instanteously to

changes in position of nuclei.

2. The total solution is separable (but not exactly) into

(nuclear) × (electron) part.

3. In the equation for the nuclear motion, the electronic

energies at different internuclear distances provide a

potential in which the nuclei move.
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LECTURE 21 SUMMARY

• the Hamiltonian for a molecule is complicated by

the fact that it does not separate into nuclear and

electronic parts

• by applying the Born-Oppenheimer approxima-

tion we can achieve an approximate separation

• we assume that the nuclei move much more slowly

than the electrons, which can adjust instantaneously

to changes in the nuclear positions

• we may derive an equation for nuclear motion in which

the electrons provide an effective potential within

which the nuclei move
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LECTURE 22

Content

In this lecture we will examine the simplest molecule we can

make: the hydrogen molecular ion H+
2 . We will apply the

Born-Oppenheimer approximation we learned about in the

previous lecture to obtain a molecular wavefunction that is

a linear combination of atomic orbitals (LCAO).

Outcomes

At the end of this lecture you will:

• be able to apply the Born-Oppenheimer approxima-

tion to simple molecules

• be able to calculate the form of the electronic wave-

function of H+
2

• become familiar with the linear combination of atomic

orbitals for constructing a molecular wavefunction

• know that the form of the wavefunction suggests a

covalent bond in H+
2



5 MOLECULES 11

5.3 THE H+
2 MOLECULE

The hydrogen molecular ion H+
2 is the simplest molecule

possible: it has one electron and two protons.

In the Born-Oppenheimer approximation we need to solve

two separate Schrödinger equations: the electronic equa-

tion and the nuclear one. First, we will fix the positions

of the nuclei and concentrate on the electronic part.

So we use the electronic Hamiltonian of the previous lecture

(Lecture 21, equation ??) and we solve:

−∇2
r

2
− 1

|RA − r|
− 1

|RB − r|
+

1

|RA −RB|

ψ(ri;R)

= Eel(R)ψ(r;R)

(note atomic units have been used, e = me = h̄ = 1) or−∇2
r

2
− 1

rA
− 1

rB
+

1

R

 ψ (rA, rB;R)

= Eel(R)ψ(rA, rB;R) (11)

where we define the realtive positions:

RA −RB = R

RA = −RB = R/2

rA = RA − r ; rA = |RA − r|
rB = RB − r ; rB = |RB − r|



5 MOLECULES 12

When rA is small (i.e. the electron is very close to nucleus

A), we will have:

(A)—a neutral hydrogen atom in the ground state and

(B)—a proton, i.e., we have :

H–H+: ψ(rA, rB, R)−→
rA→0

Φ1s(rA)

(remember that ψ is the electronic wavefunction, and we

know the electronic wavefunction for the ground state of a

hydrogen atom) and vice versa when rB is small:

H+–H : ψ(rA, rB, R)−→
rB→0

Φ1s(rB)

Φ1s(r) is the ground 1s wavefunction of the hydrogen atom.

When r=rA, Φ is centred on the nucleus A and when r=rB
it is centred on B.

In between these limits, we suppose we have some super-

position

ψ ∼ C1Φ1s(rA) + C2Φ1s(rB)

where C1 and C2 are unknown constants.
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Now, because H+
2 is a homonuclear molecule (i.e. both

nuclei are the same, A=B), the probability of the electron

being around A is the same as that of being around B, i.e.

|C1|2 = |C2|2

or, C1 = ±C2 = C.

In other words, the electronic wavefunction is either sym-

metric or antisymmetric with respect to exchange of

A and B. The wavefunction must reflect this symmetry so:

ψ+ = C[Φ1s(rA) + Φ1s(rB)] (symmetric)

ψ− = C[Φ1s(rA)− Φ1s(rB)] (antisymmetric)

with C = 1/
√

2 for a 50:50 split.

The symmetric combination is known as ‘gerade’, and

the antiymmetric as ‘ungerade’ often denoted with sub-

scripts g and u rather than + and -.

Building a molecular wavefunction from a superposition

of atomic orbitals is a standard technique of molecular

physics known as LCAO = Linear Combination of

Atomic Orbitals.
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Let’s have a look at the wavefunctions and electron distri-

butions:

(See diagram of wavefunctions and electron distributions

of H+
2 from lecture or website.)

ψ+ provides plenty of electron density between protons A

and B to neutralize mutual Coulomb repulsion.(ψ+ repre-

sents an example of a covalent bond, where an electron

is shared between two nuclei.)

For a ψ− state, electrons avoid middle region. As we will

see later, this leads to a state that is not stable.

For now we will say that the gerade state corresponds to

a bonding orbital that is stable as the presence of the

electon helps reduce the Coulomb repulsion of the two nu-

cleo. The ungerade state corresponds to an antibond-

ing orbital as there is very little probability of finding

the electron between the nuclei their Coulomb repulsion

pushes them apart, the molecule is unstable and breaks

up.
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LECTURE 22 SUMMARY

• the simplest molecule we can make is H+
2

• we can apply the Born-Oppenheimer approximation

to find the electronic wavefunction of the molecule

• the molecular wavefunction is a linear combination of

the atomic wavefunctions centred on each of the nuclei

• both symmetric (gerade) and antisymmetric (unger-

ade) combinations arise corresponding to a covalent

bonding orbital and an antibonding orbital respec-

tively
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LECTURE 23

Content

In this lecture we will continue our study of the hydrogen

molecular ion H+
2 by calculating the electronic energies of

the lowest states, the wavefunctions of which we calculated

in the last lecture. We will demonstrate that the symmet-

ric (gerade) combination leads to a bonding orbital, and

the antisymmetric (ungerade) combination is unstable and

leads to an antibonding orbital.

