Consider the static, spherically symmetric metric
ds? = —e"Mdt? 4+ ¥ dr? + r2(d6? + sin0 dp?).

The non vanishing Christoffel symbols are
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The Ricci tensor is defined by
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The Ricci scalar is
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The Einstein tensor is defined by
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Its four components are
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The Einstein tensor has vanishing covariant derivative and therefore implies
energy-momentum conservation,

V,T" = 0. (15)

For a perfect fluid in a static, spherically symmetric spacetime the energy-
momentum tensor has the form

T = (p(r) + P(r))UnUy + P(r) g (16)

where 4-velocity U, = —e?(")/2 is given for a fluid at rest. Conservation of this
quantity gives four equations of motion. Because of symmetries, only the radial
component = r does not equal zero. By using the Christoffel symbols derived
above, it is found that

0= (p(r) + Pr) ZL om0 1 pr(pyeec)

which gives

2P'(r) = =(P(r) + p(r))V/'(r). (17)



