

M.Sc. EXAMINATION

ASTM001

Solar System

Duration 3h

Thursday, 31 May 2007 18:15 - 21:15

This paper has two Sections, Section A and Section B: you should attempt both Sections. Please read carefully the instructions given at the beginning of each section.

Calculators are NOT permitted in this examination.

Some useful numbers, definitions and identities:

- $G \approx 7 \times 10^{-11} \text{ m}^3 \text{ Kg}^{-1} \text{ s}^{-2}$
- $M_{\rm Earth} \approx 6 \times 10^{24} \ {\rm Kg}$
- $R_{\rm Earth} \approx 6 \times 10^6 \ {\rm m}$
- $M_{\rm Sun} \approx 2 \times 10^{30} \ {\rm Kg}$
- $R_{\rm Sun} \approx 7 \times 10^8 \ {\rm m}$
- MKS Meters-Kilogrammes-Seconds
- $A \times (B \times C) = B(A \cdot C) C(A \cdot B)$

SECTION A

Each question carries 5 marks (2.5 marks for each sub-part). You should attempt \underline{ALL} five questions.

- 1. Describe briefly (one or two sentences) what is meant by each of the following terms:
 - (a) Pericentre
 - (b) Mean anomaly
- 2. Give short (one or two sentences) answers to the following:
 - (a) What does the Titius-Bode "Law" claim to explain? Give its quantitative relation (i.e., what is its "formula")?
 - (b) Describe just one of its failures or non-physical features.
- 3. Describe briefly (one or two sentences) what is meant by each of the following terms:
 - (a) Secular term in a perturbation solution
 - (b) Tidal Love number
- 4. Describe briefly (one or two sentences) what is meant by each of the following terms:
 - (a) Geostrophic balance
 - (b) Cyclone
- 5. Describe briefly (one or two sentences) what is meant by each of the following terms:
 - (a) Oligarchic growth
 - (b) Olivine

SECTION B

Each question carries 25 marks. There are 4 questions.

You may attempt all questions, but only marks for the best 3 questions will be counted.

- Many instructive estimates can be made by assuming constant density and spherical symmetry for a Solar System body.
 - (a) [6 marks] Derive the expression for the pressure at the centre, p(0), of a uniform density spherical body of mass M and radius R that is in hydrostatic balance namely,

$$p(0) = \frac{3GM^2}{8\pi R^4}.$$

- (b) [4 marks] Using the expression in part (a), calculate p(0) for the Earth. The actual estimated value, which does not assume a constant density, is $p_{\oplus}(0) = 3.6 \times 10^{12}$ Pa. Compare the two central pressures, p(0) and $p_{\oplus}(0)$, and briefly comment on the implication of your calculation.
- (c) [9 marks] Still assuming constant density, show that the gravitational potential U of a spherical body is given by

$$U = -\frac{3GM^2}{5R}.$$

According to the virial theorem, a maximum of -U/2 can be radiated by the body over time. Given that the Sun's luminosity is $L_{\rm Sun}\approx 4\times 10^{26}~{\rm J~s^{-1}}$, what is the cooling time implied by U and the constant density assumption? Comment on the your answer; does the answer suggest a source of internal heat other than a pure gravitational contraction, or collapse?

(d) [3 marks] Rotation induces deviations from spherical symmetry. The deformation caused by rotation is characterised by Helmert's parameter μ_c , given by

$$\mu_c = \frac{R^3 \Omega^2}{GM},$$

where Ω is the rotation rate of the body. Interpret this parameter physically; what force balance is being characterised?

(e) [3 marks] Given an equatorial radius R_e and a polar radius R_p , the oblateness ϵ can be defined:

$$\epsilon = \frac{R_e - R_p}{R}.$$

The oblateness is also approximately equal to the Helmert's parameter – i.e., $\epsilon \approx \mu_c$. In the absence of any external torques, show by obtaining a relationship between ϵ and Ω that collapse (or compression) of a body enhances its oblateness.