Outcomes

At the end of this lecture you will:

• be able to calculate the electronic energies of the lowest

states of H+
2

• be able to express the energy in terms of Coulomb,

Exchange and Overlap integrals

• be able to interpret the results in terms of bonding and

antibonding orbitals
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5.4 CALCULATION OF ELECTRONIC ENERGIES
FOR LOWEST STATES OF H+

2

To find the electronic energies we must evaluate:∫
ψ∗±Ĥelψ±dτ = 〈ψ±|Ĥel|ψ±〉

= 〈ψ±|E±(R)|ψ±〉
= E±〈ψ±|ψ±〉

and so the energy of the ψ± states is:

E±(R) =
∫
ψ∗±Ĥelψ±dτ∫
ψ∗±ψ±dτ

=
A±
N±

=
expectation value of Ĥel

normalization constant
.

Then the normalization term is:

N± =
1

2

∫
[Φ∗1s(rA)± Φ∗1s(rB)] [Φ1s(rA)± Φ1s(rB)] dτ

=
1

2

[
1 + 1± 2

∫
Φ∗1s(rA)Φ1s(rB)dτ

]
= 1± I(R) ,

since: ∫
Φ∗1s(rA,B)Φ1s(rA,B)dτ = 1

and

I(R) =
∫

Φ∗1s(rB)Φ1s(rA)dτ =
∫

Φ1s(rB)Φ∗1s(rA)dτ

I(R) is the overlap between Φ1s(rA) and Φ1s(rB). It is

non-zero since they are not orthogonal as they are cen-

tered on different origins.
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For the expectation values, A±, we again use the electronic

Hamiltonian of Lecture 22, equation (??):

Ĥel = −1

2
∇2
r −

1

rA
− 1

rB
+

1

R

First we recall from the treatment of atomic hydrogen that:

−1

2
∇2
r −

1

rA

 Φ1s(rA) = E1sΦ1s(rA) (12)

and −1

2
∇2
r −

1

rB

 Φ1s(rB) = E1sΦ1s(rB) ,

where E1s is ground state energy of H atom.

We want:

A± =
∫ 1√

2
[Φ∗1s(rA)± Φ∗1s(rB)]

× Ĥel
1√
2

[Φ1s(rA)± Φ1s(rB)] dτ .

that we will re-write as:

A± = 〈Ĥel〉 =
1

2
[HAA +HBB]±HAB (13)

where

HAA =
∫

Φ∗1s(rA)ĤelΦ1s(rA)dτ

= E1s (Energy of H atom)

+
1

R

∫
Φ1s(rA)Φ1s(rA)dτ (internuclear repulsion)

−
∫

Φ∗1s(rA)
1

rB
Φ1s(rA)dτ (Coulomb Integral)

= E1s +
1

R
− J(R)

where J(R) is due to the interaction with the other atom,

B.
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There is a similar term HBB from the other atom, B:

HBB = E1s +
1

R
− J(R) (14)

Also:

HAB = HBA =
∫

Φ∗1s(rA)ĤelΦ1s(rB)dτ (15)

and

HAB = ±


E1s +

1

R

 I(R)−
∫

Φ∗1s(rA)
1

rA
Φ1s(rB)dτ︸ ︷︷ ︸

‘K’ exchange integral


.

So

HAB = ±
E1s +

1

R

 I(R)∓K(R) . (16)

Putting these results together, the electronic energy is:

E± = A±/N±

=

(
E1s + 1

R

)
− J ±

(
E1s + 1

R

)
I ∓K

1± I

= E1s +
1

R︸ ︷︷ ︸
H atom +

Coulomb repulsion

+
−J ∓K

1± I
.

The integrals J,K, I depend parametrically on r and can

be evaluated analytically. It turns out that:

−J = e−2R > 0.

K = (1 +R)e−R > 0.

I = (1 +R + R2

3 )e−R

and since 0 < I < 1 so 1± I > 0.



5 MOLECULES 20

FORM OF E±(R)

1. As R→∞, J,K, I → 0, so:

E− ' E+ → E1s + 1
R

2. The splitting
2K(R)

(1± I)

lowers E+ and increases E−.

3. As R→ 0

E± →∞
because of repulsion between nuclei.

4. E+(R) has a minimum. This leads to a stable molecule.

Wavefunction associated with this eigenvalue (ψ+) is

a bonding orbital.

E−(R) is higher than the energy of the separated atoms.

Wavefunction associated with this eigenvalue (ψ−) is

an antibonding orbital. If the electron is excited

to this state, the molecule falls apart.

5. FOR STABLE MOLECULE:

De = DISSOCIATION ENERGY,

Re = EQUILIBRIUM DISTANCE OF NUCLEI.

When does the approximation fail? At small internuclear

separation R the wavefunction should tend to that of the

ground state of He+ with Z = 2, which our LCAO wave-

function ψ+ does not. Hence the actual binding energy is

slightly greater than that given by Born-Oppenheiner.
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LECTURE 23 SUMMARY

• the electronic energies are found by evaluating the nor-

malised expectation value of the electronic Hamilto-

nian

• we can write the energy in terms of Coulomb, Ex-

change and Overlap integrals

• for the antisymmetric wavefunction the energy is al-

ways higher than the energy of the separated atoms,

so it is an antibonding orbital

• for the symmetric wavefunction the energy is less than

that of the separated atoms for some parameters

• the energy has a minimum, and this corresponds to a

bonding orbital and a stable molecule
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LECTURE 24

Content

In this lecture we will build on our acquired knowledge

of the hydrogen molecular ion, and examine the simplest

neutral molecule, H2. We will approach the problem in a

similar manner, using the Born-Oppenheimer approxima-

tion and looking at the electronic wavefunction, but unlike

the case for H+
2 we now have two electrons and so must

also consider the effects of the Pauli Exclusion Principle.

