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LECTURE 7

Content

In this lecture we will begin to discuss atoms with more

electrons than hydrogen. Unfortunately this problem be-

comes very complicated very quickly — even for helium

with just two electrons. Rather than attempting an an-

alytical solution we will concentrate on devising a model

to help us understand the physics. We will consider first

the independent particle model which is rather un-

realistic as it neglects the Coulomb interactions between

electrons, before examining the central field approxi-

mation.

Outcomes

At the end of this lecture you will:

• know that a many electron atom is much more com-

plicated than hydrogen

• know, and appreciate why, approximate methods are

needed

• know and be able to criticise the independent particle

model

• know and be able to use the central field approxima-

tion
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3 MANY ELECTRON ATOMS

While the Schrödinger equation for hydrogen can be solved

analytically to yield an expression for the quantum energy

levels En = −1/(2n2), more complicated atoms require

numerical solutions. But we can develop simple mod-

els to estimate and classify (roughly) the energy levels of

more complicated atoms.

These models help our physical understanding far

more than getting a bunch of numbers from a solution

of Schrödinger’s equation using a powerful computer. So

for instance we can give an approximate expression for

alkali atoms where the electrons are all arranged in a tight

spherical core except the outer one which is loosely bound.
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3.1 MANY ELECTRON HAMILTONIAN

For atoms with more than one electron we cannot solve

the Schrödinger equation analytically, as we did with the

hydrogen atom. We have to use approximate methods to

infer the properties of atoms like helium, lithium etc... For

a one-electron atom, the Hamiltonian (in atomic units) is:

Ĥ = −1

2
∇2 − Z

r
(1)

For an N -electron atom we might expect the Hamiltonian,

in atomic units, to be:

Ĥ =
N∑
i=1

−1

2
∇2
i −

Z

ri


︸ ︷︷ ︸
KE + attraction

of nucleus and

i th e−

+
∑
i,j
i>j

1

rij︸ ︷︷ ︸
e−–e− Coulomb

repulsion, non-

central

(2)

=
N∑
i=1
ĥ(ri) +

∑
i,j
i>j

1

rij

with rij = |ri − rj|.

The Coulomb repulsion term means the Hamiltonian

is no longer analytically solvable since we cannot use

separation of variables.
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NOTE: We have to write the 1/rij (Coulomb) term care-

fully to avoid ‘double-counting’.

For example:

For He: 1/r12.

For Li: 1/r12 + 1/r13 + 1/r23.

So for a N electron atom, we have 1
2N(N − 1) such terms.

3.2 APPROXIMATE SOLUTIONS

For the next few lectures we will ‘deconstruct’ multi-electron

atoms. We begin with a completely unrealistic model, by

neglecting the e−– e− Coulomb repulsion term entirely

(the independent particle model).

Then we gradually ‘rebuild’ a realistic atom, by adding

the neglected interactions. We begin with the spherically

averaged part of 1/rij (we get central potentials, screening,

Quantum defects).

Then we include the non-central part as well as spin and

spin-orbit effects. Configurations, terms and levels

is the hierarchy which emerges as we consider these more

realistic multi-electronic atomic energy levels.

This replaces the very simple, spin-free Bohr atom energy

ladder which depends only on the n quantum number.
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3.2.1 INDEPENDENT PARTICLE MODEL

As a first approximation, we neglect 1/rij entirely.

Then theN electron Hamiltonian of equation 3.1 becomes:

Ĥ(r1, r2, . . . , rN) =
N∑
i=1
ĥ(ri) . (3)

Each term i in the series depends only on the position of

the i-th electron — there are no electron-electron interac-

tions, or “cross-terms”, so Ĥ separates into the sum of N

one-electron Hamiltonians ĥ, with eigenstates ψ(ri) (and

eigenvalues Ei):

ĥ(ri)ψ(ri) = Eiψ(ri) (4)

which in turn are separable in coordinates (r, θ, φ).

We thus have N hydrogen-like solutions, ψ(ri).

Example:

For N = 2, the helium ground state (remembering that

Z = 2):

E = En=1 + En=1 = − Z2

2n2
− Z2

2n2
= −4 a.u. (5)

Where the En=1 are the hydrogen-like solutions we ob-

tained in Lecture 4 (via the Bohr model) and Lecture 6

(via the Schrödinger equation).
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The measured ground state energy is E = −2.9 a.u. The

neglect of the inter-electron repulsion yields a value which

is too negative.

One can roughly estimate the magnitude of this repulsive

term. The average separation of the helium n = 1 electrons

is 1 a.u.; hence the average repulsive energy is

Er =
∫

Ψ∗ 1

r12
Ψdτ ≈ 1

〈r12〉
≈ 1a.u. (6)

E +
1

〈r12〉
∼ −3 a.u. .

This is better but still crude. Neglects effects due to Pauli

principle, as we will see later.
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3.2.2 CENTRAL FIELD APPROXIMATION

An alternative approach which takes into account the other

electrons.

We take the same separable Hamiltonians, ĥ(ri), as above,

but now we add, to each one, a central potential Vc(ri)

which represent the average interaction of the ith e− with

the nucleus screened by the other electrons. In other

words:

Ĥ(r1, r2, . . . , rN) =
N∑
i=1
ĥ′(ri) (7)

ĥ′(ri) = ĥ(ri) + Vc(ri) = −1

2
∇2
i −

Z

ri
+ Vc(ri) (8)

i.e. the N -electron Hamiltonian is the sum of N one-

electron Hamiltonians, ĥ′(ri), each of which depends only

on the position of the i-th electron.

The additional term in ĥ′(ri) is the central potential Vc(ri),

where

Vc(ri) = 〈∑
j

1

rij
〉 . (9)

The brackets indicate that we have averaged out the effect

of the other electrons over a sphere.

The important fact is that Vc depends only on r not r,

and so has no angular (φ,θ) dependence: it is spherically

symmetric, isotropic. (In case you’re worried, we’ll treat

spin separately later.)
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We can then solve the N one-particle equations:

ĥ′Φ(ri) = εiΦ(ri) (10)

and the total energy is

E =
N∑
i=1
εi . (11)

The Φ(ri) are one-particle orbitals.

The resulting total wavefunction has a product-form:

Ψ(r1, r2, . . . , rN) = Φ(r1)Φ(r2) . . .Φ(rN) . (12)

So what form do these one-particle orbitals take ? We

know that they are, like hydrogen, a product of a radial

and an angular part (we insisted on separable solutions):

Φ(ri) = Fnl(ri)Ylm(θ, φ) . (13)

The angular part of the one-electron Hamiltonian ĥ′(ri)

is exactly the same as hydrogen so we still get a spherical

harmonic. The s, p, d, f terminology we introduced in

Lecture 6 for angular momentum is still useful.

The form of the radial part Fnl, though, can be quite

complicated and is not like hydrogen.
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Remember I warned you about “accidental” degeneracy

with respect to the quantum number l arising from the

(1/r) potential in Lecture 6? Introducing the central field

has modified the potential and so lifted this degeneracy.

Now the energies εi → εnl depend on both n as well as

l, unlike hydrogen. An analogy here could be the preces-

sion of planetary orbits around the sun, due to the pertur-

bations arising from the gravitational effects of the other

planets.

We label the orbitals 1s, 2s, 2p, 3s, 3p, 3d. . . etc.

To indicate the number of electrons which occupy a given

orbital we put right-hand superscript: 1s22s22p1 etc.

Question

When does the central field model make most sense?

Answer

Mostly for alkali-atoms (that is in Group I of the periodic

table Li, Na, K,. . . ) or similar ones. Consider an alkali

atom with N electrons (Z = N since the atom is neutral).

There is a tightly bound inner core of N − 1 electrons,

and a single outer, loosely bound electron. The central field

model is good for the energy levels of the outer ‘optically

active’ electron, especially when it is excited to a high

lying state.
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The inner core of electrons ‘screens’ the charge of the

nucleus. We know the limiting forms of the interaction felt

by the outer electron:

−N
ri

+ Vc(ri) → −N
ri

as ri → 0 (14)

that is, right up close to the nucleus the Coulomb attrac-

tion of N protons dominates, and:

−N
ri

+ Vc(ri) → − 1

ri
as ri →∞ (15)

that is, well away from the nucleus it and the inner core of

electrons appear like a single positive charge.

The extent to which the outer electron samples the screened

charge (V ∼ −1/r) relative to the bare nuclear charge

(V ∼ −N/r) depends most strongly on the value of l.