- 2. Besides the conserved vector, angular momentum L, the Kepler two-body problem possesses another conserved vector, known as the Laplace-Runge-Lenz vector A.
 - (a) [4 marks] For a general central force f(r), where r is the distance between the two bodies and f < 0, write down the equation of motion, relating the time derivative of momentum $\dot{\mathbf{p}}$ ($\equiv d\mathbf{p}/dt$) to f(r), and \mathbf{r}/r ($\equiv \mathbf{\hat{r}}$).
 - (b) [4 marks] By taking the cross product of p with L, show that

$$\dot{\mathbf{p}} \times \mathbf{L} = \frac{mf(r)}{r} \left[\mathbf{r}(\mathbf{r} \cdot \dot{\mathbf{r}}) - r^2 \dot{\mathbf{r}} \right].$$

Then, show that

$$\frac{d}{dt}(\mathbf{p} \times \mathbf{L}) = -mf(r) r^2 \frac{d}{dt} \left(\frac{\mathbf{r}}{r}\right).$$

(c) [4 marks] Assuming $f(r) = -k/r^2$, with k a positive constant, show that a conserved vector A exists, where

$$\mathbf{A} = \mathbf{p} \times \mathbf{L} - mk\hat{\mathbf{r}}.$$

Then, describe the special direction to which A points. Describe the special plane in which A lies (fixed).

(d) [6 marks] Given that $\theta = \theta(t)$ is the angle between A and r, show that

$$A r \cos \theta = l^2 - mkr$$

where A = |A| and $l^2 = L \cdot L$. Hence, derive the orbit equation for the Kepler problem:

$$\frac{1}{r} = \frac{mk}{l^2} \left(1 + \frac{A}{mk} \cos \theta \right).$$

By comparing with the orbit equation obtained by solving the harmonic oscillator equation, evaluate A as a function of the orbital eccentricity e.

(e) [7 marks] Given that the eccentricity e is related to the total energy E by

$$e = \sqrt{1 + \frac{2El^2}{mk^2}},$$

obtain a relationship between A and l. We have identified three quantities $\{L, A, E\}$ as constants of the problem. According to this, how many conserved quantities are there in the problem? State how many of these are independent. Explain why.

3. The shallow-water equations (SWE) for a thin layer of rotating fluid under gravity are

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -g \nabla h - \mathbf{f} \times \mathbf{v}$$
$$\frac{\partial h}{\partial t} + \mathbf{v} \cdot \nabla h = -h \nabla \cdot \mathbf{v},$$

where $\mathbf{v}=(u,v)$ is the height-independent velocity in the thin layer [i.e., u=u(x,y,t) and v=v(x,y,t)], h=h(x,y,t) is the variable thickness of the layer with a constant average H, ∇ is the horizontal gradient, $\mathbf{f}=f\hat{\mathbf{e}}_z$ is the Coriolis parameter vector in the vertical direction with f a constant, and g is the gravity.

- (a) [4 marks] The SWE admit gravity waves that propagate with phase speeds, $c_g = \sqrt{gH}$, when f = 0. Assuming that the average thickness of the atmosphere on the Earth ($\approx 10 \text{ Km}$) can be represented as H, estimate c_g . Compare this speed with typical sound and planetary (Rossby or "weather") wave speeds on the Earth.
- (b) [4 marks] Consider atmospheric flow structures with characteristic size and speed of L and U, respectively. These characteristic scales lead to the nondimensional numbers, $F_{\rm r} = U/\sqrt{gH}$ and $R_{\rm o} = U/fL$. Physically interpret $F_{\rm r}$ and $R_{\rm o}$. Given $f \approx 10^{-4} \ {\rm s}^{-1}$ for the Earth, evaluate $F_{\rm r}$ and $R_{\rm o}$ for the weather scales on the Earth.
- (c) [6 marks] The characteristic scales in part (b) give an associated timescale, T = L/U. By rescaling the velocity equation of the SWE, show that F_r and R_o are the natural parameters of the dynamics. In the case when F_r and R_o are both $\ll 1$, briefly comment on the physical situation suggested by the rescaled equation. In this situation, how must F_r and R_o be related in order for the equation to be "balanced"?
- (d) [6 marks] For small amplitude disturbances, the SWE become

$$\frac{\partial \mathbf{v}}{\partial t} = -g\nabla h - \mathbf{f} \times \mathbf{v}$$
$$\frac{\partial h}{\partial t} = -H\nabla \cdot \mathbf{v}.$$

Show that these equations in turn lead to the *Klein-Gordon equation* (KGE), which governs the linear adjustment of the atmosphere after perturbations, such as volcanic eruptions and asteroid impacts:

$$\frac{\partial^2 h}{\partial t^2} - c_g^2 \nabla^2 h = -f^2 h.$$

Assume that the quantity, $\zeta - fh/H$, is zero initially with $\zeta = \hat{\mathbf{e}}_z \cdot \nabla \times \mathbf{v}$.