Outcomes

At the end of this lecture you will:

• know how to calculate the electronic energies of the H2

molecule using the Born-Oppenheimer approximation

• know how to apply the Pauli Exclusion Principle to

the H2 molecule

• be able to describe the energies in terms of overlap,

Coulomb and exchange integrals

• be able to show that the exchange interaction raises

the energy of the spin triplet state, in contrast with

the case in Helium
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5.5 THE H2 MOLECULE

H2 is the simplest neutral molecule.

We will proceed in a similar manner to that which we used

for H+
2 , although we must bear in mind that:

As for H+
2 :

• We look at electronic wavefunction first, following B-O

approximation.

• Also have covalent bond (nuclei identical so share elec-

tron).

• Also have definite symmetry with respect to exchange

of nuclei (symmetric or antisymmetric under P̂AB).

But unlike H+
2 :

• There are now two electrons so must consider Pauli

Exclusion Principle: ψ must be anti-symmetric

with respect to exchange of electrons.
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The electronic Hamiltonian for H2 is:

Ĥel = −1

2
∇2

1 −
1

2
∇2

2︸ ︷︷ ︸
K.E. of elec-

trons 1 and 2

− 1

rA1
− 1

rA2
− 1

rB1
− 1

rB2︸ ︷︷ ︸
Nucleus-electron

attraction

+
1

R
+

1

r12︸ ︷︷ ︸
Repulsion be-

tween nuclei

and between

electrons

(17)

Of course, the wavefunction must include spin:

ψS,T = ψ(ri;R)χS,T (18)

where S = 0 or 1 since we have two electrons each with

spin 1
2. The χ (spin wavefunctions) are the same as we

obtained for Helium (i.e. two-electron wavefunctions).

Remember that for ψS,T to be antisymmetric overall:

• if ψ(ri;R) is anti-symmetric with respect to exchange

of electrons then χS (spin part) must be symmetric⇒
spin triplet.

• if ψ(ri;R) is symmetric with respect to exchange of

electrons then χS must be anti-symmetric ⇒ spin

singlet.
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As for H+
2 we can build the low-lying states of H2 from

atomic orbitals of 1s hydrogen. The antisymmetric ψ =

ψ−, will give us a spin triplet state:

ψT ' 1√
2

[Φ1s(rA1)Φ1s(rB2)− Φ1s(rA2)Φ1s(rB1)]χ
T

(19)

and the symmetric ψ = ψ+, will give us a spin singlet

state:

ψS ' 1√
2

[Φ1s(rA1)Φ1s(rB2) + Φ1s(rA2)Φ1s(rB1)]χ
S

(20)

As before, to obtain the energy associated to these two

states we work out expectation value of Hamiltonian, nor-

malized for either singlet or triplet states:

E±(R) =
∫
ψ∗S,T Ĥelψ

S,Tdτ∫
ψ∗S,TψS,Tdτ

E+ → ψS

E− → ψT
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Optional: Working through these integrals, like we did

for H+
2 , gives the denominator,

∫
ψ∗S,TψS,Tdτ =

1

2

∫
(Φ1s(rA1)Φ1s(rB2)± Φ1s(rA2)Φ1s(rB1))

∗

× (Φ1s(rA1)Φ1s(rB2)± Φ1s(rA2)Φ1s(rB1)) dr1dr2

=
1

2

∫
Φ∗1s(rA1)Φ1s(rA1)dr1

∫
Φ∗1s(rB2)Φ1s(rB2)dr2

+
1

2

∫
Φ∗1s(rA2)Φ1s(rA2)dr2

∫
Φ∗1s(rB1)Φ1s(rB2)dr1

± 1

2

∫
Φ∗1s(rA1)Φ1s(rB1)dr1

∫
Φ∗1s(rA2)Φ1s(rB2)dr2

± 1

2

∫
Φ1s(rA1)Φ

∗
1s(rB1)dr1

∫
Φ1s(rA2)Φ

∗
1s(rB2)dr2

(21)

which, remembering that the Φ1s(rN,i) (for N = A,B

and i = 1, 2) are normalised, and defining the overlap

integral:

I =
∫

Φ∗1s(rN,i)Φ1s(rM,i)dri (22)

we see that:

∫
ψ∗S,TψS,Tdτ = 1± I2 (23)

remembering that the ‘+’ corresponds to the spin singlet,

and the ‘-’ to the spin triplet.
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For the numerator we need to evaluate four parts. First:∫
Φ∗1s(rA1)Φ

∗
1s(rB2)ĤelΦ1s(rA1)Φ1s(rB2) (24)

Breaking up Ĥel we can identify the −1
2∇

2
1 − 1

rA1
and

−1
2∇

2
2 − 1

rB2
as being the hydrogen atom Hamiltonians,

and so both will integrate to E1s.

We can also recognise

1

R

∫
|Φ1s(rA1)|2|Φ1s(rB2)|2dτ =

1

R
(25)

the nuclear repulsion term that was present in the H+
2 so-

lution.