For intermediate distances it is much more difficult, need

to use, for instance, the Hartree-Fock method to find

Vc(ri).
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Previously we looked at the radial dependence of hydro-

genic orbitals (the same qualitative picture applies here)

For example, compare n = 3, l = 0 (3s) and n = 3, l = 2

(3d) (see diagrams used in Lecture 6).

The 3d orbitals overlap weakly with the inner region (de-

fined by the 1s orbital here), but the 3s orbitals were de-

scribed as ‘penetrating’ since they overlap more strongly

with the inner region and hence with the inner structure

of the atom (the 1s, 2s, 2p electrons).

• LOW-l orbitals experience more of the bare nuclear

charge. Since En ∝ −Z2/n2, their energy is more neg-

ative, they are more tightly bound. Although multi-

electron atoms have different radial functions, similar

qualitative behaviour to hydrogen applies (i.e., low l

means stronger overlap with small r).

• Conversely HIGH-l avoid nuclear charge so ‘feel’ only

completely screened charge Z = 1 so behaviour is

more hydrogen-like. Energy is less negative.

So, whereas for hydrogen we had the degeneracy with re-

spect to l,

E(1s) < E(2s) = E(2p) < E(3s) = E(3p) = E(3d) ,

for a multi-electron atom it is lifted,

E(1s) < E(2s) < E(2p) < E(3s) < E(3p) < E(3d) .
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ENERGY LEVEL SPECTRUM OF LITHIUM

See the diagram available from the website for Lecture

7.

Note that Li 2s is lower in energy than 2p.

Li 2s is approx. 1.7 eV lower in energy than the n = 2

level of hydrogen.



3 MANY ELECTRON ATOMS 13

LECTURE 7 SUMMARY

• An atom with more than one electron is too compli-

cated to solve analytically

• Simple models can help us understand the fundamen-

tal physics without a great deal of mathematical com-

plexity

• The independent particle model neglects e− − e− in-

teractions but produces poor solutions

• The central field model includes the averaged effect

e− − e− interactions as a screened potential

• It preduces reasonable solutions, especially for alkali-

metal-like atoms

• Modifying the potential lifts the degeneracy with re-

spect to l
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LECTURE 8

Content

In this lecture we will introduce two ways of parameterising

the energy levels of multi-electron atoms, namely quan-

tum defects and screening constants. We will then

move on to discuss the Pauli Exclusion Principle and its

effects on the symmetry of the wavefunction. This will be

in preparation for a discussion of the Helium atom in later

lectures.

Outcomes

At the end of this lecture you will:

• know the definition of the quantum defect, ∆nl and. . .

• describe and justify its variation with n and l.

• be able to calculate ∆nl from data

• know the definition of the screening constant

• know the Pauli Exclusion Principle
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3.2.3 QUANTUM DEFECTS AND SCREENING CONSTANTS

For multi-electron atoms with a core plus a single optically

active outer electron, we can give an analytical expression

for the energy in (a. u.) of the outer electron:

Enl = − Z2
eff

2(n−∆nl)2
, (16)

in terms of:

1. an effective charge, Zeff ( Nuclear charge + charge of

inner core electrons)

2. a set of parameters ∆nl called the quantum de-

fects which quantify the departure from hydrogenic

behaviour.

NOTE: Equation (16) can be derived rigorously from the

Schrödinger equation by considering a potential which de-

viates from pure Coulomb 1/r only for small r. Remember

that when we solved the hydrogen atom, an unphysical so-

lution which blows up at the origin had to be discarded.

QDT in fact makes use of that solution !

The quantity n−∆nl can be considered to be an effective

quantum number, but BEWARE: in general it will not

be an integer.



3 MANY ELECTRON ATOMS 16

Properties of quantum defects

n = 3 n = 4 n = 5 n = 6 n = 7

l = 0 1.63 2.64 3.65 4.65 5.65

l = 1 2.12 3.14 4.14 5.14 6.14

l = 2 2.99 3.99 4.99 5.99 6.99

l = 3 - 4.00 5.00 6.00 7.00

The table shows the effective quantum number n−∆nl for

sodium. Note that in general the ∆nl are positive. To a

good approximation they depend only on l

∆nl → ∆l (17)

For high l the quantum defects tend rapidly to zero, of

course. Why ?

Electrons in orbits with small l are more penetrating, and

so experience, for at least part of their orbit, a greater

effect from the nucleus. The outer electrons which do not

penetrate near the nucleus will move in a hydrogen-like

Coulomb field due to the nuclear charge +Ze screened by

the innner electrons carrying charge −(Z − 1)e. This is

shown in the diagrams from Lecture 6 and Lecture 7

of the radial distribution functions for (n, l) = (3, 0) and

(n, l) = (3, 2).
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EXAMPLE 1. Values of ∆nl

l 0 1 2 3

Li 0.40 .04 0.00 0.00

Na 1.35 0.85 0.01 .0.00

EXAMPLE 2

The atom Na has Z = 11. What is Zeff ?

EXAMPLE 3

The atomic ion C3+ is an alkali-like ion. Its outer electron

is seen to have the following energies in its ‘s’ states:

2s −520178.4 cm−1

3s −217329.4 cm−1

4s −118830.3 cm−1

5s −74809.9 cm−1

What are the quantum defects for these states ?
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3.2.4 ALTERNATIVE TO QUANTUM DEFECTS: THE SCREEN-
ING CONSTANT

Another way of parametrizing the behaviour of a non-

hydrogenic atom is to keep n as an integer but to intro-

duce a variable ‘screened charge’, detonted Z∗. Instead of

Eq. (16) we have:

Enl = −(Z − σnl)
2

2n2
= −(Z∗)2

2n2
(18)

where σnl is the screening constant.

N.B. In Eq. (16), the quantum defect expression, Zeff is

always integer. In the screening constant equation, Z∗ is

non-integer in general.
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3.3 THE PAULI PRINCIPLE AND ITS EFFECTS

In multi-electron atoms, an additional effective ‘interac-

tion’ called exchange appears as a consequence of the

spin and Pauli exclusion principle.

3.3.1 THE PAULI EXCLUSION PRINCIPLE (PEP)

Atomic spectroscopy suggested that, in fact, two electrons

occupied each nlm combination but no more than 2:

something that the Bohr model couldn’t explain! Pauli

suggested that a new quantum property with 2 values could

account for this. It turned out to be the spin S = 1/2

with components along the z-axis Sz = +1/2 ‘spin up’ or

Sz = −1/2 ‘spin down’.

He first formulated his principle in the following way: in

a multielectron atom there can never be more

than one electron in the same quantum state

(that is there can never be two or more electrons with all

their quantum numbers the same).

He then discovered that this was a much more general be-

haviour that applied to all particles with half-integer spin

such as electrons, neutrons, protons. . . These particles are

called fermions and they obey Fermi-Dirac statistics.

‘Particles’ of integer spin, such as the photon, some atoms

etc are called bosons and they obey Bose-Einstein statis-

tics.
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The generalized Pauli Exclusion Principle can be reformu-

lated as a stronger condition:

Quantum wavefunctions of a system of identi-

cal fermions must be anti-symmetric with re-

spect to the exchange of any two sets of space and

spin variables

Anti-symmetric wavefunctions fullfil the condition that no

two electrons can be in the same quantum state, specified

by n, l,ml, and ms.

Experimental evidence for the existence of spin (or intrin-

sic angular momentum) came from experiments such as

those of Stern and Gerlach.

3.3.2 INDISTINGUISHABLE PARTICLES

Consider two indistinguishable (by any physical measure-

ment) particles, labelled ‘1’ and ‘2’, and define an operator

P̂12 which we will call the “particle interchange operator”

which swaps the labels of the particles.

Operating with P̂12 we can write:

P̂12Ĥ(1, 2)ψ(1, 2) = Ĥ(2, 1)ψ(2, 1) (19)

= Ĥ(1, 2)P̂12ψ(1, 2)

(20)

since Ĥ(1, 2) = Ĥ(2, 1) (where Ĥ is the Hamiltonian) as

the particles are indistinguishable.
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We may rearrange this to show that:(
P̂12Ĥ(1, 2)− Ĥ(1, 2)P̂12

)
ψ(1, 2) = 0 (21)

i.e. the particle interchange operator and the Hamiltonian

commute. The same is true of any operator resresent-

ing a physical quantity, and so whatever measurement is

made on the system the resulting wavefunction will be an

eigenstate of P̂12.