(e) [5 marks] From the KGE, obtain the following dispersion relation for Poincare (or inertia-gravity) waves:

$$\omega = \pm \sqrt{c_g^2 K^2 + f^2},$$

where $K^2 = k^2 + l^2$ with k and l the wavenumbers in $\hat{\mathbf{e}}_x$ and $\hat{\mathbf{e}}_y$ directions, respectively; ω is the wave frequency, giving the phase of the wave as $\{kx + ly - \omega t\}$.

4. A small displacement, s = s(r, t), in a solid body is governed by the equation,

$$\frac{\partial^2 \mathbf{s}}{\partial t^2} = \frac{1}{\rho} (\lambda + \mu) \nabla \theta + \frac{\mu}{\rho} \nabla^2 \mathbf{s},$$

where r is the position of a body element, t is time, ρ is the density, λ and μ are constants related to the bulk modulus, and $\theta \equiv \nabla \cdot \mathbf{s}$ is a measure of the dilatation of the body element. Using the more convenient notation, $\partial_i \equiv \partial/\partial x_i = \nabla$ and $s_i \equiv \mathbf{s}$, we have $\theta = \partial_i s_i$. (Note that here, and throughout this question, the summation convention is used.)

(a) [4 marks] The quantity θ is related to the strain, or the symmetric stress, tensor: $e_{ij} \equiv \frac{1}{2}(\partial_i s_j + \partial_j s_i)$ — so-called because it is the symmetric part of the derivative tensor,

$$\partial_i s_j = \frac{1}{2} (\partial_i s_j + \partial_j s_i) + \frac{1}{2} (\partial_i s_j - \partial_j s_i).$$

Show that $\theta = e_{ii}$. If e_{ij} is the symmetric part of the derivative tensor, then $\frac{1}{2}(\partial_i s_j - \partial_j s_i)$ must be the antisymmetric part. Explain briefly what this antisymmetric part physically represents. Does it generate any stress?

(b) [4 marks] Solids behave elastically under small deformation, and we define Hooke's tensor \mathcal{C}_{ijkh} such that $p_{ij} = \mathcal{C}_{ijkh} e_{kh}$, where p_{ij} is the pressure tensor. In general, the energy density ω of the deformation is a quadratic form, $\omega = \frac{1}{2}\mathcal{C}_{ijkh} e_{ij}e_{kh}$ (hence, $p_{ij} = \partial \omega/\partial e_{ij}$). However, using rotational symmetry, ω reduces to a simpler expression:

$$\omega = \frac{1}{2}\lambda\theta^2 + \mu \, e_{ij}e_{ij},$$

where λ and μ are the Lamé constants. What are the units (in MKS) of these constants? Show that p_{ij} is now given by $p_{ij} = \lambda \theta \delta_{ij} + 2\mu e_{ij}$, where δ_{ij} is the Kronecker delta.

(c) [6 marks] For expansions in three-dimensions, e_{ij} is given by $\frac{\theta}{3}\delta_{ij}$. Given this, show that in this case an 'effective pressure', $P_{\rm el} = -\mathcal{K}\theta$, is generated by the elasticity; here, \mathcal{K} is the bulk modulus:

$$\mathcal{K} = \lambda + \frac{2}{3}\mu.$$

Expansion changes the density ρ according to $d\rho = -\rho\theta$, where $d\rho$ is a small change in density. Show that then the compressibility of a solid can be defined:

$$\frac{dp}{d\rho} = \frac{\mathcal{K}}{\rho},$$

where dp is a small pressure change induced by the elasticity.

- (d) [4 marks] In the governing equation for s, there is the factor ' ∇^2 s' in the last term on the right hand side. Show that ∇^2 s = $\nabla\theta$ (i.e., $\partial_i^2 s_j = \partial_j\theta$) when the antisymmetric part of the derivative tensor vanishes. Then, derive the wave equation for the displacement vector s.
- (e) [7 marks] Derive the wave equations for the P-wave and the S-wave. Assume ρ is constant for each equation. What are the phase speeds of the P-wave and the S-wave? Given that $\mathcal{K} \approx 5\mu/3$ for the interior of the Earth, which one of the waves propagates faster in the interior, and by how much?