The rest of the Hamiltonian gives rise to:

∫
|Φ1s(rA1)|2|Φ1s(rB2)|2

− 1

rB1
− 1

rA2
+

1

r12

 dτ = J(R)

(26)

which we can identify as a Coulomb integral (not ex-

actly the same as in the previous H+
2 solution)

And so we find the first part of the numerator is

2E1s +
1

R
+ J (27)

The second term to evaluate is:∫
Φ∗1s(rA2)Φ

∗
1s(rB1)ĤelΦ1s(rA2)Φ1s(rB1) (28)

which, as only the electon number labels have changed

clearly integrates to the same as the above.
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The third term is a ‘cross term’:∫
Φ∗1s(rA2)Φ

∗
1s(rB1)ĤelΦ1s(rA1)Φ1s(rB2) (29)

Adopting the same procedure as above, the first part we

tackle is the hydrogen atom Hamiltonians −1
2∇

2
1− 1

rA1
and

−1
2∇

2
2 − 1

rB2
which will produce two terms equal to

±E1sI
2 (30)

where I is the overlap as defined before which occurs be-

cause we now have to evaluate terms like
∫
Φ∗(rB1)Φ(rA1)dr1.

We can also identify the nuclear repulsion term:

± 1

R
I2 (31)

remembering the ‘+’ and ‘-’ are spin singlet and triplet

respectively.

This leaves only the part:

∫
Φ∗(rA2)Φ

∗(rB1)Φ(rA1)Φ(rB2)

− 1

rB1
− 1

rA2
+

1

r12

 dτ
(32)

which we will denote K(R), the Exchange Integral.

So the contribution from this third term is

±(2E1s +
1

R
)I2 +K (33)

The fourth term is the other cross-term, which again dif-

fers only by the electron labels being swapped, and so in-

tegrates to the same result.
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Adding together all four terms (and remembering the fac-

tor of 1
2 from the initial wavefunction normalisation), we

get:

〈ψS,T |Ĥel|ψS,T 〉 = (2E1s +
1

R
)(1 + I2) + J ±K (34)

where the sign of K depends on the symmetry of the wave-

function.

Normalising we find an expression for the energy:

E± = 2E1s +
1

R
+

J

1± I2
± K

1± I2
(35)
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Back to core material: The energies for the spin sin-

glet (+) and spin triplet (-) states are:

E± = 2E1s

↓
2 hydrogen

atoms

+
1

R
↓

Nuclear

repulsion

+
J

1± I2
± K

1± I2
(36)

As for H+
2 : I is the overlap integral, J is the Coulomb

integral and K is the exchange integral.

Let’s look at the integrals in this case more closely:

OVERLAP:

I(R) =
∫

Φ∗1s(rA1)Φ1s(rB1)dτ . (37)

I < 1

So 1± I2 > 0 is always positive.

COULOMB:

J(R) =
∫
|Φ1s(rA1)|2

 1

r12
− 1

rA2
− 1

rB1

 |Φ1s(rB2)|2dτ
(38)

In general, J represents a positive contribution to the

energy.
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EXCHANGE:

K(R) =
∫

Φ∗1s(rA1)Φ
∗
1s(rB2)

 1

r12
− 1

rA2
− 1

rB1


× Φ1s(rA2)Φ1s(rB1)dτ (39)

which, in general, represents a negative contribution.

What are E+ and E− like? Does the term (J±K)/(1±I2)

lower energy below that of separated H atoms ⇒ stable

H2 molecule or does it raise it ⇒ unstable H2 molecule ?

From the previous analysis, the behaviour depends on the

sign of ±K, the exchange term.

So the spin singlet (add the negative contibution of K) lies

below the spin triplet (subtract the negative contribution

of K).
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Compare and contrast H2 (simplest two electron molecule)

with Helium (simplest two electron atom).

For Helium, triplet lies below singlet.

Why ? The triplet in Helium is lower energetically because

electrons avoid each other. Remember that:

ψ → 0 as r12 → 0

because the antisymmetric helium spatial wavefunction was

zero when r1 = r2. This means there is a low probability

of overlap. Previously we described this as the electron

‘keeping away’ from each other.

For the molecule, the triplet ψ has a zero at the midpoint

of H2.

There is a low probability of finding an electron between

protons in the antisymmetric ψ (triplet spin) case.

For a molecule, the most important factor for stability is

that electrons should neutralize mutual repul-

sion of nuclei, i.e., the 1/R term. So the molecules are

more stable if there is a significant probability that the

electrons are between the nuclei. This does not happen for

the spin triplet - the electrons ‘keep away’ from each other,

but in doing so expose the nuclei to each other.
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LECTURE 24 SUMMARY

• the neutral hydrogen molecule wavefunction can be ap-

proximated as a combination of hydrogen atom wave-

functions

• as the molecule contains two electron the Pauli Exclu-

sion Principle must be taken into account

• the molecule can have spin triplet and spin singlet

state, with spatial wavefunctions of the appropriate

symmetry

• the energy can be evaluated in term of overlap, Coulomb

and exchange integrals

• the exchange interaction raises the energy of the spin

triplet state, unlike in the helium atom
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LECTURE 25

Content

In this lecture we will turn our attention to the nuclear mo-

tion of a molecule. We will return to the nuclear Schrödinger

equation of earlier lectures and consider the motion in the

effective potential due to the electrons. We will find solu-

tions that describe rotational and vibrational motion,

both of which are quantized.

Outcomes

At the end of this lecture you will:

• know how to solve the nuclear Schrödinger equation

in the Born-Oppenheimer approximation

• know that the nuclei move in an effective potential

due to the electrons

• be able to show that the nuclear motion has rotational

and vibrational components, both of which are quan-

tised
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5.6 NUCLEAR MOTION OF MOLECULES

Now we have solved the electronic Schrödinger equation

for two examples we will move on to the nuclear equation.