The implication of this is that if ψ(1, 2) is an eigenfunction

then:

P̂12ψ(1, 2) = pψ(1, 2) = ψ(2, 1) (22)

where p is the corresponding eigenvalue. Operating again

tells us:

P̂12ψ(2, 1) = pP̂12ψ(1, 2) (23)

= p2ψ(1, 2)

= ψ(1, 2).

(24)

This means that p2 = 1 and so ψ(1, 2) = ±ψ(2, 1), and

we conclude that any physically acceptable wavefunction

representing two indistinguishable particles must be ei-

ther symmetric or antisymmetric with respect to ex-

change of the particles.

The former type of particles are called bosons, the latter

type are fermions. The Pauli Exclusion Principle applies

to the latter.
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Now consider the case where the particles are fermions,

but non-interacting. We denote an unsymmetrised eigen-

function by ψ(1, 2) and make the linear combinations that

are symmetric and antisymmetric under exchange:

Ψ±(1, 2) =
1√
2

(ψ(1, 2)± ψ(2, 1)) (25)

where ‘+’ is the symmetric combination and ‘-’ the anti-

symmetric.

An interesting special case is that of two independent par-

ticles, as considered in section 3.2.1 in the last lecture.

Remember the total Hamiltonian here is Ĥ = ĥ1 + ĥ2 and

the individual hamiltonians have eigenfunctions such that:

ĥiφλ(i) = Eλφ(i) (26)

where i is the particle label (1 or 2), and the subscript

λ represents a set of quantum numbers that characterise

the individual states. For this case there will be two such

states: φa and φb.

For now we’ll just consider fermions and construct the an-

tisymmetric combination of the product φaφb:

Ψ−(1, 2) =
1√
2

(φa(1)φb(2)− φb(1)φa(2)) . (27)

To get a handle on this, imagine these are two non-interacting

electrons in a Coulomb potential and the labels a and b are

two sets of quantum numbers nlml and n′l′m′
l. (Remem-

ber we tried this model for the Helium atom earlier?)
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Now if we try to give both electrons the same set of quan-

tum numbers, that is a = b in the above, we find that the

antisymmetric combination ψ−(1, 2) = 0: the wavefunc-

tion vanishes implying this state does not exist.

This is the Pauli Exclusion Principle at work. For the

antisymmetric wavefunction of the identical fermions to be

non-zero the fermions must have different sets of quantum

numbers.
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LECTURE 8 SUMMARY

• the quantum defect characterises the departure from

hydrogenic behaviour

• it is especially useful for atoms with a single optically

active electron

• a screened charge may be used to parameterize a non-

hydrogenic atom

• the Pauli Exclusion Principle states that the wavefunc-

tion of a system of identical fermions must be anti-

symmetric with respect to exchange

• an alternative formulation is that the electrons must

have different sets of quantum numbers.
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LECTURE 9

Content

In this lecture we will begin to study the Helium atom and

determine the consequences of the Pauli Exclusion Princi-

ple on the wavefunction of the ground state

Outcomes

At the end of this lecture you will:

• know and be able to construct wavefunctions that are

symmetric and antisymmetric under exchange

• know the Helium wavefunction is separable into spatial

and spin parts

• know the Pauli Exclusion Principle requires that the

total wavefunction of Helium must be antisymmetric

• be able to demonstrate the restrictions this places on

the form of the wavefunction
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3.3.3 THE HELIUM ATOM

Now let us look more closely at the Helium atom to under-

stand the effects of the Pauli Exclusion Principle. To begin

with we’ll consider the limit of no interactions between the

electrons.

Helium has two electrons (indentical fermions!) so the

wavefunctions must be antisymmetric overall with re-

spect to exchange of the electrons. We can write the total

wavefunction as a product of a space part and a spin part

Ψ(1, 2) = Φ(r1, r2)︸ ︷︷ ︸
space

χ(s1z, s2z)︸ ︷︷ ︸
spin

(28)

= −Φ(r2, r1) χ(s2z, s1z) . (29)

The χ are eigenfunctions of Ŝ
2

where the total spin Ŝ =

Ŝ1 + Ŝ2 is the vector sum of the individual spins, and also

of Ŝz = Ŝ1z + Ŝ2z its z component.
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Spin part

For individual electrons we know the behaviour: the spin

quantum number is always 1/2. The eigenfunctions can be

spin up α (↑,ms = +1/2 ) or spin-down, β (↓,ms =

−1/2) i.e.,

Ŝzα = +1/2α (30)

or

Ŝzβ = −1/2β . (31)

For a two particle system the total spin quantum number

can be S = 0, 1, depending on whether the two spins are

parallel or anti-parallel and:

Ŝ2χ(s1z, s2z) = S(S + 1)h̄2χ(s1z, s2z) . (32)

(Note for spin and angular quantum numbers of multi elec-

trons systems we use capital letters, L, ML, S and MS.)

We can construct the eigenfunctions of total spin from the

α and β.

(To do so rigorously we need to cover so-called Clebsch-

Gordan coefficients and ladder operators, see the next ad-

vanced QM course. We will give the relevant functions

without proof.)
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S = 1 CASE

The z component can have three possible values: Ms = −1, 0, 1,

so S = 1 is referred to as a triplet.

Ms = +1 χT = α(1)α(2) ↑↑
Ms = 0 χT = 1√

2
[α(1)β(2) + α(2)β(1)] ↑↓ + ↓↑

Ms = −1 χT = β(1)β(2) ↓↓

All three triplet states are symmetric with respect to

exchange of the electrons.

S = 0 CASE

The z component can have one possible value: Ms = 0, so

S = 0 is referred to as a singlet.

Ms = 0 χS(0) = 1√
2
[α(1)β(2)− α(2)β(1)] ↑↓ − ↓↑

which is anti-symmetric with respect to exchange of

electrons.
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Space part

The spatial wavefunction can also be symmetric or

antisymmetric:

Φ±(1, 2) =
1√
2
[φa(1)φb(2)± φa(2)φb(1)]. (33)

Total wavefunction

When we consider the total wavefunctions of He, we must

ensure that the whole spatial-spin combination is

anti-symmetric. In order to satisfy equation 29 we have

either

φ(r1, r2) = −Φ(r2, r1) and χ(s1z, s2z) = χ(s2z, s1z)

(34)

spatial antisymmetric spin symmetric

or vice versa, symmetric spatial and antisymmetric spin.

For the TRIPLET state:

ΨT (1, 2) = φ−(1, 2)χT three possibilities

For the SINGLET state:

ΨS(1, 2) = φ+(1, 2)χS one possibility



3 MANY ELECTRON ATOMS 30

The electronic configuration is 1s2, i.e. both electrons have

the same values for quantum numbers n, l,ml. In this

case we want to have φa = φb without the wavefunction

vanishing and therefore the spatial part is symmetric and

the spin part must be anti-symmetric.

So the ground state of He is a SINGLET STATE

The excited states where both electrons are in different

states, e.g. 1s2s, can be either singlets, called para or

triplet called ortho. We can have anti-symmetric spatial

wavefunctions which will not vanish. The symmetric spin

state can be allowed because the quantum numbers n for

each electron are different.
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Multipicity

The value of 2S + 1 is termed the spin multiplicity:

For 0 we get 2S + 1 = 1 → singlet — only one value of

Ms possible (zero)

For 1/2 we get 2S + 1 = 2 → doublet — two values,

Ms = ±1/2

For 1 we get 2S + 1 = 3 → triplet — three values, Ms =

+1, 0,−1

Remember this as it will be used in the spectroscopic

term notation.
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LECTURE 9 SUMMARY

• The Helium atom wavefunction consists of a space part

and a spin part

• The total wavefunction must be antisymmetric overall

with respect to exchange

• For a non-vanishing wavefunction we then require the

space part to be symmetric and the spin part to be

antisymmetric

• The result is a singlet state
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LECTURE 10

Content

In this lecture we will examine the quantum mechanical

phenomenon of the exchange interaction, taking the

helium atom as an example of where this is important.

We will see how this arises from the symmetries of the

wavefunctions and the effect it has on the energies of the

states.

Outcomes

At the end of this lecture you will:

• know and be able to explain the causes of the exchange

interaction

• be able to apply this knowledge to the case of the

helium atom

• evaluate the effect on the singlet and triplet states of

a two electron atom

• describe how exchange causes a splitting of energy lev-

els
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3.4 EXCHANGE

The spin-dependent properties of the wavefunction give

rise to interactions for which there is no classical analogue,

called exchange.

