MATH 3305 General Relativity Problem sheet 3

Please hand in your solutions Friday, 30 October 2009

Problem 1 (20 points) Show that the line element

$$
\begin{equation*}
d s^{2}=g_{i j} d X^{i} d X^{j} \tag{1}
\end{equation*}
$$

of a metric tensor does not depend on local coordinates $\left(X^{1}, \ldots, X^{n}\right)$.

Problem 2 (30 points) In the lectures we used the total derivative to transform the Euclidean line element

$$
d s^{2}=d x^{2}+d y^{2}
$$

in Cartesian coordinates into the line element

$$
d s^{2}=d r^{2}+r^{2} d \theta^{2}
$$

in polar coordinates. Obtain the same result by starting from the transformation rule for a $\binom{0}{2}$-tensor

$$
\widetilde{g}_{i j}=\frac{\partial X^{r}}{\partial \widetilde{X}^{i}} \frac{\partial X^{s}}{\partial \widetilde{X}^{j}} g_{r s} .
$$

Which derivation do you think is easier?

Problem 3 ($\mathbf{3 0}$ points) Let us consider the plane \mathbb{R}^{2} with the Euclidean metric. Derive a formula for the length of a curve $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ given in polar coordinates $\gamma(t)=(r(t), \theta(t))$ by
(a) the theory from this course,
(b) starting from the usual definition of length of a curve in \mathbb{R}^{2}.

Problem 4 (20 points) Simplify expressions

$$
\delta_{i}^{i}, \quad g^{j i} g_{i j}, \quad A_{i j} V^{i} V^{j}, \quad g^{i j} A_{i j} .
$$

where $g_{i j}$ is a Riemann metric, V^{i} is a vector, and $A_{i j}$ is a $\binom{0}{2}$-tensor that is anti-symmetric, that is, $A_{i j}=-A_{j i}$. (Hint: All four expressions have been written using the Einstein summing convention.)