A molecule with N nuclei has 3N nuclear degrees of free-

dom and three types of motion:

• Translation—Free motion of the molecule as a whole

in x, y, z direction: 3 degrees of freedom.

• Rotation—Rotation about centre of mass. In gen-

eral 3 rotational axes for a solid body but only 2 for a

linear molecule (3 or 2 degrees of freedom).

• Vibtation—Nuclei vibrate about equilibrium posi-

tions: 3N − 6 (or 3N − 5 for linear molecules) vibra-

tional modes.
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5.7 NUCLEAR MOTION OF A
DIATOMIC MOLECULE

Consider a diatom AB and its nuclear Schrödinger equa-

tion (??):
− h̄

2

2µ
∇2
R + Eel(R)

 ν(R) = Eν(R) .

where R is the internuclear vector and µ is the nuclear

reduced mass:

µ =
MAMB

MA +MB
(40)

Expressing ∇2
R in spherical polar coordinates:

− h̄
2

2µ
∇2
R = − h̄

2

2µ

1

R2

∂

∂R

R2 ∂

∂R


︸ ︷︷ ︸

Radial

+
Ĵ2

2µR2︸ ︷︷ ︸
Angular

(41)

with:

Ĵ2 = −h̄2

 1

sin θ

∂

∂θ

sin θ
∂

∂θ

 +
1

sin2 θ

∂2

∂φ2

 (42)

The solution of the Schrödinger equation proceeds anal-

ogously to that of the hydrogen atom, by separation of

radial and angular coordinates:

νvJ(R) =
Fv(R)

R︸ ︷︷ ︸
radial

YJMJ
(θ, φ)︸ ︷︷ ︸

angular

. (43)
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5.7.1 ROTATION

The spherical harmonics, YJMJ
, describe the rotational mo-

tion of the molecule with angular momentum quan-

tum numbers J and MJ . They are eigenfunctions of:

Ĵ2YJMJ
(θ, φ) = h̄2J(J + 1)YJMJ

(θ, φ) (44)

The molecule behaves like a rigid rotor that rotates

about an axis perpendicular to the internuclear axis through

the centre of mass. Its moment of inertia is:

Ie = MA (R− x)2 +MBx
2

But if the centre of mass is at the origin of coordinates,

then:

Ie = µR2
e (45)

The eigenvalues associated to the rotational motion are:

Erot =
h̄2J(J + 1)

2µR2
e

= BJ(J + 1) (46)

where B is the rotational constant:

B =
h̄2

2µR2
e

=
h̄2

2Ie
so ωrot ∝

1

µ
,

If J=0, then Erot is zero.
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5.7.2 VIBRATIONS

If we substitute solution (??) in the nuclear Schrödinger

equation:− h̄
2

2µ
∇2
R + Eel(R)

 Fv(R)

R
YJMJ

= E
Fv(R)

R
YJMJ

,

and take into account that:

− h̄
2

2µ

1

R2

∂

∂R

R2 ∂

∂R

 Fv(R)

R
= − h̄

2

2µ

1

R

d2Fv(R)

dR2
.

we can eliminate the YJMJ
and the 1/R term to get:

−h̄2

2µ

d2

dR2
+
h̄2J(J + 1)

2µR2
+ Eel(R)


︸ ︷︷ ︸

K.E.+Rotational+electronic

Fv(R) = E︸︷︷︸
Total

Fv(R) .

(47)

The functions Fv(R), solutions of (??), describe the vibra-

tional motion of the molecule. We could solve (??) numer-

ically, but for a stable molecule, Eel(R) has a minimum at

R=Re:

This potential well supports quantum states. The nu-

clear motion is generally confined to a small region around

Re. We can show that for motion close to equilibrium i.e.

R ' Re,

Eel(R) ∼ parabolic ⇒ motion ∼ harmonic.
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We can expand Eel(R) as a Taylor series about R = Re:

Eel(R) = Eel(Re) + (R−Re)
dEel

dR

∣∣∣∣∣∣
R=Re

+
(R−Re)

2

2

d2Eel

dR2

∣∣∣∣∣∣∣
R=Re

· · · .(48)

SinceR−Re is small, we neglect terms higher than quadratic.

At the minimum,
dE

dR

∣∣∣∣∣∣
R=Re

= 0

So, to 2nd order,

Eel(R) = Eel(Re) +
1

2
k(R−Re)

2 , (49)

i.e. the potential in which the nuclei move is a constant

plus a harmonic term ≡ 1
2kx

2 where k is the harmonic

oscillator constant (spring constant):

k =
d2E

dR2

∣∣∣∣∣∣∣
R=Re

.

We can now re-write equation (??):

⇒
− h̄

2

2µ

d2

dR2
+ Eel(Re) +

1

2
k(R−Re)

2

Fv(R)

= (E − Erot)Fv(R) (50)

Rearranging:

⇒
− h̄

2

2µ

d2

dR2
+

1

2
k(R−Re)

2


︸ ︷︷ ︸

Quantum harmonic oscillator

Fv(R)

= (E − Erot − Eel(Re))︸ ︷︷ ︸
Ev

Fv(R)

= EvFv(R) .
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Hence, we have:

Ev = h̄ω

v +
1

2

 , v = 0, 1, 2, . . . ,

with v the vibrational quantum number. Ev is the

energy of a harmonic oscillator of frequency

ω =

√√√√√k
µ

so that the energy can be written:

Ev = h̄

√√√√√k
µ

v +
1

2

 . (51)

For v = 0

Ev =
1

2
h̄ω

is referred to as the zero-point energy.