By ‘no classical analogue’ we mean that it is a purely quan-

tum mechanical phenomenon. Concepts like these are

sometimes the hardest to grasp as they are difficult to re-

late to our everyday experience. However as an illustration

consider the following argument applied to a two electron

atom, like the helium atom discussed in previous lectures.

The total wavefunction is the product of a space part

Φ(r1, r2) and a spin part χ(s1z, s2z) which is antisym-

metric overall (remember Pauli). For a spin triplet

(i.e. χ symmetric) the space part must be antisymmet-

ric:

Φ(r1, r2) = Φ− =
1√
2

(φa(r1)φb(r2)− φb(r1)φa(r2))

(35)

which is identically zero if r1 = r2. So in the spin triplet

state the electrons tend to ‘keep away’ from each other and

the Coulomb repulsion will be smaller.

By contrast in the spin singlet (i.e. χ antisymmetric)

state the space part is symmetric and hence non-zero when

r1 = r2. From this we deduce that there will be times

when the electrons will be closer together and experience

a stronger repulsion, which means the singlet state will lie

higher in energy than the corresponding triplet state with

the same (n, l,m).
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In the spin triplet case the electrons are kept apart - spa-

tial separation as a result of spin orientation. The fur-

thest apart they can be is on the opposite side of the nu-

cleus where their screening effect for each other is minimal.

The electrons will therefore experience a bigger attractive

force from the nucleus and be more tightly bound (lower

in energy).

Remember that this is a consequence of the Pauli Exclusion

Principle, which has introduced a coupling between the

spin states and the space states (that is, one depends on

the other), which now act as if there was a force whose

sign depended on the relative orientation of their spins.

This is called the exchange force.

Looking in a little more detail at the N electron Hamilto-

nian we introduced as equation 3.1 in lecture 7, and con-

sidering the case of N = 2 electrons, the contribution to

the energy from the e−– e− repulsion is:

I = 〈 1

r12
〉 =

∫
Ψ∗(1, 2)

1

r12
Ψ(1, 2)dτdσ , (36)

where the integration is taken over both spin (σ) and spa-

tial coordinates (τ ).

Remember this is the non-central part of the Hamiltonian

that caused us so much trouble before – first we tried ne-

glecting it completely, then we tried averaging the effect

over a sphere.
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Let’s consider the two cases of spin singlets and spin triplets

separately.

Singlet case:

I =
∫ ∫

Φ∗
+χ

S∗︸ ︷︷ ︸
Ψ∗

 1

r12

Φ+χ
S︸ ︷︷ ︸

Ψ

dσdτ

=
∫ ∫ 1√

2
{φa(1)φb(2) + φa(2)φb(1)}∗

︸ ︷︷ ︸
Φ∗+

× 1√
2
{α(1)β(2)− α(2)β(1)}∗

︸ ︷︷ ︸
χS∗

× 1

r12

× 1√
2
{φa(1)φb(2) + φa(2)φb(1)}

︸ ︷︷ ︸
Φ+

× 1√
2
{α(1)β(2)− α(2)β(1)}︸ ︷︷ ︸

χS

dσdτ . (37)

Which looks horrendous. However life can be made eas-

ier by realising that since 1/r12 does not act on spin, we

can separate the integrals into a space integral that has

functions of position only and a spin integral.
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I =
1

2

∫
{φa(1)φb(2) + φa(2)φb(1)}∗

× 1

r12
{φa(1)φb(2) + φa(2)φb(1)} dτ︸ ︷︷ ︸

Space

× 1

2

∫
{α(1)β(2)− α(2)β(1)}∗

× {α(1)β(2)− α(2)β(1)} dσ︸ ︷︷ ︸
Spin

=
∫ |φa(1)|2|φb(2)|2

r12
dτ︸ ︷︷ ︸

Coulomb

+
∫ φ∗a(1)φ∗b(2)φa(2)φb(1)

r12
dτ︸ ︷︷ ︸

Exchange

= C + E (38)

Where we have made use of the fact that the spin wave-

functions are normalised so the spin integral is equal to

unity, and that in the space integral on expanding the in-

tegrand we obtain terms like |φa(1)|2|φb(2)|2+|φa(2)|2|φb(1)|2
r12

(and

similarly for the cross terms) where the two parts of the

sum differ only by the (arbitrary) label we have given the

electrons (1 or 2).

They must, therefore, integrate to the same value, i.e. have

the same energy, introducing a factor of 2 on the top of the

fraction which cancels with the factor of 2 on the bottom.



3 MANY ELECTRON ATOMS 38

C is the Coulomb integral - the repulsion between the

two charges.

E is the exchange integral - it arises from the Pauli

Exclusion Principle and has no classical analogue.

We are not going to evaluate these integrals explicitly, but

rather examine the form of the solution to see what we can

learn about the effect they have on the energy of the state.

Both C and E are repulsive for the spin singlet, and the

overall effect will be to increase the energy and make the

state less tightly bound than when the 1
r12

term is not in-

cluded.

Remember that our crude non-interacting particle estimate

for the ground state (spin singlet) energy of helium was too

negative? That estimate neglected 1
r12

term which as we

see here raises the energy.
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Triplet case:

We won’t examine all three symmetric combinations here

(I’ll leave that to you for practise to make sure you really

understand what’s going on). Just look at the α(1)α(2)

component, i.e. ↑↑.

I =
∫ 1√

2
{φa(1)φb(2)− φa(2)φb(1)}∗ {α(1)α(2)}∗

× 1

r12

× 1√
2
{φa(1)φb(2)− φa(2)φb(1)} {α(1)α(2)} dσdτ

(39)

As before, we can separate that spatial and spin parts and

use the normalisation of the wavefunction:

∫
{α(1)α(2)}∗ α(1)α(2)dσ = 1 ,

This means the integral is of the form:

I =
∫ |φa(1)|2|φb(2)|2

r12
dτ −

∫ φ∗a(1)φ∗b(2)φa(2)φb(1)

r12
dτ

= C − E (40)

The integrals C and E are exactly as defined before.
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The exchange term now acts to reduce the repulsive effect

of the Coulomb term. The exchange force is attractive

for the spin triplet and so it is more tightly bound than

the spin singlet.

Remember: The electrons are forced apart by having

parallel spins as a consequence of the Pauli Exclusion Prin-

ciple, thus exposing then to a greater attractive force from

the nucleus. It is the symmetry of the wavefunction – a

purely quantum mechanical phenomenon – that is the ori-

gin of this.

So we have different energy levels for spin singlet and spin

triplet states (see energy levels).

Helium in a spin singlet state is called parahelium.

Helium in a spin triplet state is called orthohelium.

Mnemonic: parahelium is like parallel. . . and the spins

AREN’T! (well it works for me)
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SUMMARY OF HELIUM ATOM

We have spin triplet:

χ(1, 2) =


α(1)α(2) χT (Ms = 1)
1√
2
[α(1)β(2) + α(2)β(1)] χT (Ms = 0)

β(1)β(2) χT (Ms = −1)
(41)

or spin singlet

χ(1, 2) =
1√
2

[α(1)β(2)− α(2)β(1)] χS(Ms = 0) .

(42)

Then for the triplet state:

Ŝ2χTMs
= 2h̄2χTMs

⇒ S = 1 (43)

Ŝzχ
T
Ms

= h̄Msχ
T
Ms
⇒Ms = −1, 0, 1 , (44)

and for the singlet state

Ŝ2χSMs
= 0 χSMs

⇒ S = 0 (45)

Ŝzχ
S
Ms

= 0 χSMs
⇒Ms = 0 . (46)
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So for two electrons we have four possible spin eigenstates

with

(S,Ms) = (1, 1), (1, 0), (1,−1) symmetric

or

(S,Ms) = (0, 0) anti-symmetric

The total wavefunction of He (product of space and spin)

which is anti-symmetric overall:

Ψ(1, 2) =
1√
2

[φa(1)φb(2)− φa(2)φb(1)]χTMs=0,±1

Ψ(1, 2) =
1√
2

[φa(1)φb(2) + φa(2)φb(1)]χSMs=0

Lowest state of He is 1s 1s ≡ 1s2 so φa = φb
⇒ this cannot be a triplet since then Ψ(1, 2) = 0.

