MATH 3305 General Relativity Problem sheet 1

Please hand in your solutions by Friday, 15 October 2009.
Problem 1 (30 points) Let \mathcal{M} be a manifold. Let V^{a} be contravariant vector and let W_{a} be a covariant vector. Show that

$$
\begin{equation*}
\mu=V^{a} W_{a} \tag{1}
\end{equation*}
$$

is a scalar. (Hint: How does μ transform under coordinate transformations?)
Problem 2 (20 points) Determine which of the following tensor equations are valid, and describe possible errors

$$
\begin{align*}
K & =R_{a b c d} R^{a b c d} \tag{2}\\
T_{a b} & =F_{a c} F^{c}{ }_{c}+\frac{1}{4} \eta_{a b} F_{a b} F^{a b} \tag{3}\\
R_{a b}-\frac{1}{2} R & =8 \pi \kappa T_{a b} \tag{4}\\
E_{a}{ }^{b} & =F_{a c} H^{c b} . \tag{5}
\end{align*}
$$

Problem 3 ($\mathbf{3 0}$ points) Let \mathcal{M} be a 4-dimensional manifold and $T_{a b}$ be type $(0,2)$ tensor. How many independent components does $T_{a b}$ have in general? We defined

$$
\begin{align*}
T_{(a b)} & =\frac{1}{2}\left(T_{a b}+T_{b a}\right) \tag{6}\\
T_{[a b]} & =\frac{1}{2}\left(T_{a b}-T_{b a}\right) . \tag{7}
\end{align*}
$$

How many independent components do $T_{(a b)}$ and $T_{[a b]}$ have, respectively? Confirm that their sum adds up to the total number of independent components of $T_{a b}$.

Problem 4 (20 points) (Recall classical mechanics). Let $L(x(t), \dot{x}(t)$) be a smooth function of $x(t)$ and $\dot{x}(t)=d x(t) / d t$. What differential equation must L satisfy to extremises the following functional

$$
\begin{equation*}
S=\int L(x, \dot{x}) d t ? \tag{8}
\end{equation*}
$$

(Keywords: Hamilton's/action principle, Euler-Lagrange equations, variational calculus)