The energy of a quantum harmonic oscillator, unlike the

classical harmonic oscillator, is never zero.
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ENERGY OF A DIATOMIC MOLECULE

E ' Eel︸ ︷︷ ︸
electronic

energy at

equilib-

rium

+ BJ(J + 1)︸ ︷︷ ︸
Rotational

energy

+

v +
1

2

 h̄ω︸ ︷︷ ︸
Vibrational

energy

' Eel + EvJ

This is the total energy for an ideal diatomic molecule.

For a real molecule, this is valid as long as:

1. v is small: the harmonic approximation is best near

the bottom of the well

2. J is also small: centrifugal distortion tends to stretch

the molecule and lower the rotational energy.

EXAMPLE

A molecule AB has nuclei of mass, MA = 4m and MB =

6m. It emits photons at a frequency of

νv for v = 1 → 0 transitions

νR for J = 1 → 0 transitions

The atom, A, is replaced by an isotope of half the mass.

Estimate the new values for:

(a) v = 1 → 0 line; (b) J = 1 → 0 line.
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LECTURE 25 SUMMARY

• in a molecule the nuclei move in an effective potential

- the electronic energies we evaluated previously

• the nuclear motion has rotational and vibrational parts

• both of these are quantised

• the total energy is therefore the sum of the electronic

energy (at equilibrium), the rotational energy and the

vibrational energy
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LECTURE 26

Content

In this lecture we will the expression for the energy of an

ideal molecule that we obtained in the previous lecture

with that for a real molecule. We will see that differences

arise when we consider centrifugal distortion, vibration of

the bond and anharmonicity of the potential. To account

for these the rotational energy will be modified, and the

more realistic Morse potential will be introduced.

We will then examine the spectra of diatomic molecules

that arise from pure rotational, rotation-vibrational, and

electronic-vibration-rotational transitions, and see that each

of these has selection rules.

Outcomes

At the end of this lecture you will:

• be able to compare the energy of an ideal molecule with

that of a real molecule and explain the differences

• be able to use the Morse potential to describe the elec-

tronic energy

• be able to describe the spectra of a diatomic molecule

in terms of pure rotational, rotation-vibrational, and

electronic-vibration-rotational transitions

• be able to evaluate parameters of the molecule from

molecular spectra
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5.8 REAL MOLECULES

The energy expression we obtained in the previous lecture:

E = Eel(Re)︸ ︷︷ ︸
electronic

+BJ(J + 1)︸ ︷︷ ︸
EJ

+ h̄ω

v +
1

2


︸ ︷︷ ︸

Ev

(52)

applies only to an ideal molecule. Real molecules deviate

from the ideal case:

1. Centrifugal distortion: As J increases, internuclear

distance stretches. In effect this lowers the rotational

energy. This is important for high J ≥ 10

2. The rotational constantB depends on v. Since molecules

vibrate, effective bondlength 6= Re. Combining the ef-

fects of (1) and (2) means EJ becomes:

EJ = BvJ(J + 1)−DvJ
2(J + 1)2︸ ︷︷ ︸

centrifugal

distortion

.

3. Potential Eel is not really parabolic, except approxi-

mately, for low v. For high v, corrections due to the

anharmonicity of the potential are needed.

A more realistic description of vibration in diatomic

molecules can be achieved by the use of the Morse

potential. This addresses the deviation stated in

point 3.
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5.8.1 MORSE POTENTIAL

For many covalent molecules (e.g. H2, H+
2 ) a better de-

scription of the potential well provided by Eel is given by

the empirically determined Morse potential.This po-

tential has the form:

VMorse(R) = De

(
e−2α(R−Re) − 2e−α(R−Re)

)
(53)

where Re = equilibrium bond length, and De = potential

minimum De, Re and α are constants for a given molecule.

Note that VMorse(R) is attractive at large R, has a mini-

mum and then becomes repulsive at short distances.

Some values are shown in the table below:

Molecule Re / Å De / eV αRe

H2 0.742 4.75 1.44

I2 2.66 1.56 4.95

HCl 1.27 4.62 2.38

The parameter α determines how fast the potential energy

falls off with distance. It can be related to the force con-

stant, k, by expanding VMorse(R) in powers of (R − Re):

VMorse(R) ' De

(
−1 + α2(R−Re)

2 + ....
)

(54)

for small displacements from equilibrium, and comparing

this equation with equation (??) of Lecture 25 we see

that:

α =

√√√√√1

2

k

De
(55)
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5.9 SPECTRA OF DIATOMIC MOLECULES

5.9.1 PURE ROTATIONAL TRANSITIONS

Pure rotational transitions can take place between rota-

tional states corresponding to the same electronic state.

Only relevant to molecules with a permanent electric dipole

moment (e.g. LiF, HCl, but not homonuclear diatomics)

that the oscillating electric field can rotate.

Pure rotational transitions occur at microwave fre-

quencies. The selection rules are:

∆J = ±1 .

(Remember this is the nuclear angular momentum)

Molecules such as O2, H2 and H+
2 have no dipole: They

have a much weaker spectrum of ‘forbidden’ ∆J = 2 tran-

sitions. (Non-linear molecules can have ∆J = 0).

Frequencies of transition lines are given by:

Erot(J)− Erot(J − 1)

h
=

2BJ

h
so the spectral lines are equally spaced with separation

2B/h.

Answer: H35Cl has a rotational spectrum with line spac-

ing of ∆ν̃ ≈ 21.2 cm−1. Find B, Ie and Re.