Excited He, e.g., 1s 2s, can be a triplet (S = 1)

and can aslo be a singlet (S = 0).

These states however have different energies due to

the quantum mechanical exchange interaction:

E± =
N∑
i=1
Ei + (C ± E) (47)

where +E is the singlet state (parahelium) and −E is the

triplet state (orthohelium).



3 MANY ELECTRON ATOMS 43

LECTURE 10 SUMMARY

• exchange is a quantum mechanical phenomenon for

which there is no classical analogue

• it arises from the spin-dependent properties of the

wavefunction

• as a result of the Pauli Exclusion Principle space and

spin states are coupled

• the exchange interaction modifies the energies of the

states according to the symmetry of the wavefunction

• it splits the energies of the singlet and triplet states

• excited helium may exist in two states - parahelium

and orthohelium - with different energies
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LECTURE 11

Content

In this lecture we will introduce electron configurations

and term notation. We will see how the electron config-

uration of shells and sub-shells affects properties such as

the ionisation energy. The method for deducing allowed

spectroscopic terms will be examined.

Outcomes

At the end of this lecture you will:

• be able to use electron configuration and term notation

• be able to describe electronic structure in terms of the

filling of shells and sub-shells

• be able to calculate the allowed terms from a given

electronic configuration
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3.5 CONFIGURATIONS AND TERMS

3.5.1 CONFIGURATIONS

Now we consider how to we write down the configuration

of a state using the spectroscopic notation introduced in

chapter 2.

• The value of n is given as a number.

• The value of l as a letter, s, p, d . . .

• There are 2l + 1 values of ml, 2 values of ms.

• To indicate the number of electrons which occupy a

given orbital we put right-hand superscript.

• By the Pauli principle, each orbital nl can hold 2 ×
(2l + 1) electrons.

The ground state configuration of atoms is given by filling

orbitals in energy order with Z (atomic number) electrons

(for a neutral atom).

Z Symbol configuration

1 H 1s

2 He 1s2

3 Li 1s2 2s

4 Be 1s2 2s2

5 B 1s2 2s2 2p

6 C 1s2 2s2 2p2



3 MANY ELECTRON ATOMS 46

Terminology

• Electrons having the same n are said to be in the same

shell.

• Electrons having the same n and l are said to be in the

same sub-shell. We indicate the number of electrons

in the subshell as a superscript on l, i.e. p2.

• Each shell can hold 2n2 electrons = 2
∑
l<n 2l + 1.

• If a shell contains 2n2 electrons it is said to be closed

(filled,complete).

• If a shell contains< 2n2 electrons it is said to be open

(unfilled,incomplete).

• Electrons in open shells are optically active.

• The chemical properties of elements are determined

by the outer electrons, also referred to as valence

electrons.

• Electrons with the same nl are said to be equivalent.

So for l = 0 we can have 2 electrons as l=0, m=0 and

ms=±1/2.

For l = 2 we can have 10 electrons, as l=2, m=

±2,±1, 0 and ms=±1/2.
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Mendeleev in 1869 organized elements into the periodic

Table where they are grouped according to their valence

structure (see table).

ALKALI ATOMS—ONE VALENCE ELECTRON

Symbol Z configuration

H 1 1s

Li 3 1s2 2s

Na 11 1s2 2s2 2p6 3s

K 19 1s2 2s2 2p6 3s2 3p6 4s

Alkali atoms have on electron in the outer sub-shell. It is

easily lost to form a positive ion

HALOGENS—NEARLY CLOSED SHELLS

Symbol Z configuration

F 9 1s2 2s2 2p5

Cl 17 1s2 2s2 2p6 3s2 3p5

Br 35 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5

Halogens have one electron missing in outer sub-shell, so

they are very chemically reactive.

NOBLE GASES—CLOSED SHELLS

Symbol Z configuration

He 2 1s2

Ne 10 1s2 2s2 2p6

Ar 18 1s2 2s2 2p6 3s2 3p6

Kr 36 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6

Noble gases have closed shells, and so are chemically

inert.
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Ionization Energy versus Atomic Number Z

The Ionization energy is the energy required to remove one

valence electron, it is maximum for the noble gases

and minimum for the alkalis. The range is ≈ 4eV up

to 24.6 eV.

Qualitative explanation: Electrons in same sub-shell have

equivalent spatial distribution, so the screening of one an-

other is ‘small’. Zeff increases as the sub-shell fills up.

The screening will be very effective for a single electron

outside a closed sub-shells, as is the case for the alkalis.

Note to remove a second electron, after having removed

one, will require more energy than to remove the first one.

For example the second electron in He is bound by 54.4 eV

and the second one in Li is bound by 75.6 eV.
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3.5.2 TERMS

We showed previously that the configurations of He split

into singlet (S = 0) or triplet (S = 1) terms, depending on

the total spin quantum number. In general the configura-

tions are also split into terms according to the value of the

TOTAL ORBITAL ANGULAR MOMENTUM quantum

number L, with

L̂ =
∑
i
L̂i (48)

where L̂i is the orbital angular momentum of the i th elec-

tron.

If we go beyond the central field model, the Hamiltonian

no longer commutes with the individual orbital angular

momenta, [Ĥ, L̂i] 6= 0, and the li are not good quantum

numbers.

However, it can be shown that the total orbital angular

momentum quantum number, L, is a good quantum num-

ber, i.e.[Ĥ, L̂
2
] = 0 and similarly for the total spin angular

momentum quantum number, S.

The electronic states are simultaneous eigenfunctions of

Ĥ, L̂
2
, Ŝ

2
.



3 MANY ELECTRON ATOMS 50

For a given configuration, the possible values of L and S

are determined by adding the individual angular momenta

of each electron, rejecting values of L and S which corre-

sponding to states forbidden by Pauli Exclusion Principle

(PEP).

The terms are given as 2S+1L.

For L = 0, 1, 2, 3, . . . we use the notation S, P, D, F,. . . to

classify the quantum levels rather than nl orbitals which

arise from the central field approximation.

An important simplification results from the fact that for

a closed shell,

Ŝ =
∑
i
Ŝi = 0 ; L̂ =

∑
i
L̂i = 0 , (49)

where these sums are over the electrons in the closed shells

ONLY.

So when we work out S or L we need only consider elec-

trons outside closed shells, i.e., the valence or optically

active electrons.

Example: An Fe+ ion has term 6D. What are L and

S ?

Solution: 2S + 1 = 6, so S = 5/2. D ⇒ L = 2.
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Now consider how to find the terms for a two electron

atom.

First we consider non-equivalent electrons, e.g. (nl

and n′l) or (nl and nl′), etc. Note that the PEP is auto-

matically satisfied.

Consider two electrons with L̂1, Ŝ1 and L̂2, Ŝ2 such that

L̂
2

1Ψ1 = l1(l1 + 1)h̄2Ψ1 and Ŝ
2

1Ψ1 = s1(s1 + 1)h̄2Ψ1

L̂
2

2Ψ2 = l2(l2 + 1)h̄2Ψ2 and Ŝ
2

2Ψ2 = s2(s2 + 1)h̄2Ψ2

(50)

The total orbital angular momentum is

L̂ =
∑
i=1,2

L̂i, (51)

and the total orbital angular momentum quantum number

can take the values

L = |∑
i
li|min → |∑

i
li|max (in steps of 1)

= |l1 − l2|, . . . , l1 + l2 − 1, l1 + l2. (52)

such that L̂
2
ΨT = L(L + 1)h̄2ΨT

The total spin angular momentum is

Ŝ =
∑
i=1,2

Ŝi (53)

and the total spin angular momentum quantum number

can take the values

S = |∑
i
si|min → |∑

i
si|max (in steps of 1)

= |s1 − s2|, . . . , s1 + s2 − 1, s1 + s2. (54)

such that Ŝ
2
ΨT = S(S + 1)h̄2ΨT .
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EXAMPLE: 2p3p

PEP is automatically obeyed because n and n′ are differ-

ent.

l1 = l2 =1 → |l1 − l2|, |l1 − l2|+ 1, . . . , l1 + l2 − 1, l1 + l2
gives L = 0, 1, 2, so we have S, P and D.

Also s1 = s2 =1/2 → = 0,1 → 2S + 1 = 1,3

PEP does not exclude any, so the possible terms are 1S, 1P, 1D

and 3S, 3P, 3D.

Now we consider equivalent electrons

Some electrons have the same nl values, therefore by the

PEP we must ensure that they have different ml or ms

values.

(A) Consider the ns2 cases.

These have the same n, l and ml, therefore they must have

opposite spin (ms = ±1/2) and S = 0. So the only

possible term is 1S

(B) Consider a np2 case, e.g., 2p2

We have l1 = l2 = 1. and s1 = s2 = 1/2 and for each e−

we have ml = 0,±1 and ms = ±1/2.

Make all the possible combinations of these quantum num-

bers in a table:
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ml1 ms1
ml2 ms2

Pauli? label?

1 + 1 + X
1 + 1 − ♣
1 + 0 +
1 + 0 −
1 + -1 +
1 + -1 −
1 − 1 + X ♣
1 − 1 − X
1 − 0 + ♠
1 − 0 −
1 − -1 +
1 − -1 −
0 + 1 + X
0 + 1 − X ♠
0 + 0 + X
0 + 0 −
0 + -1 +
0 + -1 −
0 − 1 + X
0 − 1 − X
0 − 0 + X
0 − 0 − X
0 − -1 +
0 − -1 −
-1 + 1 + X
-1 + 1 − X
-1 + 0 + X
-1 + 0 − X
-1 + -1 + X
-1 + -1 −
-1 − 1 + X
-1 − 1 − X
-1 − 0 + X
-1 − 0 − X
-1 − -1 + X
-1 − -1 − X
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i) States for which ml1 = ml2 and ms1 = ms2 are excluded

by the PEP. We cross them off the list.

ii) Pairs of values (ml1,ms1) and (ml2,ms2) which differ

only by the e− label (1,2) only give one state, like the states

denoted with♣ and♠ in the table, so we cross one of them

off the list.

As shown in the next table there are only 15 possible

states left. The important point here is how to order

them so as to find the terms.

• Find the largest value of ML, 2 in this this example,

and regroup all the states which can be associated with

it. How?

• We know that if we have ML=2, this corresponds to

L=2 and therefore ML = −2,−1, 0, 1 and 2.

• We notice that for ML=2 we have MS = 0.

• So we regroup all the states which must belong to-

gether and have ML = −2,−1, 0, 1, 2 and MS = 0.

• Next, we do the same with the states that are left but

now the largest ML = 1 and so we regroup ML =

−1,0,1. However, we note that in this case we have 3

groups of ML = −1,0,1 each with MS equal to either

−1, 0 or 1.

• Putting all these together, we are left with one term

with ML= 0 and MS = 0.
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ml1 ms1 ml2 ms2 ML = ml1 +ml2 MS = ms1 +ms2

1 +1/2 1 −1/2 2 0

1 −1/2 0 +1/2 1 0

0 +1/2 0 −1/2 0 0

0 −1/2 −1 +1/2 −1 0

−1 +1/2 −1 −1/2 −2 0

1 +1/2 0 +1/2 1 1

1 +1/2 −1 +1/2 0 1

0 +1/2 −1 +1/2 −1 1

1 +1/2 0 −1/2 1 0

1 −1/2 −1 +1/2 0 0

0 +1/2 −1 −1/2 −1 0

1 −1/2 0 −1/2 1 −1

1 −1/2 −1 −1/2 0 −1

0 −1/2 −1 −1/2 −1 −1

1 +1/2 −1 −1/2 0 0

There is a term with L = 2,ML = −2,−1, 0, 1, 2 and

S = 0,MS = 0.

The term is 1D.

There is a term with L = 1 and S = 1, ML = −1, 0,+1

for each of MS = −1, 0,+1

The term is 3P

There is a term with ML = 0 = MS ⇒ L = 0, S = 0

The term is 1S

And we have for 2p2: 1S, 3P, 1D
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Alternative Method (for equivalent electrons)

Less tedious, but requiring a little more insight.

Use the symmetry of the wavefunction to solve the prob-

lem. Remember Ψ = Φχ (space × spin) and is overall

antisymmetric.

The symmetry of the spin part, χ, is given by the sym-

metric or antisymmetric combinations of the eigenstates α

and β, leading to spin triplets.

The symmetry of the space part is determined by the sym-

metry of the spherical harmonics, Ylm, that are the

solutions to the angular part of the Schrödinger equation

for a central potential.

Fortunately this is straightforward, as upon exchange of

two electrons:

Ylm(1, 2) → (−1)lYlm(2, 1) (55)

The parity of Ylm = (−1)l. The same is true for the

total angular momentum, L. Parity is the inversion of the

position vector r through the origin, such that r → −r.
This requires that θ → π−θ and φ→ π+φ. (An exchange

of labels of the electrons is equivalent to this inversion is we

take place electron at the origin and measure the position

of the other relative to this.)
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So for our previous example of equivalent electrons 2p2

where we can have L = 2, 1, 0 (D,P, S), the spatial wave-

funcions will be symmetric, antisymmetric, symmetric in

that order.

The spin wavefunctions must therefore be antisymmet-

ric (singlet), symmetric (triplet) antismmetric (singlet) re-

spectively.

So the allowed terms are 1D,3 P and 1S. Just as we found

before.

EXAMPLE 2

(1997 exam) An excited Be atom has configuration 1s2 2p1

3p1. Obtain the L, S quantum numbers for the allowed

terms arising from this configuration and designate them

using spectroscopic notation.
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LECTURE 11 SUMMARY

• electronic structure can be described in terms of filled

and unfilled shells and subshells

• the filling of the shells determines physical properties

• spectroscopic terms give the allowed angular momen-

tum states of an electron configuration
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LECTURE 12

Content

In this lecture we will finish our discussion of spectroscopic

terms by introducing Hund’s Rules for the ordering (in

energy) of terms. We will then commence a study of the

magnetic moment of an electron arising from orbital

and intrinsic angular momentum that will be needed when

we discuss the spin-orbit interaction in later lectures

which separates (splits) the terms into energy levels.

Outcomes

At the end of this lecture you will:

• know and be able to apply Hund’s Rules to order terms

• be able to explain the origin of the magnetic moment

of an orbiting electron in terms of angular momenta

• be able to describe the interaction between a magnetic

field and the magnetic moment using the vector model
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3.5.3 HUND’S RULES FOR ORDERING TERMS

We saw that for helium the triplet lies below the singlet in

energy because of the exchange interaction. Hund’s rules,

which were established empirically and apply rigorously

only to the ground state configuration, provide guidelines

for ordering terms.

HUND’S RULES

For a given electron configuration:

1. The term with the largest value of S has the low-

est energy. The energy of other terms increases

with decreasing S.

2. For a given value of S, the term having the max-

imum value of L has the lowest energy.

For example, in the case of the 2 non-equivalent electrons

considered previously we have the following ordering:

E(3D) < E(3P) < E(3S) < E(1D) < E(1P) < E(1S) .

N.B. Hund’s Rules implicitly assume L-S coupling which

we will deal with next, and find a third rule for the ordering

with J = L + S.
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Justification (sort of):

1. The spin-spin interaction. States with symmetric spins

(triplets) that have larger S are forced to be spatially

separated hence feeling a greater attraction from the

nucleus.

2. The orbit-orbit interaction. If L is large this implies

the individual angular momentum vectors li are par-

allel, and the electrons are orbiting in the same di-

rection. They will therefore encounter each other less

frequently than if they were orbiting in opposite direc-

tions - they could conceivably always be on opposite

sides of the nucleus in some cases - and so on average

experience less of a shielding effect.
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3.6 THE SPIN-ORBIT INTERACTION

3.6.1 LEVELS SPLITTING

We have seen that configurations split into terms. In turn

terms split into energy levels. Why?

Because of spin-orbit interaction.

The atomic Hamiltonian may be written:

ĤT = Ĥ + ĤLS (56)

where

Ĥ =
∑
i
(−1

2
∇2
i −

Z

ri
) +

∑
i,j
i>j

1

rij
(57)

is the multi-electron Hamiltonian we have used earlier.

We shall show below that

ĤLS = A(L, S)L̂ · Ŝ (58)

is the Spin-Orbit term. A(L, S) is a constant, containing

the 〈1/r3〉 expectation value. It represents a small ener-

getic perturbation relative to Ĥ .

Advance Warning! Remember our previous discus-

sions about making changes to the form of the potential

lifting degeneracies? Going from a Coulomb to a non-

Coulomb but still central potential lifted the degeneracy

with respect to l. Again we have added a small term to

the Hamiltonian which we can expect to lift a degeneracy

and split terms into energy levels.
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The spin-orbit term appears most naturally from the rel-

ativistic version of the Schrödinger equation, the Dirac

equation. We will use a simple classical model, along the

lines of the Bohr picture of electrons in circular orbits, to

gain a physical insight.