Solution: ∆ν̃ = 2B, so B ≈ 10.6 cm−1. And from B

we can calculate the moment of inertia, as B = h̄2

2Ie
, so

Ie = h̄2

2×2.11×10−22 = 2.63× 10−47 kgm2. Also Ie = µRe, so

Re =
√

2.63×10−47
35
361.67×10−27 = 1.27 Å as in table on previous page.
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5.9.2 VIBRATION-ROTATION SPECTRA

Vibration-rotation transitions occur at infra-red fre-

quencies. For harmonic approximation, the selection rules

are:

∆v = ±1 |J − J ′| = 1

(Transitions with ∆v = ±2,±3, ... occur but are much

less likely). ∆v = ±1 comes from the selection rules of

the harmonic oscillator. The change in J is as for the

rotational spectra above.

Ro-vibrational transitions give rise to spectra with 2 branches,

the ‘R-branch’ (∆J = +1):

h̄ω
(R)
ro−vib = E(v + 1, J + 1)− E(v, J)

= 2B(J + 1) + h̄ω0, J = 0, 1, 2...

and the ‘P-branch’ (∆J = −1):

h̄ω
(P )
ro−vib = E(v + 1, J − 1)− E(v, J)

= −2BJ + h̄ω0, J = 1, 2, 3...

with a line missing at h̄ω0 due to ∆J=0 being forbidden.

Note that the line spacing gives us B (and hence Ie and

even Re) as before, and ω0 (the missing line) can give us

the spring constant.

Example: the missing line in the rotation-vibration spec-

trum of H35Cl is at ν̃ = 2990.6cm−1. What is the spring

constant of the bond?

Answer: Recall that ω0 =
√
k
µ we have k = µω2

0. So:

k = 35
1+35×1.67×10−27×(2π)2×(8.96×1013)2 = 515Nm−1.
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5.9.3 ELECTRONIC TRANSITIONS

Diatomic molecules have axial symmetry, not spherical

symmetry as in atoms. Hence, the electronic eigenfunc-

tions are simultaneous eigenfunctions of Ĥel and L̂z, i.e.,

L̂z gives us the good quantum number:

L̂zψ = MLh̄ψ = ±Λh̄ψ (56)

Λ is the absolute value in atomic units of the projection of

the total electronic angular momentum on the internuclear

(z−) axis. As with atomic spectroscopic notation (S, P,

D, F,....) we use letters to denote the angular momentum,

but for molecules we use Greek letters:

Λ = 0 → Σ

Λ = 1 → Π

Λ = 2 → ∆

Λ = 3 → Φ

.......

If we want to label a one-electron function (a molecular

orbital) we use λ=0,1,2,... → σ, π, δ, etc..

As for atoms, the spin multiplicity is indicated as a super-

script, so we have:
2S+1Λg,u

where g and u denote gerade or ungerade and only applies

for homonuclear molecules.
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Molecular electronic transitions are always accompanied by

rotational and vibrational transitions. The selection rules

for changes in the electronic state are:

∆Λ = 0,±1

g → u but not g → g or u→ u

∆S = 0

5.9.4 ELECTRONIC-VIBRATIONAL-ROTATIONAL

The energy difference between electronic levels is much

larger than those corresponding to transitions without a

change in the electronic state, hence these transitions are

usually observed in the ultra-violet. We have discussed

the selection rules for the electronic part in section ??. For

the nuclear part we have:

∆v can take any value.

∆J = 0 ±1

But the bond length, and hence the rotational constant,

B, can differ substantially for the initial and final states.

Hence:

∆EJ = [BJ(J + 1)−B′J ′(J ′ + 1)]

does not lead to evenly spaced lines. Since,

En, Ev � Erot

this just spreads the electronic-vibration frequency into a

band of closely spaced lines.
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EXAMPLE

The carbon monoxide (CO) molecule is observed to have

a set of spectral lines with frequencies:

f1 = 1.15× 1011 Hz

f2 = 2.30× 1011 Hz

f3 = 3.46× 1011 Hz

f4 = 4.61× 1011 Hz

What sort of transitions do these correspond to ?
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5.9.5 FRANCK-CONDON PRINCIPLE

In most cases, the electron ‘jumps’ so quickly in electronic

transitions that nuclei cannot relax. If this is the case, the

distribution of final vibrational states after the transition

takes place is determined by the overlap of vibrational

wavefunctions between the ground and excited state.

The overlap between v′′ = 0 and v′ = 0 is very small so

transitions are very weak.

Transition v′′ = 0 → v′ = n is big as the v′ = n state is

large at inner turning point.

More formally, the transition probability is proportional

to:

Iv′′v′ =
[∫ ∞

0
ν∗v′′(R)νv′(R)dτ

]2
where νv′′ is the vibrational wavefunction of the lower state

and νv′ that of the upper state.

I is known as the Franck-Condon Factor.
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LECTURE 26 SUMMARY

• a real molecule deviates from the energy of the ideal

case due to centrifugal distortion of the bond, the vari-

ation of rotational constant with the vibrational quan-

tum number, and the anharmonicity of the potential

• these factors are important at large J and v

• they can be described by a modifying the expression

for the molecular energy and introducing the Morse

potential

• spectra of diatomic molecules arise from rotational,

vibration-rotational and electronic-vibration-rotational

transitions

• these lie in the microwave, infra-red and ultra-violet

regions of the spectrum respectively

• each obeys selection rules and has a characteristic form

that allows parameters of the molecule to be calculated

from data
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LECTURE 27

Content

In this lecture we will look at ionic bonds. We will in-

troduce the concept of electron affinity, and (re-) intro-

duce the ionisation energy. We will use these parameters,

and the Coulomb interaction between ions to estimate the

binding energy of an ionic bond.

Outcomes

At the end of this lecture you will:

• know the definitions of electron affinity and ionisation

energy

• apply this knowledge to calculate the energy required

to produce oppositely charged ions from neutral atoms

• be able to relate this to the Coulomb interaction en-

ergy to evaluate the stability of an ionic bond

• explain the difference between this simple model and

measured bond energies

• evaluate and compare electric dipole moments of ionic

molecules to determine the fractional ionic character
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5.10 IONIC BONDS

Previously, for example when we studied the H2 molecule,

we have looked at covalent bonds, where the electrons

are ‘shared’ between the two nuclei.

Now we will look at ionic bonds, where the electron is

much more likely to be found near one of the atoms in the

molecule.

Ionic bonds frequently occur for alkali-halogen molecules.

Alkalis (e.g., Li, Na, Rb, Cs) have one electron outside

a closed shell. Halogens are one electron short of being

closed shell. Hence NaCl, KCl, LiF, etc form ionic bonds.

Example: Sodium Chloride (NaCl). We consider two

properties of atoms:

1. Electron affinity, A

This is the binding energy of an additional electron, e.g.

F → F−. Some examples (for the halogens) are shown

below. Note that the energies are negative, i.e. energy is

released.

element electron affinity, A /eV

F -3.40

Cl -3.62

Br -3.36

I -3.06

Cl → Cl−: A(Cl) = -3.62 eV

Na → Na−: A(Na) = -0.54 eV
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2. Ionisation energy, I .

Energy ‘cost’ of removing outer electron, e.g. Na → Na+.

Some examples (for the alkalis) are shown below. Note

that the energies are positive, i.e. energy must be put in.

element ionisation energy, I /eV

Li 5.39

Na 5.14

K 4.34

Rb 4.18

Cs 3.89

I(Na) = 5.14 eV

I(Cl) = 12.97 eV → much more energy needed

Energy cost of removing an electron from Na and adding

it to Cl is I(Na) + A(Cl):

E = 5.14 eV − 3.62 eV = 1.52 eV = 0.056 a.u. .

That is, we need to provide energy to ‘transfer’ an electron

from Na to Cl (notice that if I < A then the process would

be exothermic). But, we now have Na+Cl− and the ions

attract each other. For what R does the Coulomb attrac-

tion overcome the energy loss due to ionisation? When:

E = 0.056 a.u. =
1

R
→ R ∼ 17.9 a.u

Net energy exchange will be zero if R ∼ 17.9 a.u. Any

closer and it will be negative, i.e., Na+Cl− is more stable

than Na-Cl.
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If we want the dissociation energy, i.e., the energy re-

quired to separate Na and Cl as neutral atoms then

we could calculate the Coulomb attration using the bond

length determined from spectroscopy to beR0 = 0.24 nm =

4.54 a.u., which makes ECoulomb = 0.22 a.u. ≡ 6 eV

De = 0.22︸ ︷︷ ︸
separate ions

− (I(Na) + A(Cl))︸ ︷︷ ︸
transfer electron

= 0.22− 0.056 a.u.

= 0.164 a.u.

= 4.46 eV (57)

The measured dissociation energyDe = 4.22 eV (0.155 a.u.

or in chemistry terms 411 kJ mol−1). So our simple cal-

culation is within about 10%. Corrections come from the

fact that the ions are not point charges, and at these small

distances the electron clouds overlap, raising the energy

slightly. A more realistic form for the potential would be:

E(R) = E(∞)︸ ︷︷ ︸
I(Na)+A(Cl)

− 1

R︸︷︷︸
Coulomb

+ becR︸ ︷︷ ︸
overlap

where the parameters b and c may be derived from spec-

troscopic measurements. The depth of this potential for

NaCl is at −5.7 eV = −0.21 a.u. rather than −6.0 eV.

We should also take into account that small correction (≈
0.02 eV) from the zero point energy - the first vibrational

level lies 1
2h̄ω0 above the minimum of the potential.
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5.11 IONIC CHARACTER OF THE BOND

In reality, most bonds are not purely ionic. For NaCl we

have R = 4.54 a0. If we had Na+ Cl− then the electric

dipole moment would be µ = eR0 = 4.54a.u.. The exper-

imentally measured value for the dipole moment is, how-

ever, pexpt ' 3.54a.u., indicating that the electron still

maintains some probability of remaining on Na.

Some properties of selected alkali halide molecules:

molecule bond length, dipole moment,

R0 / a.u. |p| / a.u.

Li F 2.96 2.49

Li Cl 3.82 2.81

Na Cl 4.46 3.54

Na Br 4.73 3.59

K Cl 5.04 4.04

K Br 5.33 4.18

Rb Cl 5.27 4.14

Cs Cl 5.49 4.09

The fractional ionic character of the bond may be ex-

pressed as:
p

eR0
=

3.54

4.54
= 0.78

for the sodium chloride bond.
p
eR0

= 1 → completely ionic
p
eR0

= 0 → completely covalent
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LECTURE 27 SUMMARY

• the electron affinity is the energy required to add an

electon to an atom

• the ionisation energy is the energy required to remove

an electron from an atom

• the difference between these may be compensated by

the Coulomb attraction to from a stable ionic molecule

• to calculate the binding energy we nust take account

of the repulsion of the electron clouds

• the electric dipole moment gives an indication of the

fractional ionic character of the bond

END OF LECTURE COURSE