A current loop/rotating charge yields a magnetic mo-

ment. An electron moving in a circular Bohr orbit (of

radius r around a fixed nucleus), so having orbital angu-

lar momentum, acts like a current loop and so is associated

with a magnetic moment. And although the electron spin-

ning is a more abstract quantum relativistic property—

rather than a little sphere spinning on its axis it has in-

trinsic angular momentum—it can still be associated with

a magnetic moment.

Remember: angular momentum ⇒ magnetic moment.

In order to describe this interaction using a semi-classical

approach we use the so-called ‘vector-model’ description of

the atom, i.e. we use L and S as vectors. But remember

that in quantum mechanics they are operators and that the

vector approach is just there to help us visualize things.
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3.6.2 MAGNETIC MOMENTS

So we first make a small diversion into electromagnetism

(Thank you Dr Renzoni)!

The magnetic moment µX and the angular momentum,

X , (where I am using X to represent either orbital, L, or

intrinsic, S, angular momentum) of an arbitrary rotating

body with massM , and charge Q, always satisfy a relation

of the form:

µ
X

= gX

Q

2M
X , (59)

where gX is the so-called Landé g-factor and depends

on the details of the rotating charge distribution.

Now classically if a magnetic moment µX is placed in a

uniform B-field, a torque τ arises:

τ =
dX

dt
= µX ×B = g

X

Q

2M
X ×B (60)

using eq. 59 and remember X is a general angular mo-

mentum vector.

So τ is perpendicular to X and B and results in a preces-

sion of X around B.
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We define the Larmor precession frequency

ω = g
X

Q

2M
B (61)

and write the torque as

τ = −ω ×X (62)

Also, the system with a magnetic moment µX placed in

a magnetic field, B, has an interaction potential en-

ergy

V = −µX ·B (63)

Example: Let’s see the case of an electron in a circular

Bohr orbit. The electron circling in a loop gives rise to a

current of magnitude

i = eν .

From elementary electromagnetism theory, we know that

such a current loop produces a magnetic field equivalent

to that produced by a magnetic dipole.
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For a current, i, in a loop of area πr2, the magnetic moment

is

µL = (current× area) = iπr2 = eνπr2 . (64)

Now the orbital angular momentum of the electron is:

L = mvr = mωr2 = m2πνr2 . (65)

From Eqs (64) and (65), we see that the ratio,

µL
L

=

 eνπr2

m2πνr2

 =
e

2m
, (66)

depends only on fundamental constants. For a current

loop produced by a negative charge, µL is opposite to L,

i.e.,

µL = − e

2m
L . (67)

From Eqs (67) and (59) we identify the orbital g-factor:

gL = 1 . (68)

Expressing L in units of h̄, we obtain,

µL = −gLµB
L

h̄
(with gL = 1) , (69)

where µB is the Bohr magneton:

µB =
eh̄

2m
=


1/2 atomic units

9.274× 10−24 Am2

5.788× 10−9 eV/Gauss

.

N.B. 1Am2 = 1JT−1, so also µB = 9.274× 10−24JT−1.
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Now for the spin: analogous to Eq. (59), we can introduce

a spin magnetic moment associated with the intrinsic

angular momentum of the electron:

µS = −gSµB
S

h̄
, (70)

where gS is the spin g-factor and, from Dirac’s relativis-

tic quantum theory (where spin properly belongs) of the

electron interacting with a magnetic field, we have gS = 2

in good agreement with experiment (to 1 part in 104—

one of the achievements of QED was to derive the small

correction giving the accurate value of gS = 2.002319).

Together with spin and antiparticles, this is another key

result of Dirac’s theory as it confirms the electron as a

structureless (or fundamental) particle.

Contrast this result with another spin-1
2 Fermion, the pro-

ton, which, according to Dirac’s theory, should have gS = 2

if structureless, instead is found to have

µP = 2.79
e

2MP
S .

Even more drastic is the result for the magnetic moment

of the neutron (if structureless then µN = 0 since Q = 0);

instead we find

µN = −1.91
e

2MN
S .

These results show that the proton and neutron are, in fact,

composites and NOT fundamental particles. You will learn

more about this in the Nuclear and Particle Physics course

(3rd year with Dr Saakyan).
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LECTURE 12 SUMMARY

• Hund’s Rules provide guidelines for the ordering (in

energy) of terms.

• Terms are split into levels by the spin-orbit interaction

• A magnetic moment µX is associated with an angular

momentum X

• Both spin and orbital angular momenta ive rise to

magnetic moments
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LECTURE 13

Content

in this lecture we will examine the effect on the energy of

the system of the interaction between the spin magnetic

moment of the electron and the internal magnetic field of

the atom - the spin-orbit interaction. we will intro-

duce the total angular momentum J , and see that the

terms are split into energy levels according to their value

of J . A third Hund’s Rule will be required for the ordering

of energy levels.

Outcomes

At the end of this lecture you will:

• be able to derive the form of the spin-orbit interaction

• know that the coupling of S and L requires the total

angular momentum J = S + L to be introduced.

• be able to identify the LS-coupling and jj-coupling lim-

its for the spin-orbit interaction in a multi-electron

atom

• know and be able to apply the third Hund’s Rule for

ordering of energy levels with respect to J

• know and be able to use the Landé interval rule

• be able to identify the parity of an energy level from

the angular momentum
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THE SPIN-ORBIT TERM

We now want to find the effect on the energy of the sys-

tem that the spin magnetic moment will have. Consider

an electron (charge -e) moving in a Bohr orbit around a

nucleus with (charge +Ze). Let the velocity of the electron

be v and its position w.r.t. the nucleus be r.

In the electron reference frame, the nucleus is moving

around with a velocity −v, constituting a current in the

electron’s frame:

i = −Zev
2πr

(71)

which will produce a magnetic field at the instantaneous

location of the electron.

We can estimate the resulting magnetic field from the

Biot-Savart Law:

dB =
µ0i

4πr3
(dl × r) → B =

µ0

2r2
(i× r) (72)

So the internal magnetic field Bint arising from the appar-

ent motion of the nuclear charge is:

Bint =
µ0

4π

Ze(−v)× r

r3
(73)
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If we express the electric (Coulomb) field of the nucleus as

E =
1

4πε0

Zer

r3
(74)

and using µ0ε0 =
1

c2
we get

Bint =
−v × E

c2
(75)

Note that this result is of general validity: any charged

particle moving with a velocity v through an arbitrary E

will experience a motional magnetic field. (Apply Lorentz

transformation to Maxwell’s eqs.)

Now we can also write Bint in terms of the angular mo-

mentum, using L = mr×v and substituting into equation

73 we get

Bint =
µoZe

4π

r × v

r3
=

Ze

4πε0

L

mr3c2
(76)

Note: The change of sign comes from the change of order

of the corss product, and we have used µ0ε0 =
1

c2
. This

relates Bint to L.

An alternative way of expressing Bint includes the electro-

static potential energy of the electron, V = −Ze2
4πε0r

:

Bint =
1

emc2
1

r

dV

dr
L (77)
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So in the case of the electron which has spin angular mo-

mentum and hence a magnetic moment interacting with

the magnetic field due to its orbital motion we have the

spin-orbit interaction, the energy of which is:

VLS = −µS ·Bint =
(
gs
µB
h̄
S
)
.

 Ze
4πε0

L

mr3c2



=
Ze2

4πε0

 L.S

m2r3c2


=

1

m2c2
1

r

dV

dr
L · S (78)

using the definition of the Bohr magneton, µB = eh̄
2m.

Note: This calculation is not quite complete because it

has been done in the rest frame of the moving electron,

not the nucleus. There is a relativistic (“Thomas”) pre-

cession of axes of the frame in which the electron in in-

stantaneously at rest relative to the nuclear set. A full

treatment of this effect is beyond the scope of this course,

but may be found in Appendix J of Eisberg & Resnick.

Suffice to say that it introduces a factor of one half into

the expression above such that the final form of the

spin-orbit interaction is

VLS =
Ze2

4πε0

 L.S

2m2r3c2

 =
1

2

1

m2c2r

dV

dr
L · S (79)
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This interaction energy can be written in terms of the

dimensionless quantity called the fine structure con-

stant that we have encountered in earlier lectures:

α =
e2

4πε0h̄c
=

1

137.0
(80)

which if we include in the above gives:

VLS = Zα
h̄

2m2c

L̂.Ŝ

r3

 (81)

Note that the energy depends on the scalar product of Ŝ

and L̂ and therefore on their relative orientation.

How big is this effect? To estimate we can say that r ' a0

and 〈L · S〉 ' h̄2, which for Z = 1 gives:

VLS ' 1

2

e2

4πε0

1

a0

h̄2

m2c2a2
0

'
 e2

4πε0h̄


2

︸ ︷︷ ︸
α2

m

2h̄2

 e2

4πε0


2

︸ ︷︷ ︸
R∞

' α2R∞ (82)

Remember that α ' 1
137, so this effect is small – hence fine

structure! – but it is measurable!!

We have reintroduced the operator notation in the above

and can now see that the two vector-operators are coupled

together, i.e. we have spin-orbit coupling.

As such they no longer have fixed z components and we

cannot usems andml as good quantum numbers, however,

the total angular momentum Ĵ = L̂+Ŝ, does have a fixed

z component.
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3.6.3 LANDÉ INTERVAL RULE

Rather than being eigenstates of L2, Lz, S
2, Sz like the

terms and configurations, the effect of the spin-orbit term

is to split the energies into levels which are eigenstates of

J2, Jz, L
2 and S2.

For the one-electron case

∆ELS =
∫

Ψn,l,j,mj
VLSΨn,l,j,mj

dτ . (83)

where VLS ∝ L̂ · Ŝ. Now using

Ĵ
2

= (L̂ + Ŝ)2 = L̂
2
+ Ŝ

2
+ 2L̂ · Ŝ (84)

and therefore operating with 1
2

[
Ĵ

2 − L̂
2 − Ŝ

2
]

instead of

L̂ · Ŝ and integrating eq. 83 we get

∆ELS =
1

2
A(l, s) [j(j + 1)− l(l + 1)− s(s + 1)] (85)

and A(l, s) is a constant containing 〈1/r3〉 and is ∝ Z4

(factor of Z from the Coulomb potential V , and Z3 from

〈1/r3〉).

For the multi-electron case a similar derivation gives

∆ELS =
1

2
A(L, S) [J(J + 1)− L(L + 1)− S(S + 1)]

(86)

If we now consider the difference between the spin-orbit

energy between two adjacent levels we obtain

∆ELS(J)−∆ELS(J − 1) = A(L, S)J (87)

THE LANDÉ INTERVAL RULE

The separation between adjacent energy levels is pro-

portional to the larger of the two J values.
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3.6.4 TOTAL ANGULAR MOMENTUM Ĵ

A) The one-electron case

Ĵ = L̂ + Ŝ (88)

AND z-component:

Ĵz = L̂z + Ŝz . (89)

The eigenvalue equations (just like previously for angular

momentum) are now

Ĵ
2
Ψ = j(j + 1)h̄2Ψ and ĴzΨ = mjh̄Ψ (90)

j = |l − s|, . . . , |l + s| in step of one, is called the total

angular momentum quantum number.

mj =−j, . . . , j in step of one, is called the total angular

momentum magnetic quantum number.

The good quantum numbers for a one-electron atom are

therefore n, l, j and mj, i.e. Ψn,l,ml,ms → Ψn,l,j,mj

Notation: We know that the spin-orbit interaction will

change the energy depending on Ŝ and L̂, so we have dif-

ferent levels for different Ĵ

We now label each energy level with spectroscopic no-

tation n2s+1lj.

Note similarity with term notation and that as s = 1/2

we have 2s+1=2. (However, some books, e.g. Brehm and

Mullin, use n2s+1Lj,where L stands for l written as capital

letter, not the total orbital angular momentum.)
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Example 1:How many lines should we expect for the

3p→ 3s transition of Na ?

We can now see that the 3p state will be split depending

on the relative orientations of l and s. The total angular

momentum j can have values in this case l + s = 3/2 and

l − s = 1/2, so the allowed energy levels are 2p3/2 and
2p1/2.

The 3s state will not be split as there is only one possible

value for j = 1/2, and the energy level is denoted 2s1/2.

We therefore expect there to be two lines for this transition,

but as the difference in energy arises from the spin-orbit

interaction we expect the difference in wavelength to be

small. This is indeed the case – this is the famous sodium

Fraunhofer D-line doublet.

Example 2: How many lines would the 3d→3p transition

give ?

The 3d state is also split into two by the spin-orbit inter-

action, in this case the energy levels are 2d5/2 and 2d3/2.

We might expect that there would be four lines as there

are two upper states and two lower states. In fact there is

a selection rule governing the transition:

∆j = 0,±1 (91)

with the exception that j = 0 to j′ = 0 is forbidden.

This rules out one of the possible transitions, meaning that

the ‘diffuse’ series 2d5/2,3/2 →2 p3/2,1/2 is actually a triplet

(don’t confuse this with the spin triplet discussed earlier,

here we mean three very closely spaced spectral lines).



3 MANY ELECTRON ATOMS 77

B) The multi-electron case

In these cases the problem is more complex.

We have the eigenvalue eqs.

Ĵ
2
Ψ = J(J + 1)h̄2Ψ and ĴzΨ = MJh̄Ψ (92)

but J can now be obtained in two different manners

depending on the ‘strength’ of the spin-orbit interaction.

(i) The LS or Russell-Saunders coupling

Used for low-Z atoms for which the spin-orbit interaction

is much less than the interaction between electrons.

• Combine all individual spins,
∑
i
Ŝi = Ŝ, to give total

spin quantum number S.

•Combine all individual orbital angular momenta,
∑
i
L̂i = L̂,

to give total orbital angular momentum quantum number

L.

• Then combine the quantum numbers L and S to give J

as

J = |L− S|, |L− S + 1|, . . . , |L+ S − 1|, |L+ S|. (93)
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A third Hund’s rule exist regarding the J -values:

3(a) Normal case - outershell is less than half-full. The

lowest energy in the lowest energy term corresponds to the

smallest J-value

3(b)Inverted case - outershell is more than half-full. The

lowest energy in the lowest energy term corresponds to the

largest J-value

3(c) When the subshell is half full there is no multiplet

splitting.

The degeneracy with respect to j is lifted by the spin-orbit

coupling, but the degeneracy with respect to mj remains,

although it can be lifted by, for example, an external mag-

netic field (as we shall see later).
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(ii) jj-coupling

In high-Z atoms, the spin-orbit coupling between Ŝi and L̂i
for each individual electron is strong and combines them to

give each electron an individual Ĵ i with quantum number

ji. These are then combined together to give a total Ĵ ,

Ĵ =
∑
i
Ĵ i. (94)

The total angular quantum number is then

J = |∑
i
ji|min → |∑

i
ji|max in steps of one (95)

where

ji = li + si. (96)

Neither LS or jj coupling describe perfectly the total angu-

lar momentum especially for medium Z atoms (see figure).
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3.6.5 PARITY

Parity describes the behaviour of ψ under reflection at the

origin (nucleus), i.e., r → −r.

Ψ(r1, r2, . . . , rN) = ±Ψ(−r1,−r2, . . . ,−rN) . (97)

Whether the wavefunction is even or odd depends on l.

For a one electron atom, the parity is (−1)l, i.e., the parity

of a spherical harmonic.

For N electrons it is:

(−1)l1(−1)l2(−1)l3...(−1)lN = (−1)
∑
li . (98)

EXAMPLE 1

For Lithium in a 1s 2p 3p configuration, what is the parity?

What about 1s 2p 3d ?

EXAMPLE 2

For Na in a 1s2 2s2 2p6 3s configuration what is the parity?

If a term is ODD, we write e.g., 2P(o).

If a term is EVEN, we omit superscript, e.g., 2D.
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LECTURE 13 SUMMARY

• the spin-orbit interaction arises from the interaction

between the electron spin magnetic moment and the

magnetic field due to the apparent motion of the nu-

clear charge

• the interaction energy depends on the relative orien-

tation of L and S

• the spin-orbit interaction splits terms into energy levels

according to their total angular momentum

• in multi-electron atoms the two extreme regimes are

LS-coupling and jj-coupling, depending on the size of

the interaction

• the energy levels can be ordered using a third Hund’s

Rule

• the separation of the energy levels can be found from

the Landé interval rule

• the parity of an N electron wavefunction is (−1)
∑
li


